
Open Journal of Composite Materials, 2012, 2, 61-86 
http://dx.doi.org/10.4236/ojcm.2012.23009 Published Online July 2012 (http://www.SciRP.org/journal/ojcm) 

61

Review of Recent Literature on Static Analyses of 
Composite Shells: 2000-2010 

Mohammad S. Qatu1, Ebrahim Asadi1,2, Wenchao Wang2 
 

1School of Engineering and Technology, Central Michigan University, Mount Pleasant, USA; 2Department of Mechanical Engineer-
ing, Mississippi State University, Starkville, USA. 
Email: asadi1e@cmich.edu 
 
Received April 19th, 2012; revised May 15th, 2012; accepted May 31st, 2012 

ABSTRACT 

Laminated composite shells are frequently used in various engineering applications including aerospace, mechanical, 
marine, and automotive engineering. This article reviews the recent literature on the static analysis of composite shells. 
It follows up with the previous work published by the first author [1-4] and it is a continuation of another recent article 
that focused on the dynamics of composite shells [3]. This paper reviews most of the research done in recent years 
(2000-2010) on the static and buckling behavior (including postbuckling) of composite shells. This review is con- 
ducted with an emphasis on the analysis performed (static, buckling, postbuckling, and others), complicating effects in 
both material (e.g. piezoelectric) and structure (e.g. stiffened shells), and the various shell geometries (cylindrical, 
conical, spherical and others). Attention is also given to the theory being applied (thin, thick, 3D, nonlinear…). How- 
ever, more details regarding the theories have been described in previous work [1,3]. 
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1. Introduction 

The use of laminated composite shells in many engineer- 
ing applications has been expanding rapidly in the past 
four decades due to their higher strength and stiffness to 
weight ratios when compared to most metallic materials. 
Composite shells now constitute a large percentage of 
recent aerospace or submarine structures. They are used 
increasingly in areas such as automotive engineering, 
biomedical engineering and other applications. 

Literature on composite shell research can be found in 
many national and international conferences and journals. 
A recent article [3] focused on the recent research done 
on the dynamic behavior of composite shells wherein 
problems of free vibration, shock, wave propagation, dy- 
namic stability, damping and viscoplastic behavior re- 
lated to laminated shells are discussed. Several review 
articles on the subject, such as Qatu [2,4], Kapania [5], 
Noor and Burton [6,7], Noor et al. [8], and Soldatos [9] 
covered much of the research done in past decades. Com- 
putational aspects of the research were covered by Noor 
and Burton [6,7], Noor et al. [8,10] and Noor and Ven-
neri [11]. Carrera [12] presented a historical review of 
zigzag theories for multilayered plates and shells. He also 
reviewed the theories and finite elements for multilayered, 
anisotropic, composite plates and shells [13]. Among the 
recent books on the subject are those by Reddy [14], Ye 

[15], Lee [16], and Shen [17]. 
Present article reviews only recent research (2000 

through 2010) done on the static and buckling analyses 
of composite shells. It includes stress, deformation, buck- 
ling and post buckling analyses under mechanical, ther- 
mal, hygrothermal or electrical loading. Since there are 
extensive papers on experimental and optimization stud- 
ies in literature, those topics have not been discussed in 
this review separately. However, papers in those topics 
based on their obtained results are classified in the topics 
of this review. 

This article classifies research based upon the typically 
used shell theories. These include thin (or classical) and 
thick shell theories (including shear deformation and 
three dimensional theories), shallow and deep theories, 
linear and nonlinear theories, and others. Most theories 
are classified based on the thickness ratio of the shell 
being treated (defined as the ratio of the thickness of the 
shell to the shortest of the span lengths and/or radii of 
curvature), its shallowness ratio (defined as the ratio of 
the shortest span length to one of the radii of curvature) 
and the magnitude of deformation (compared mainly to 
its thickness). Fundamental equations are listed for the 
types of shells used by most researchers in other publica- 
tions [1-4]. 

