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ABSTRACT 

In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective 
thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid learning algorithm. 
The ANFIS is a class of adaptive networks that is functionally equivalent to fuzzy inference systems (FIS). The ANFIS 
is based on neuro-fuzzy model, trained with data collected from various sources of literature. ETC is predicted using 
ANFIS with volume fraction and thermal conductivities of fillers and matrixes as input parameters, respectively. The 
predicted results by ANFIS are in good agreements with experimental values. The predicted results also show the su-
premacy of ANFIS in comparison with other earlier developed models. 
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1. Introduction 

The use of computer based modeling techniques is ex-
tensive in science and engineering research during these 
days. Polymer composites with high thermal conductivity 
and low dielectric constant are highly desirable for use in 
various applications, such as electric stress control, elec-
tromagnetic shielding, and higher storage capability of 
the electric energy. The process ability and other phys-
icochemical properties of the polymer composites are 
more advantageous for practical applications compared 
to ceramic materials. Modern demands require smaller 
size of packages and higher power of electronic devices. 
Polymer matrixes are commonly used such as polyethyl-
ene, polypropylene, polyurethane, polyvinyl chloride etc. 
which are good thermally and electrically insulators. Due 
to the increasing use of composite materials in many in-
dustrials sectors, including transformation, electronic, 
and energy supply and production, there is a renewed 
interest in simulation techniques to estimate the ETC of 
fiber and particle filled polymer composites. Dependence 
of the ETC of these materials on porosity, shape factor 
and packing of the particles is a matter of concern to en-
gineers, mathematicians, and physicists. A number of 
experimental studies have been carried out, and various 
numerical and analytical models have been developed to 
predict the effective thermal conductivity of particle filled 

polymer composites. Thermal conductivity of boron ni-
tride (BN) reinforced high density polyethylene (HDPE) 
composites was investigated under a special dispersion 
state of BN particles in HDPE, and together with the in-
fluence on thermal conductivity of particle sizes of filler 
used by Zhou et al. [1]. Luyt et al. [2] investigated the 
thermal, mechanical and electrical properties of copper 
powder filled polyethylene composites. The influence on 
these properties of the amount of copper powder in the 
polymer matrix was discussed. Xu et al. [3] investigated 
the use of aluminum nitride (AlN) in the form of AlN 
whiskers, with and without the presence of AlN particles 
and by the use of AlN whiskers and particles, and poly-
vinylidene fluoride (PVDF) as the matrix. Then a thermal 
conductivity up to 11.5 W/m K was obtained. Gu et al. [4] 
investigated the content of AlN influencing the thermal 
conductivity and ultimate mechanical properties of AlN/ 
linear low-density polyethylene (LLDPE) composites. 
Chemical surface treatment of AlN with titanate coupling 
reagent of NDZ-105 was used to improve thermal con-
ductivity by minimizing the interfacial phonon scattering, 
and to increase the mechanical strength of composites by 
improving the wet ability and uniform dispersion of AlN 
in the LLDPE. 

Maxwell [5] calculated the ETC of a random distribu-
tion of spheres in a continuous medium which worked 
well for low concentrations by solving Laplace’s equa-
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tion and assuming absence of any interactions between 
the filler particles. Hamilton and Crosser [6] extended 
Maxwell’s model to include an empirical factor n to ac-
count for the shape of the particles (n = 3 for spheres, and 
n = 6 for cylinder). Singh et al. [7] developed an empiri-
cal relation for quick estimation of ETC of highly porous 
systems. In order to incorporate varying individual ge-
ometries and non-linear flow of heat flux lines generated 
by the difference in thermal conductivity of the constitu-
ent phases, a correlation term has been introduced. ETC 
of polymer composites that contain high-density poly-
ethylene with spherical inclusions is investigated theo-
retically by Singh and Sharma [8]. Rajinder Pal [9] 
evaluated the Lewis-Nielson model in light of a vast 
amount of experimental data available on thermal and 
electrical conductivities of particulate composites. Ra-
jinder Pal [10] developed three new models for the ETC 
of concentrated particulate composites by using the dif-
ferential effective medium approach. Singh et al. [11] 
explored the influence of the some parameter, which has 
been obtained using the laws of statistical mechanics. 
Equivalent thermal resistor formed out of the phases in 
the form of parallel slabs and the resistor model approach 
has been applied. Boudenne et al. [12] studied the ther-
mal parameters of composite materials. A nonlinear 
least-squares criterion is used on experimental transfer 
functions to identify the thermal conductivity and the 
diffusivity of aluminum-polymer composite materials. 
Kumlutas et al. [13,14] measured the ETC of high den-
sity polyethylene containing particulate fillers by a hot- 
wire technique and numerically calculated by finite dif-
ference method. Serkan et al. [15] investigated the ETC 
of copper powder filled polyamide composites in the 
range of filler content 0% - 30% by volume for particle 
shape of short fibers and 0% - 60% by volume for parti-
cle shapes of plates and spheres, which was measured by 
the hot-disk method. Dey et al. [16] reported the thermal 
conductivity and coefficient of thermal expansion of sili- 
con particulates reinforced HDPE composites. Wang et 
al. [17] predicted the effective physical properties of 
complex multiphase materials developing the random 
generation-growth algorithm for reproducing multiphase 
microstructures, statistically equivalent to the actual sys-
tems. Then a high-efficiency lattice Boltzmann solver for 
the corresponding governing equations was described 
which, while assuring energy conservation and the ap-
propriate continuities at numerous interfaces in a com-
plex system, and demonstrated its numerical power in 
yielding accurate solutions. Wang et al. [18] presented 
the two-dimensional (2D) results of mesoscopic simula-
tions addressing the influence of fiber orientation angle, 
fiber length, mean porosity, and the fiber location distri-
bution function on the effective thermal conductivity. 

