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ABSTRACT 

In this paper, we describe a hard-decision decoding technique based on Genetic Algorithms (HDGA), which is applica-
ble to the general case of error correcting codes where the only known structure is given by the generating matrix G. 
Then we present a new soft-decision decoding based on HDGA and the Chase algorithm (SDGA). The performance of 
some binary and non-binary Linear Block Codes are given for HDGA and SDGA over Gaussian and Rayleigh channels. 
The performances show that the HDGA decoder has the same performances as the Berlekamp-Massey Algorithm 
(BMA) in various transmission channels. On the other hand, the performances of SDGA are equivalent to soft-decision 
decoding using Chase algorithm and BMA (Chase-BMA). The complexity of decoders proposed is also discussed and 
compared to those of other decoders. 
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1. Introduction 

In digital communication one of the important issues is 
how to transmit the message from the source to the 
destination as faithfully as possible. One of the most used 
techniques and also the most convenient is the adoption 
of error-correcting codes. Indeed the codes are used to 
improve the reliability of data transmitted over communi- 
cation channels susceptible to noise. The Coding tech- 
niques are based on the following principle: Add the re- 
dundancy to the message to obtain a vector called “code- 
word”. Decoding techniques are based on the algorithms 
witch try to find the most likely transmitted code word 
related to the received (see Figure 1). 

Decoding algorithms are classified into two categories: 
hard-decision and soft decision algorithms. Hard decision 
algorithms work on a binary form of the received infor- 
mation. In contrast, soft decision algorithms work directly 
on the received symbols [1]. 

Soft-decision decoding is an NP-hard problem and was 
approached in different ways. Recently artificial intelli- 
gence (AI) techniques were introduced to solve this pro- 
blem. These techniques show very good results. Among 
related works, one work A* algorithm to decode linear 
block codes [2], another one uses genetic algorithms for 
decoding linear block codes [3] and a third one uses 
Compact Genetic Algorithms to decode BCH codes [4]. 
Maini et al. were the first, to our knowledge, to introduce 
Genetic algorithms [5] in the decoding of linear block  

codes. Hebbes et al. [6] worked on the integration of ge- 
netic algorithms in a classical turbo codes decoder, and 
Durand et al. [7] worked on the optimization of turbo de- 
coding by optimizing the interleaver with a genetic algo- 
rithm. Furthermore the deployment of Artificial Neural 
Networks (ANN), to train the system for higher fault to- 
lerance in OFDM is used by Praveenkumar [8]. There are 
also other works [9-11] based on AI trying to solve pro- 
blems related to coding theory. 

We have investigated the use of genetic algorithms in 
different ways. In [12], GA is used to search of good 
double-circulant codes. In [13], a new soft decoding of 
block codes based on the genetic algorithms with very 
good performances was presented. 

The purpose of this paper is to complete the study of 
the decoder proposed in [14]. Indeed, at first we study 
the complexity of the decoder by comparing it with the 
complexity of the BMA and Chase decoders. Secondly, 
we apply it to the non-binary codes family such as Reed 
Solomon (RS) codes. And finally, we evaluate its per- 
formances on a Rayleigh fading channel. 

The rest of this paper is organized as follows: Section 
2 introduces the decoder based on genetic algorithms for 
linear block codes. The Section 3 presents the Chase al- 
gorithms decoding and our soft decoding algorithm based 
on GA. In Section 4 we study the complexity of the hard 
and the soft decoders. Simulation result are given in Sec- 
tion 5, Section 6 concludes this paper. 
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Figure 1. A simplified communication system model. 
 

And before concluding this paper we present the ex- 
perimentation results. 

2. Hard-Decision Decoder Based on GA 

2.1. Information Set (IS) 

In a  linear block code, an information set is de- 
fined as set of k symbols of a codeword that can be inde- 
pendently specified. The remaining 

 ,n k

 n k

 

 elements 
are redundant parity-check symbols. Thus, if a received 
word has been corrupted by noise in some bits of the 
transmitted word, and if it is possible to find an error-free 

IS

 

, so that all the wrong bits are paritycheck bits, then 
the received vector can be successfully decoded. 