The literature is reviewed while focusing on various 
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aspects of research. Focus will first be placed on the vari- 
ous shell geometries that are receiving attention in recent 
years. Among classical shell geometries are the cylindri- 
cal, spherical, conical shells and other shells of revolu- 
tion; other shells like shallow shells are also included in 
this review. Stress and deformation analyses, in which 
various boundary conditions and/or shell geometries are 
considered, buckling and post-buckling problems, and 
finally research dealing with thermal and/or hygrother- 
mal environments will be reviewed. The third aspect of 
research will focus on material-related complexities, 
which include piezoelectric or other complex materials. 
Structural-related complexities will be the final category 
that will be addressed. This will include stiffened shells, 
shells with cut-outs, shells with imperfections or other 
complexities. 

2. Shell Theories 

Shells are three dimensional bodies bounded by two, 
relatively close, curved surfaces. The three dimensional 
equations of elasticity are complicated when written in 
curvilinear, or shell, coordinates. Researchers simplify 
such shell equations by making certain assumptions for 
particular applications. Almost all shell theories (thin and 
thick, deep and shallow …) reduce the three-dimensional 
(3D) elasticity problem into a two dimensional (2D) 
problem. The accuracy of thin and thick shell theories is 
established when their results are compared to those of 
3D theory of elasticity. 

2.1. Three Dimensional Elasticity Theory 

A shell is a three dimensional body confined by two par- 
allel (unless the thickness is varying) surfaces. In general, 
the distance between those surfaces is small compared 
with other shell parameters. In this section, the equations 
from the theory of 3D elasticity in curvilinear coordi- 
nates are presented. The literature regarding Mechanics 
of laminated shells using 3D elasticity theory will then be 
reviewed. 

Consider a shell element of thickness h, radii of cur- 
vature R and R (a radius of twist R is not shown here) 
(Figure 1). Assume that the deformation of the shell is 
small compared to the shell dimensions. This assumption 
allows us to neglect nonlinear terms in the subsequent 
derivation. It will also allow us to refer the analysis to the 
original configuration of the shell. The strain displace- 
ment relations can be written as [1] 
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Figure 1. Stresses in shell coordinates (free outer surfaces). 
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The laminated composite shells are assumed to be 
composed of plies of unidirectional long fibers embedded 
in a matrix material. On a macroscopic level, each layer 
may be regarded as being homogeneous and orthotropic. 
However, the fibers of a typical layer may not be parallel 
to the coordinates in which the shell equations are ex- 
pressed. The stress-strain relationship for a typical nth 
lamina in a laminated composite shell made of N laminas 
as shown in Figure 2 is given by Equation (2) [1]. 
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Figure 2. Lamination parameters in shells. 
 

The positive notations of the stresses are shown in Fig- 
ure 1. 

In order to develop a consistent set of equations, the 
boundary conditions and the equilibrium equations will 
be derived using the principle of virtual work, which 
yields the following equilibrium equations 
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The principle of virtual work will also yield boundary 
terms that are consistent with the other equations. The 
boundary terms for z = constant are: 
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where 0z , 0z and 0z are surface tractions and u0, v0 
and w0 are displacement functions at z = constant. Simi-
lar results are obtained for the boundaries  = constant 
and  = constant. A three dimensional shell element has 
six surfaces. With three equations at each surface, a total 
of 18 equations can be obtained for a single-layered 
shell. 

The above equations are valid for single-layered shells. 
To use 3D elasticity theory for multi-layered shells, each 
layer must be treated as an individual shell. Both dis- 
placements and stresses must be continuous between 
each layer (layer k to layer k + 1) in a n-ply laminate to 

insure that there are no free internal surfaces (i.e., de- 
lamination) between the layers.  
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For k = 1,···, N – 1. 
Among the recent work that used 3D theory of elastic- 