Since the early 1990s, artificial neural networks (ANNs) 

have been of interest for many researchers and they ap-
plied it successfully to almost every problem in geotech-
nical and in thermal engineering. ANNs are thus well 
suited for modeling the complex behavior of porous ma-
terials. In the last few years, many researchers used arti-
ficial neural network approach to predict thermo-physical 
coefficients in different areas. Recently, Singh et al. [19] 
and Bhoopal et al. [20] have applied ANN approach 
successfully to predict the ETC of various complex sys-
tems. Gotlib et al. [21], Zhang and Friedrich [22] and 
Turias et al. [23] have also predicted various properties 
with the help of ANN approach Kadi [24] studied the 
mechanical behavior of fiber-reinforced polymeric com-
posite by using artificial neural networks. Al-Haik et al. 
[25] predicted the non-linear viscoelastic behavior of 
polymer composites using artificial neural network. 

There are few studies on thermal conductivity of me- 
tal/non-metal filled polymer composites, which would 
have demanded the value of effective thermal conductiv-
ity of polymers. Adaptive neuro-fuzzy inference system 
(ANFIS) has recently been introduced to predict the ef-
fective thermal conductivity of metal/non-metal filled 
polymer composites. The fillers used most frequently are 
particles of carbon, aluminum, copper, brass, graphite 
and magnetite. By the addition of fillers to polymer ma-
trix the thermal conductivity of polymers can be increased 
remarkably. In this study, high-density polyethylene 
(HDPE), low-density polyethylene (LDPE), linear low- 
density polyethylene (LLDPE), and polyvinylidene fluo-
ride (PVDF) with different metals/non-metals such as 
boron nitride (BN), copper (Cu) and aluminum nitride 
(AIN) are used as inclusions [1-4], because of its supe-
rior mechanical and physical properties. HDPE is one of 
the most widely used commercial polymers. However, its 
toughness, weather resistance, and environmental stress 
cracking resistance are not good enough which limits its 
applications in many high-technology areas. Reinforcing 
HDPE with fillers (viz., aluminum and copper particles, 
short carbon fibers, carbon, graphite, aluminum nitrides 
and magnetic particles) has been found to improve its 
properties. Low-density polyethylene (LDPE) is a ther-
moplastic made from petroleum. Compared with LDPE, 
LLDPE possesses better strength, toughness, heat-resis- 
tance, cold resistance, environmental stress cracking re-
sistance, and tearing resistance properties. 

In this perspective, an attempt has been made to for-
mulate a rule-based model for prediction of the ETC of 
polymer composites using an adaptive neuro-fuzzy in-
ference system, (ANFIS). Rule-based modeling, specifi-
cally using fuzzy logic rule is a soft-computing tool-based 
approach to construct a model for the systems that are 
highly complex and exhibit non-linear behaviour in na-
ture, for which no well-defined mathematical expres-
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2.1. Fuzzy Inference Systems (FISs) sion(s) exist. The effectiveness of the ANFIS approach is 
extensively tested by comparing its results with those 
obtained in real experimentations as well as with those of 
various existing empirical/semi-empirical models re-
ported in literature. 

FISs are also known as fuzzy-rule-based systems, fuzzy 
models, fuzzy associative memories (FAM), or fuzzy 
controller when used as controllers. Basically a FIS is 
composed of five functional blocks which is show in 
Figure 1. 