In this work, an IS

 

 is represented by an n-dimen- 
sional vector in which k bits are equal to 1 and the others 
are set to 0. The non-zero bits of the IS

 , , ,r r r r  

r ip
,r p

 correspond to 
linearly independent columns of the matrix G such an 
information set is represented by the symbol p. 

2.2. HDGA Algorithm 

The purpose of the presented GA is to convert the de- 
coding problem into search problem for a feasible solu- 
tion around the received vector 0 1 1n . In the 
presented case, the population will always consists of 
individuals which are intrinsically associated with code- 
words. Besides, the evolutionary operations over the in- 
dividuals will always result in new individuals which are 
associated with codewords. The evolution, therefore, will 
take place within the constrained search space. After a 
finite number of generations, the best individual (code- 
word) in the population will become a highly evolved 
solution to the problem. 



Step 1: Initial Population 
The initial population is obtained by random genera- 

tion of N pairs of vectors  and  to form N indi- 
viduals .  i

Step 2: For i from 1 to gN  
Step 2.1: Crossover and Replication 
The crossover operator provides 2N offspring as fol-

lows: 

Choose form the intermediate population tow indivi- 
duals at random, for example, ci = (r, pi) and ck = (r, pk). 

IPair the S p kp
q

iq
1, 2, , ,l n

 chromosome i  with  to generate a 
crossover  as described bellow. i

Set all n bits of  to zero. 
  do: For each 

   If 0p pl li k    do  1;q l 
q

i

For each location of i  that is equal to 1, get the cor-
responding columns of the generator matrix G to form a 
vectorial set. If this set is linearly dependent (LD), do: 

 

  0;q li  
End of for. 

Since the code is ,n k
k m

, if only m positions were set 
to 1 in the IS chromosome, then the remaining   
positions equal to 0 must be used to find the remaining 
k m k m  information bits. Thus, set at random   in 
the n m  remaining zero bits, in such a way that  
represents a valid information set of the code. 

iq

c r

These offspring and parents are put together to from an 
intermediate population. 

Step 2.2: Fitness Evaluation 
The objective function is the Hamming distance be- 

tween a codeword i  and the received vector , given 
by  ,D c r

 
 

H i . The fitness function can be simply de- 
fined as 

1

1 ,
i

H i

a c
D c r


  

i

   

 

         (1) 

Step 2.3: Saving the Best Individuals 
The M fittest individuals are copied and saved. 
Step 2.4: Mutation 
This operator alters an individual by bit inversion of 

chromosome X. However, such an inversion takes place 
only in one bit and only when an improvement in the in-
dividual’s fitness is achieved. If it is not possible to im-
prove the individual‘s fitness, then no alteration is per-
formed. 

Step 2.5: Fitness Evaluation 
Step 2.6: Saving the Best Individuals 
The M fittest individuals are copied and saved. 
Step 2.7: Fitness Evaluation 
Step 2.8: Selection 
The natural selection is used and the probability of se-

lecting the ith individual of c  the population, will be 
defined as 

1

0

i
i N

j
j

a c
p c

a c







           (2) 

Step 2.9: Elitist Strategy 
Restore the M best individuals. 
Step 3: Solution 
The best member from the last generation is returned 
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as the final decision. 

3. Soft-Decision Decoding Based on Genetic 
Algorithm 

3.1. Chase Algorithm 

The Chase algorithm [15] is a suboptimal decoding pro- 
cedure that uses a set of most likely error patterns. These 
error patterns are selected on the basis of the reliability of 
the received symbols. Each error pattern is added to the 
hard-decision received word and decoded using a hard- 
decision decoder. Each decoded code word is scored by 
computing is metric with respect to the received se- 
quence. The code word with the best metric is selected as 
the most likely. 

