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ABSTRACT

In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method,
we study a class of nonlinear equations which derived from a fourth order analogue of generalized Camassa-Holm
equation. It is shown that this class gives compactons, solitary wave solutions, solitons, and periodic wave solutions.
The change of the physical structure of the solutions is caused by variation of the exponents and the coefficients of the

derivatives.
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1. Introduction

Recently, S. Tang [1] studied the nonlinear dispersive
variants the CH(n,n,m) of the generalized Camassa-Holm
equation in (1 + 1), (2 + 1) and (3 + 1) dimensions re-
spectively by using sine-cosine method, it is shown that
this class gives compactons, conventional solitons, soli-
tary patterns and periodic solutions.

It is the objective of this work to further complement
our studies in [1] on the CH(n,n,m) equation. Our first
interest in the present work being in implementing the
tanh method [2,3] to stress its power in handling nonlin-
ear equations so that one can apply it to models of vari-
ous types of nonlinearity. The next interest is the deter-
mination of exact travelling wave solutions with distinct
physical structures to the CH(n,2n — 1,2n,—n) given by

U, = (aou +hu" +d,u™™! )Xx +(a1u +hu" +du™™! )W
+(au+bu+du™)
+|:k0u2n (u—n)xx + klu2n (u—n)yy + k2u2n (u—n)zz:|tt ,
a.k>0(i=0,12),n>2,

(1.1)

in (3 + 1) dimensions. Our approach depends mainly on
the sine-cosine method [4], the tanh method [2,3], and
the rational hyperbolic functions method [5] that have the
advantage of reducing the nonlinear problem to a system
of algebraic equations that can be solved by using Maple
or Mathematica. As stated before, our approach depends
mainly on the sine-cosine method, the extended tanh
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method, and the rational hyperbolic functions method. In
what follows, we highlight the main steps of the pro-
posed methods.

2. Analysis of the M ethods

For the three methods, we first use the wave variable
& =X-ct to carry a PDE in two independent variables

P (U, Uy, Uy, U, U o++) =0, 2.1
into an ODE
Q(u,u"u",--+)=0, (2.2)

Equation (2.2) is then integrated as long as all terms
contain derivatives where integration constants are con-
sidered zeros.

2.1. The Sine-Cosine Method

The sine-cosine algorithm admits the use of the ansétz
u(x,t)zx‘tcosﬂ(,ug),|§|£%, 2.3)
or the ansitz
u(X,t)z/Isinﬁ(yf),|§|§%, (2.4)
where A, u, [ are parameters that will be determined.

2.2. TheTanh Method

The standard tanh method introduced in [2,3] where the
tanh is used as a new variable, since all derivatives of a

JIS



186 X.Q.LIN

tanh are represented by a tanh itself. We use a new inde-
pendent variable

Y = tanh (ué), 2.5)
that leads to the change of derivatives:
da._ (1 —Y? )i,
dé dy
(2.6)
(1) Loy L
dé? dy dy?’
We then apply the following finite expansion:
M
u(ué)=5(Y)=> aY" (2.7)
k=0
and
& k & k
u(ug)=S(Y)=2aY" +3 Y™, (23
k=0 k=0

where M is a positive integer that will be determined to
derive a closed form analytic solution.

2.3. The Rational Sinh Functions M ethod

It is appropriate to introduce rational hyperbolic func-
tions methods where we set

u(x,t)=

where A and B are parameters that will be deter-
mined, and

Af (x.t)

1+Bf (x,t)’ 29)

(2.10)

f(x1) cosh[,u(x—ct)]
X7 = b
sinh[,u(x—ct)}

The rational hyperbolic functions methods can be ap-
plied directly in a straightforward manner. We then col-
lect the coefficients of the resulting hyperbolic functions
and setting it equal to zero, and solving the resulting
equations to determine A, B, x4 and c. This as-

sumption will be used for the determination of solitons
structures the CH(Nn, 2n— 1, 2n, —n) equations.

3. Using the Sine-Cosine M ethod

For the CH(n, 2n — 1, 2n, —n) equation given by (1.1),
using the wave variable &=Xx+y+z—ct carries (1.1)
into the ODE, respectively

czu”=(a]‘u+b}‘u”+d}‘u2“‘1)"+c2k}‘[u2”(u‘“)”j . (3.1)
where
i=j i=j
aj=>a.bj=>h.d Zd,, J ZK j=0,1,2.
i=0 i-0

Integrating (3.1) twice, respectively, using the con-

(3.2)
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stants of integration to be zero we find
(a}‘—c )u+b u"+diu™ +c’kCu 2”( ”)" =0, (3.3)
Substituting (2.3) into (3.3) gives
(a}‘ —Cz)/lcosﬂ (1) +0] A" cos™ (&)
+d; 22" cos®"V ()
+c’k; (—nz,uzﬂz/l" cos" (&)
+n’ A" B(nB—1)cos™ (ﬂg)) =

(3.4)

Equation (3.4) is satisfied only if the following system
of algebraic equations holds:

ng+1=0,a —c* =0,
b A" = ki’ i f2A",

(3.5)
nB-2=(2n-1)p,
diA =’k A" B(np +1),
Solving the system (3.5) gives
; 2, (n-1) b
=t./a. N =—, :i . ,
i-F n-1" 4’ ajk]
(3.6)
i bi (n+1)
=0y ,0=—1
2nd;

The results (3.6) can be easily obtained if we also use
the sine method (2.4). Combining (3.6) with (2.3) and
(2.4), the following compactons solutions

u(X;,.t)=

ese&[n 1\/7( J—ft)] SNCE)