2. Adaptive Neuro-Fuzzy Inference System 
(ANFIS) 

1) A rule base containing a number of fuzzy if-then 
rule; 

2) A data base which defines the membership func-
tions of the fuzzy sets used in the fuzzy rules; 

ANFIS modeling is based on conventional mathematical 
tools. This modeling is also known as fuzzy modeling or 
fuzzy identification. First of all, this system modeling 
was explored systematically by Takagi and Sugeno [26]. 
The ANFIS was developed in the early 90s by Jang [27], 
which combines the concepts of fuzzy logic and neural 
networks to form a hybrid intelligent system that en-
hances the ability to learn automatically and adapt. Hy-
brid systems have been used by researchers for modeling 
and predictions in various engineering systems. There are 
some basic aspects of this system which are in need of 
better understanding. More specifically: 1) No standard 
methods exist for transforming human knowledge or ex-
perience into the rule base and data base of a fuzzy in-
ference system (FIS); 2) There is a need for effective 
methods form tuning the membership functions (MFs) so 
as to minimize the output error measure or maximize 
performance index. 

3) A decision making unit which performs the infer-
ence operations on the rules; 

4) A fuzzification interface which transforms the crisp 
inputs into degrees of match with linguistic values; 

5) A defuzzification interface which transforms the 
fuzzy results of the inference into a crisp output. 

Given below are the steps of fuzzy reasoning per-
formed by FISs: 

1) Compare the input variables with the MFs on the 
premise part to obtain the membership values of each 
linguistic label. This step is called fuzzification; 

2) Combine the membership values on the premise 
part to get firing strength (weight) of each rule; 

3) Generate the qualified consequent of each rule de-
pending on the firing strength; 

4) Aggregate the qualified consequents to produce a 
crisp output. This step is called defuzzification. 

 

 

Figure 1. Fuzzy Inference System.  
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2.2. Architecture and Basic Learning Rule: 
Adaptive Networks 

An adaptive network is a multilayer feedforward network. 
The basic learning rule of adaptive networks is based on 
the gradient descent and the chain rule, which was pro-
posed by Werbos [28] in the 1970’s. An Adaptive net-
work is in fact a superset of all kinds of feedforward 
neural network (FNN) with supervised learning capabil-
ity. An adaptive network structure is consisting of nodes 
and directional links through which the nodes are con-
nected. Moreover, all of the nodes are adaptive, which 
means their outputs depend on the parameters pertaining 
to these nodes, and the learning rule specifies how these 
parameters should be changed to minimize a prescribed 
error measure. The formulas for the node functions may 
vary from node to node, and the choice of each node 
function depends on the overall input-output function 
which the adaptive network is required to carry out. For a 
given adaptive network with L layers and pth layer with 
# (p) nodes, the nodes in the ith position of the kth layer 
by (p, i), and its node function by . p

iO
As the node output depends upon the inputs and its 

parameter sets 
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Next for the development of a learning procedure that 
implements gradient descents in E over the parameter 
space, the error rate is: 
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For the internal node at (p, i), the error rate is derived by 
the chain rule: 
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where . That is, the error rate of an internal 
node can be expressed as a linear combination of the 

error rates of the nodes in the next layer. Therefore, for 
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Now if   is a parameter of the given adaptive net-
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where S is the set of nodes whose outputs depend on  . 
Then the derivative of the over all error measure E with 
respect to   is 
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Accordingly, the update formula for the generic parame-
ter   is: 
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where   is a learning rate.   can be further ex-
pressed as: 
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where   is the step size, the length of each gradient 
transition in the parameters space. 

3. Results and Discussion 

In the present calculations, the activation (threshold) 
functions used for the network are: Tangent sigmoid 
function (TANSIG), which is non-linear function given 
by 
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and pure linear function (PURELIN), where linear func-
tion is 

j jY AX                  (11) 

MATLAB function ANFIS with a hybrid-learning al-
gorithm to identify the Generalized bell-shaped built-in 
membership function parameters of (Genfis1) single-output, 
Sugeno type fuzzy inference systems (FIS) is used. Gen-
eralized bell-shaped built-in membership function (gbellmf) 
depends on three parameters a, b, and c as given by 
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where the parameter b is usually positive. The parameter 
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c locates the center of the curve. 
A combination of least squares and backpropagation 

gradient descent methods is used for training FIS mem-
bership function parameters to model a given set of in-
put/output data. These data are collected from various 
sources of literature. Proper selection of the input data 
plays a key role to the ANFIS approach and can be of 
help to reach a satisfactory predictive quality. The first 
data set is used to train/learn the system. The second data 
set, which does not include any data from the first data 
set, is used to test ANFIS’s generalization ability. ANFIS 
programming in MATLAB R2010b software has been 
used in this study. The ANFIS has provided better results 
for prediction of the effective thermal conductivity of 
metal/non-metal filled polymer composites and better 
agreement with the available experimental data. 