3.2. SDGA Algorithm 

Let C be a binary linear  block code where d is 
its minimum distance. C is capable to correct any combi- 
nation of t or less random bit errors. Let 

 , ,n k d

 , ,r r r
 1 iv  w

1 2  be the received word from the output 
of the channel, i i , where i  is a zero- 
mean Gaussian random variable with variance 

, nr
r w

0 2N


, 
. 1, 2, ,i n

The sign bits of the received values represent the hard- 
decision 

 0 0,1 0,1 0,nz z 0,z z   ,r 0 ,j n 

0, if 0;

1, otherwise

x 

,  j jz sign

where 

( )sign x


 


 

The reliabilities of the received channel values, for bi- 
nary transmission over an AWGN  channel, are the am- 
plitudes i . The received symbol reliabilities are or- 
dered with a sorting algorithm (e.g., quick sort). The 
output of the algorithm is a list of indexes 

r

jI , 
 such that 1, 2, ,j   ,n

2j nI I Ir r r    

In the first round of decoding, the hard-decision re- 
ceived word 0  is fed into a HDGA. Let z 0  denote 
the decoded code word, stored as the initial code word 
guess. Then the metric of 

v

0v

  0

0
1

1

 with respect to the re-
ceived word 

j
n

v

j

 v               (4) 

is computed and its value is stored as the maximum. 
Test the error patterns with at most 2d    errors lo- 

cated within the bit positions having the 2d  

1,

 lowest 
reliabilities. 
 For 12, , 2t , an error pattern i ie  is added to 

the hard-decision received word: 0i i z  . The 

word “data” is plural, not singular. 
 The error patterns are generated among the t least 

reliable positions (LRPs), that is, Positions 
 1 2, , , tI I I , for which reliabilities (amplitudes) are 
the smallest. 

 Each test vector iz  is input to a HDGA, producing a 
codeword 

z e

iv , 12, , 2t . 1,i 
 The metric is computed according to Equation (3) and 

if maximum, code word i

The Figure 2 below illustrates the steps of our SDGA 
algorithm. 

v  stored as the most likely. 

4. Complexity Analysis 

Let  be the code length,  be the code dimension,  
be the error correction capability of a linear bloc code C, 

i  be the population size which must be equal to the 
total number of individuals in the population, and let 

n k t

N

gN

n
n k

iN

 
be the number of generation. The Table 1 shows the com- 
plexity of the four algorithms. 

For BMA, the complexity is polynomial in . Simi- 
larly, the complexity of HDGA is polynomial in , , 

,  log iN . Although, the complexity of the gN  and 
 

 

Figure 2. Flow diagram of SDGA. 
 
Table 1. Complexity of BMA, HDGA, Chase-BMA, SDGA. 

Algorithm Complexity 

BMA  2O n  

HDGA    2 logi g iO N N kn kn N   

 22tO n

 

 

Chase-BMA  

SDGA   22 logt

i g iO N N kn kn N     
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Chase-BMA and SDGA is exponentially in . For the 
non-binary codes, such as RS codes, all the expression in 
Table 1 must be multiplied by the term . 

t

 log n

10-1

We also note that BMA is less complex than HDGA. 
While the complexity of BMA is less than the decoder 
based on genetic algorithms, it can decode all linear 
codes while this is not the case for BMA and Chase- 
BMA. 

5. Simulations Results 

Computer simulations are carried out in order to evaluate 
the performance of the HDGA and SDGA decoding algo- 
rithm. Several RS and BCH codes are considered. 

The simulations were made with the default parameters 
outlined in the Table 2 except where indicated. For 
transmission we used an AWGN/Rayleigh channel with a 
BPSK modulation. 

5.1. HDGA versus BMA Performances 

5.1.1. AWGN Channel 
The Figures 3-5 below compare the performances of 
HDGA and BMA for the BCH(63,30,13), BCH(63,45,7) 
and the RS(15,7,9) codes. 
 

Table 2. Default parameters. 

Parameter Value 

Ng (generations) 20 

Ni (population) 20 

Selection type Roulette 

M 2 

Channel AWGN 

Modulation BPSK 

Minimum number of transmitted blocks 1000 

Minimum number of residual bit errors 200 
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Figure 3. Performances of HDGA and BM algorithm for 
BCH(63,30,13). 
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Figure 4. Performances of HDGA and BM algorithm for 
BCH(63,45,7). 
 

10
0

1 2 3 4 5 6 7 8 9
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR(dB)

B
E

R

 

 

BPSK
HDGA
BMA

 

Figure 5. Performances of HDGA and BM algorithm for 
RS(15,7,9). 
 

We notice in general the equality in terms of perfor- 
mance between the two decoders. 