‘x+\/7t

1

>0, d;‘ <0, j=0,1,2,

3 ]’ ]7

0, 0therw1se.
and
u(X j ,t) =
L
n-1
— b;
fosct| 121 - (Xj + a}‘t) ,
2n \ak; (3.8)
0<|x =& <. a5,k >0.; <0.j =012,
7,
0, otherwise
are readily obtained, where
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X1:X7X2:(Xsy)’x3:(xsyaz)’ (39)
X =X%%X =X+Y,% =X+Y+2
However, for b <0, aj,dj,kJ >0, we obtain the
following solitary wave solutions
1
n-1
n-1
u(X,t)=1{0sech’ ( t) ,(3.10
) st | 2 o )| a0
and
b
n-1
(X t)— chch2[n ! ’ ( \/7t) .(3.11)

4. Using the Extended Tanh Method

Using the assumptions of the tanh method (2.5)-(2.7)
gives

@
+c2k}[ (n+1)S"24* (1- Yz) (S\S(J}

o vy 58] | o

To determine the parameter M we usually balance the
linear terms of highest order in the resulting Equation
(4.1) with the highest order nonlinear terms. This in turn
gives

~C*)S+b/S"+d;S

oy dS,
dy

M =M(n—1)+4+M—2, 4.2)
so that
M :—i. 4.3)
n-1

To get a closed form analytic solution, the parameter
M should be an integer. A transformation formula

u=v ™, 4.4)

should be used to achieve our goal. This in turn trans-
forms (3.6) to

(a]‘ —cz)(n—1)2v3 +b (n-1)"v?

+c2k}‘n[(v’)2 +(n—1)w”] =0.

Balancing W’ and V' gives M =2. The extended
tanh method allows us to use the substitution

V(%t)=S(Y)=A +AY +AY> +BY +BY?. (4.6)

Substituting (4.6) into (4.5), collecting the coefficients
of each power of Y and using Mapple to solve the re-

+d}‘(n—1)2v

4.5)
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sulting system of algebraic equations we obtain the fol-
lowing three sets:

_an
A e Y

2d
a=(n-1) | 19,

\jk}‘ [16a}‘d;‘n2 (k) (1—3n)(n+1)}
1\/16a}‘d}‘n2+(b}‘)2(1—3n)(n+1)

" d @
A=A=B=B,=0,c=0Q,
~ —4din A
TR (4.8)
A=A=B=A=0c=0
and
B —d n A
A) A=B= (n+1)’“_2’ (4.9)
A=B=0,c=Q.
Noting that
1
u=v ",
for
2
b') (3n-1)(n+1
b}‘>0,d}k>(1)( Z( )
léa;n
or
b >0,d] <0,
we obtain the solitary wave solutions
1
—bf (n+1) -l
u(Xj,t)—{Wcothz[M(xj—Ct)]} , (4.10)
1
b (n+1) n-1
u(Xj,t):{Wtanhz[M(x —Ct)}} , (4.11)
u(X ,t)= LTn{2+{tanh2 [,uz(x- —Ct):|
J b (n+1) .
1 (4.12)
+coth’ [ﬂz (Xj —Ct)]}}}_E ,
where ¢=Q, 1, =2u,=A,
However, for
b") (3n-1)(n+1
o 0.4 &) G-
16ajn
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or
b, <0,d; <0,

we obtain the periodic solutions

b (n+1 nl
u(xj,t)z{%;n)cotz[yl(xj—ct)]} ., (4.13)
1
b (n+1 n-l
u(xj,t):{%ﬁ])mﬂ{ﬂl(xj_ct)]} @
d'n
U(Xj,t):{m{2+{tan2 |:/.t2 (Xj —Ct):|
1 (4.15)
+cot’ |:,u2 (Xj —Ct)}}}} "
where C=Q, g =2u,=A.
5. Using the Rational Sinh and Cosh
Functions M ethods
We now substitute the rational cosh
V(Xj,t): Acosh[,u(xj —Ct):| , 5.0)
1+ Bcosh[,u(xj —Ct)}
into (4.5), where
u( Xt =[v(x;.t)] . (5.2)

Collecting the coefficients of the like hyperbolic func-
tions, and proceeding as before we find

4
=+2(n-1),B=+l,c=+ |a
a (n-1), ,C /a‘+7(n—1)’

_ - (n-1)
'u_z(n_l)\/k}“npa}‘(n—1)+4]’

* 6 *
dj =—2b; (n-1).

(5.3)

J

The results (5.2) can be easily obtained if we also use
the rational sinh method. This gives the solitons solutions
1
I£sec h[,u1 (XJ- —Ct)} i
2(n-1)

u(X;.t)= (5.4)

and
1
1Fcsc h[,u, (Xj —Ct)] -

20D (5.5)

u(Xj,t):
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for bj <0, and the periodic wave solution

lisec[,u2 (Xj —Ct)] ﬁ

X. . t)= 5.6
u(X;.t) 2(n-1) . (56)
and the complex solution
ne
liicsc[,czz(Xj—Ct)J n-1
X. .t)= 5.7
u(X;.t) 2(n-T) . G
for b}‘ >0, where
b (n-1
t=2(n-1) |— J*(n ) ,
kjn[7aj(n—l)+4]
b (n—1)
,u=2(n—1) - '* . (5.8)
? \/kjn[7aj(n—1)+4]

6. Conclusion

The basic goal of this work has been to extend our work
on the CH(n,n,m) equation in [1]. The sine-cosine
method, the tanh method, and the rational hyperbolic
functions method were used to investigate variants of
the CH(n,2n — 1,2n,—n) equations. The study revealed
compactons solutions, solitary wave solutions, solitons,
and periodic wave solutions for all examined variants.
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