3.1. Effective Thermal Conductivity of 
HDPE/BN Composite 

Figure 2 shows the variation in experimental values of 
effective thermal conductivity of HDPE/BN composites 
[1] and those predicted by the ANFIS, and other theo-
retical models [5-7] with volume fraction of dispersed 
phase (filler). It is seen that with the increase in filler 
loading the ETC of the composite increases. The ETC of 
1.14 W/m K is achieved by ANFIS for HDPE containing 
30% volume fraction of BN, more than four times of 
pure HDPE. Therefore, the addition of filler (BN) into 
HDPE matrix would increase the ETC, and the content of 
filler has an effect on the ETC of the composites. The 
enhancement in the effective thermal conductivity of 
HDPE/BN composites is expected, as the thermal con-
ductivity of the filler (BN) is significantly higher (λBN = 
33 W/m K) than that of pure HDPE (λHDPE = 0.26 W/m 
K). With the increase in volume content of BN in HDPE, 
the interaction between BN particles increases and they 
come in contact with each other, resulting in the ease in  

 

 

Figure 2. The variation of ETC of HDPE/BN composites 
with volume fraction of filler. 

the transfer of heat and consequent enhancement of ETC. 
Most of models fail to predict the ETC of HDPE/BN 
composites over the entire range of filler concentration 
used in the present study. It may be noted that calculated 
results of Maxwell and Hamilton and Crosser model [5-6] 
of equations largely deviate from the ANFIS and ex-
perimental data over a wide range of volume fraction of 
dispersed phase (filler) between 0% to 35%.In the pre-
sent case, the ETC calculated by Singh et al. [7], which 
is extremely well with the experimental and ANFIS re-
sults of HDPE/BN composites. 

3.2. Effective Thermal Conductivity of LDPE 
and LLDPE/Cu Composite 

Figures 3 and 4 show the experimental values of effec-
tive thermal conductivity of LDPE and LLDPE/copper 
composites [2] and those predicted by the ANFIS and 
other theoretical models [5-7] over a wide range of vol-
ume fraction of dispersed phase (filler) between 0% to 
24%. It is clear that the effective thermal conductivities 

 

 

Figure 3. The variation of ETC of LDPE/Cu composites 
with volume fraction of filler. 
 

 

 

Figure 4. The variation of ETC of LLDPE/Cu composites 
with volume fraction of filler. 
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of the composites are higher than that of the both LDPE 
and LLDPE matrix. It is found that with the increase in 
the filler loading, the effective thermal conductivity of 
the composite increases. The maximum values of ETC 
0.72 W/m K and 0.76 W/m K are obtained for LDPE and 
LLDPE containing 24% volume fraction of copper, re-
spectively. This enhancement in ETC is mainly due to a 
significantly higher thermal conductivity of the filler 
(copper) (λcopper = 394 W/m K) than that of LDPE (λLDPE 
= 0.31 W/m K) and LLDPE (λLLDPE = 0.36 W/m K). The 
ETC is higher in the LLDPE matrix than in the LDPE 
matrix for all copper contents. The calculated results of 
Singh et al. [7] equations are excellent agreement with 
the experimental and ANFIS results. The Maxwell and 
Hamilton and Crosser models [5,6] calculated fairly well 
the ETC values only for low concentration of fillers. The 
reason is probably that more conductive paths are created 
as a consequence of higher agglomeration of particles 
[29]. Since the copper particles are restricted to the 
amorphous parts of polymer, and since LLDPE has lower 
amorphous content, it is quite possible that there will be 
more agglomeration of particles in the LLDPE matrix. 