The performances of HDGA for RM(32,12,8) and 
Golay(23,12,7) codes, are shown in Figure 6. From the 
simulation results, we observe that the performances of 
the decoder HDGA realize about 2 dB coding gain from 
the non-coded BPSK curve. In addition the codes simu- 
lated in Figure 6 can’t be decoded by BMA. 

5.1.2. Rayleigh Channel 
HDGA has been described for the AWGN channel. The 
decoding is particularly desirable over channels with more 
severe impairments. Therefore a flat Rayleigh fading 
channel without side information is used for the perfor- 
mance investigation of HDGA. 

The performances in terms of BER of HDGA and 
BMA for BCH(63,30,13) code are shown in Figure 7. 
From the later, we observe that the performances of both  
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Figure 6. Performances of HDGA for Golay(23,12,7) and 
RM(32,16,8). 
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Figure 7. Performances of HDGA and BMA for BCH(63,30, 
13). 
 
algorithms are similar. 

Again, the Figure 8 shows that the two decoders pre- 
sent the same performances also for non-binary codes 
namely RS(15,7,9). 

5.2. SDGA versus Chase-BMA Performance 

In order to compare the SDGA with Chase-BMA and 
DDGA [13] algorithms, we carried out some simulations 
using transmission over AWGN channel and then over 
Rayleigh channel. 

5.2.1. AWGN Channel  
The Figures 9 and 10 compare the performance of the 
three decoders namely SDGA, Chase-BM and DDGA 
applied on the BCH(63,45,7) and RS(15,7,9) codes. We 
show that the performances of DDGA are better than 
both SDGA and Chase-BM algorithms which present re- 
latively the same performances. This is can be explain by 
the fact that DDGA explore about 30,000 test vectors,  
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Figure 8. Performances of HDGA and BMA for RS(15,7,9). 
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Figure 9. Performances of SDGA and Chase-BMA for BCH 
(63,45,7). 
 

100

1 2 3 4 5 6 7 8 9
10-6

10-5

10-4

10-3

10-2

10-1

SNR(dB)

B
E

R

 

 

BPSK
Chase-BMA
SDGA
DDGA

 

Figure 10. Performances of SDGA and Chase-BMA for 
RS(15,7,9). 
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whoever, the other decoders operate respectively 8 and 
16 test vectors for BCH(63,45,7) and RS(15,7,9) codes. 

100

The performances of SDGA for RM(32,12,8) and Go- 
lay(23,12,7) codes, are shown in Figure 11. From the 
very figure, we observe that the performance of our algo-
rithm gives an important coding gain. Furthermore, in our 
algorithm, the algebraic decoding is not required as is the 
case of the Chase algorithm. 

5.2.2. Rayleigh Channel 
To evaluate more our soft decoding algorithm, we process 
some simulations in the Rayleigh channel, and we com- 
pare them with the performances of Chase-BMA using 
respectively BCH and RS(15,7,5) codes. The curves 
plotted in Figures 12 and 13 show that the performance 
of our soft decoding algorithm SDGA are comparables 
with those of Chase-BMA one. So we have in the case of 
Rayleigh fading channel the same behavior as in the case 
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Figure 11. Performances of HDGA for Golay(23,12,7) and 
RM(32,16,8). 
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Figure 12. Performances of HDGA and BMA for BCH(63, 
30,13). 
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Figure 13. Performances of HDGA and BM algorithm for 
RS(15,7,9). 
 
of AWGN channel. 

6. Conclusions 

In this paper, we have presented a hard and soft decoders 
based on GA. These decoders can be applied on binary 
and non-binary linear block codes; and constitute in fact 
evolutionary versions of the well known “information set 
decoding”. Their computational complexity is also stu- 
died and compared with BMA and Chase-BMA. 

The simulations are curried out for some binary and 
non-binary Linear Block Codes over Gaussian and Ray- 
leigh channels. They show that our SDGA decoder pre- 
sents the same performances as Chase-BMA. In addition 
our SDGA decoder does not require algebraic decoding as 
is the case of the Chase-BM algorithm. The obtained re- 
sults will open new horizons for the artificial intelligence 
algorithms in the coding theory field. 
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