ity is the work of Sheng and Ye [18] who presented a 3D 
state space finite element solution for composite cylin- 
drical shells. Wu and Lo [19] discussed 3D elasticity 
solutions of laminated annular spherical shells. Wang 
and Zhong [20] used 3D theory to solve problems with 
smart laminated anisotropic circular cylindrical shells 
with imperfect bonding. Li and Shen [21] studied post- 
buckling of 3D textile composite cylindrical shells under 
axial compression in thermal environments. Santos et al. 
[22,23] showed a finite element model for the analysis of 
3D axisymmetric laminated shells with piezoelectric sen- 
sors and actuators. Sprenger et al. [24] investigated de-
lamination growth in laminated structures with 3D-shell 
elements and a viscoplastic softening model. Li and Shen 
[25,26] analyzed postbuckling of 3D braided composite 
cylindrical shells under various loading in thermal envi-
ronments. Alibeigloo and Nouri [27] found a three-di-
mensional solution for static analysis of functionally 
graded (FG) cylindrical shells with bonded piezoelectric 
layers by utilizing differential quadrature method (DQM) 
to the edge boundary conditions and in-plane different- 
ials and using state-space approach for discrete points. 
Fagiano et al. [28] used 3-D finite element method to 
accurately predict interlaminar stresses for multilayer 
composite shells. Nosier and Ruhi [29] found an exact 
solution for a laminated piezoelectric finite panels under 
static electro mechanical loading. They reduced PDEs of 
equilibrium equations to a system of ODEs using trigo- 
nometric functions for displacements in longitudinal and 
circumferential directions, and then they solved the re- 
sulted system of ODEs. The similar procedure followed 
by Ruhi et al. [30] to find the solution of a functionally 
graded cylinder under thermoelastic loading. 

2.2. Thick Shell Theory 

Thick shells are defined as shells with a thickness smaller 
by at least one order of magnitude when compared with 
other shell parameters such as wavelength and/or radii of 
curvature (thickness is at least 1/10 of the smaller length 
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

of the shell). The main differentiation between thick shell 
and thin shell theories is the inclusion of shear deforma-
tion and rotary inertia effects. Theories that include shear 
deformation are referred to as thick shell theories or 
shear deformation theories. 
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Thick shell theories are typically based on either a dis- 
placement or stress approach. In the former, the midplane 
shell displacements are expanded in terms of shell thick- 
ness, which can be a first order expansion, referred to as 
first order shear deformation theories. 

where the midsurface strains are: 
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The 3D elasticity theory is reduced to a 2D theory us- 
ing the assumption that the normal strains acting upon 
the plane parallel to the middle surface are negligible 
compared with other strain components. This assumption 
is generally valid except within the vicinity of a highly 
concentrated force (St. Venant’s principle). In other words, 
no stretching is assumed in the z-direction (i.e., z = 0). 
Assuming that normals to the midsurface strains remain 
straight during deformation but not normal, the dis- 
placements can be written as [1] 
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and the curvature and twist changes are: 
where u0, v0 and w0 are midsurface displacements of the 
shell and  and  are midsurface rotations. An alterna- 
tive derivation can be made with the assumption z = 0. 
The subscript (0) will refer to the middle surface in sub- 
sequent equations. The above equations describe a typi- 
cal first-order shear deformation shell theory, and will 
constitute the only assumption made in this analysis 
when compared with the 3D theory of elasticity. As a 
result, strains are written as [1] 
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The force and moment resultants (Figures 3 and 4) are 

obtained by integrating the stresses over the shell thick- 
ness considering the (1 + z R ) term that appears in the 
denominator of the stress resultant equations [5]. The 
stress resultant equations are: 
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where ˆ ˆ, , , , , , , ,ij ij ij ij ij ij ij ij ij
ˆ ,A B D A B D A B and D are defined 

in [1]. 
It has been shown [1,5] that the above Equations (9) 

and (10) yield more accurate results when compared with 
those of plates and those traditionally used for shells [18]. 
Priciple of virtual work can be used to derive the consis- 
tent equilibrium equations and boundary conditions. The 
equilibrium equations are [1-4]: 
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The boundary terms for the boundaries with  = con- 
stant are 
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Similar equations can be obtained for  = constant. 
Equations (9) and (10) are significantly different from 

those that cover most of first order shear deformation 
theories (FSDTs) for shells which neglect the effect of 
z R  in the stress resultant equations. Asadi et al. [31]  

 

Figure 3. Force resultants in shell coordinates. 
 

 

Figure 4. Moment resultants in shell coordinates. 
 
studied static and free vibration of composite shells using 
Equations (9) and (10) and compared their results with 
other FSDTs and 3D elasticity results. They showed that 
presented FSDT improves the prediction of displace- 
ments, force resultants and moment resultants signify- 
cantly. 