3.3. Effective Thermal Conductivity of 
PVDF/AlN Composite 

The effective thermal conductivity of PVDF/AlN com-
posites with volume fraction of dispersed phase (filler) 
over the range between 0% to 73% is shown in Figure 5. 
It is noticed that the effective thermal conductivity of the 
composite increases with the increase in filler loading, 
except that the ETC decreased when the AlN volume 
fraction is increased from 70% to 73% (due to increase in 
porosity). The highest values of effective thermal con-
ductivity 4.811 W/m K and 3.722 W/m K are predicted 
by ANFIS for PVDF containing 70% and 73% volume 
fraction of AlN, respectively. The enhancement in the 
ETC of PVDF/AlN composites is expected, as the thermal 

 

 

Figure 5. The variation of ETC of PVDF/AlN composites 
with volume fraction of filler. 

conductivity of the filler (AlN) is significantly higher 
(λAlN = 320 W/m K) than that of PVDF (λPVDF = 0.12 
W/m K). The Maxwell and Hamilton and Crosser models 
[5,6] are failed to calculate the ETC of PVDF/AlN com-
posites over the entire range of filler concentration. It is 
also shown that the calculated results by the Singh et al. 
[7] equations are in better agreement with the experi-
mental [3] and ANFIS results. 

3.4. Effective Thermal Conductivity of 
LLDPE/AlN Composite 

Figure 6 shows the variation in experimental ETC of 
LLDPE/AlN composites [4] over a wide range of volume 
fraction of dispersed phase (filler) between 0% to 30% 
and those predicted by the ANFIS and calculated by 
various model with volume fraction of dispersed (filler) 
phase. It is clear that the effective thermal conductivities 
of composites are higher than that of pure LLDPE matrix. 
The ETC of composites increases considerably with the 
increase of volume fractions of inclusions. The maxi-
mum value of effective thermal conductivity 1.0842 
W/m K is achieved by ANFIS for LLDPE containing 
30% volume fraction of AlN. This enhancement in the 
ETC of LLDPE/AlN composites is mainly because the 
thermal conductivity of filler (AlN) is significantly 
higher (λAIN = 320 W/m K) than that of LLDPE (λLLDPE = 
0.36 W/m K).From the figure, it can be observed that the 
calculations of the Maxwell and Hamilton and Crosser 
models [5,6] are mismatched significantly, while the 
calculated results by Singh et al. model [7] of equations 
are satisfactory in agreement with the experimental [4] 
and ANFIS results. 

In Figures 2-6, it is noticed that the ETC of different 
metal/non-metal filled polymer composites increases 
with the increase in volume contents of filler in polymer 
composites. The enhancement in the effective thermal 
conductivity of present composites with increase in volume 

 

 

Figure 6. The variation of ETC of LLDPE/AlN composites 
with volume fraction of filler. 
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content of metal/non-metal is mainly due to more inter-
action between metal/non-metal particles as they come in 
contact with each other, resulting in the ease in transfer 
of heat and consequent enhancement of the effective 
thermal conductivity. Highly conductive different metal/ 
non-metal like BN, Cu, and AlN are used as fillers into 
polyethylene (HDPE, LDPE, and LLDPE) and polyvi-
nylidene fluoride (PVDF) composites as matrix in this 
study [1-4]. All the predictions of the ETC by ANFIS are 
in good agreement with the available experimental re-
sults and calculated by the Singh et al. model [7]. Max-
well as well as Hamilton and Crosser models [5,6] are 
calculated fairly well the ETC only for low concentration 
of present composites. 

Clearly, there are many benefits of using ANFIS for 
prediction, including the following: 1) It is a general 
framework that combines two technologies, namely neu-
ral networks and fuzzy systems; 2) By using fuzzy tech-
niques, both numerical and linguistic knowledge can be 
combined into a fuzzy rule base; 3) The combined fuzzy 
rule base represents the knowledge of the network struc-
ture so that structure learning techniques can easily be 
accomplished; 4) Fuzzy membership functions can be 
tuned optimally by using learning methods; 5) The ar-
chitecture requirements are fewer and simpler compared 
to neural networks, which require extensive trails and 
errors for optimization of their architecture; and 6) AN-
FIS does not require extensive initializations through 
several random starts before training, as always happens 
in neural networks. Other advantages of the two-phase 
neuro fuzzy hybrid technique in the ANFIS model also 
include its nonlinear ability, its capacity for fast learning 
from numerical and linguistic knowledge, and its adapta-
tion capability. 

4. Conclusion 

We have described the architecture of adaptive network 
based fuzzy inference system (ANFIS). By employing a 
hybrid learning procedure, the proposed architecture can 
refine fuzzy if-then rules obtained from human experts to 
describe the input-output behavior of a complex system. 
The predicted results show that using a hybrid intelligent 
approach, in particular ANFIS, gives good prediction ac-
curacies for the ETC of metal/non-metal filled polymer 
composites. The resultant predictions of effective thermal 
conductivity by the ANFIS agree well with the available 
experimental data. The ANFIS exhibit the capability to 
use for the predictions of effective thermal conductivity 
of various types of tailored complex materials. 
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