Shear deformation theories were used by many authors 
(e.g. Qatu [4]). Chaudhuri [32] presented a nonlinear 
zigzag theory for finite element analysis of shear-de- 
formable laminated shells. Krejaa and Schmidt [33] 
studied large rotations in shear deformation finite ele- 
ment analysis of laminated shells. Non-linear buckling 
and postbuckling of a moderately thick anisotropic lami- 
nated cylindrical shell of finite length subjected to lateral 
pressure, hydrostatic pressure and external liquid pres- 
sure based on a higher order shear deformation shell the- 
ory with von Kármán-Donnell-type of kinematic non- 
linearity and including the extension/twist, extension/ 
flexural and flexural/twist couplings were presented by 
Li and Lin [34] wherein the material property of each 
layer could be linearly elastic, anisotropic and fiber-re- 
inforced. A mixed meshless computational method based 
on the Local Petrov-Galerkin approach for analysis of 
plate and shell structures was presented by Sorić and 
Jarak [35]. They overcame the undesired locking phe- 
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nomena and demonstrated that this meshless method is 
numerically more efficient than the available meshless 
fully displacement approaches. Shen [36,37] investigated 
postbuckling of shear deformable cross-ply laminated 
cylindrical shells under combined loading. 

Piskunov et al. [38] were interested in a ratational 
higher order shear deformation theory of anisotropic 
laminated plates and shells. Iozzi and Gaudenzi [39] 
studied shear deformable shell elements for adaptive 
laminated structures. Han et al. [40] performed a geomet- 
rically nonlinear analysis of laminated composite thin 
shells using a modified first-order shear deformable ele- 
ment. Other studies that used a shear deformation shell 
theory include those of Li [41], Zenkour [42], Shen [43], 
Shen and Li [44], Balah and Al-Ghamedy [45], and Fer-
riera [46]. 

Zhen and Wanji [47] presented a higher order theory 
for multilayered shells and performed analysis on lami- 
nated cylindrical shell panels. Khare et al. [48] discussed 
closed-form thermo-mechanical solutions of higher-order 
theories of cross-ply laminated shallow shells. Khare and 
Rode [49] showed similar solutions for thick laminated 
sandwich shells. Ferreira et al. [50] modeled cross-ply 
laminated elastic shells by a higher-order theory. Alijani 
and Aghdam [51] presented a semi-analytical solution for 
stress analysis of moderately thick laminated cylindrical 
panels with various boundary conditions. Pinto Correia et 
al. [52] analyzed laminated conical shell structures for 
buckling using higher order models. Matsunaga [53] 
studied thermal buckling of cross-ply laminated compos- 
ite shallow shells according to a higher order deforma- 
tion theory. Oh and Cho [54] investigated a higher order 
zigzag theory for smart composite shells under me- 
chanical-thermo-electric loading. Yaghoubshahi et al. [55] 
and Asadi and Faribrz [56] employed general higher-order 
shear deformation theory and formulated it to analyze 
deep composite shells and plates with mixed boundary 
conditions. Benson et al. [57] presented a Reissner- 
Mindlin shell formulation based on a degenerated solid is 
implemented for NURBS-based isogeometric analysis. 
They constructed a user-defined element in LS-Dyna for 
industrial purposes to analyze elasto-plastic behavior of 
shells. 

In general, layer-wise laminate theories are used to 
properly represent local effects, such as interlaminar 
stress distribution, delaminations, etc. These theories are 
typically employed for cases involving anisotropic mate- 
rials in which transverse shear effects cannot be ignored. 
Recent studies include Yuan et al. [58] in which a stress 
projection, layer-wise-equivalent formulation was used 
for accurate predictions of transverse stresses in lami- 
nated plates and shells. Kim and Chaudhuri [59,60] and 
Chaudhuri and Kim [61] described a layer-wise linear 
displacement distribution theory and based their analysis 

on it to investigate the buckling and shear behavior of a 
long cross-ply cylindrical shell (ring). Leigh and Tafreshi 
[62] used layerwise shell finite element based on first 
order shear deformation theory to investigate delamina- 
tion buckling of composite cylindrical shells. A static 
analysis of thick composite circular arches using a layer- 
wise differential quadrature technique was performed by 
Malekzadeh [63]. Roh et al. [64,65] investigated the 
thermo-mechanical behavior of shape memory alloys 
using a finite element method based on layerwise theory. 
The theory of layerwise displacement field was used to 
perform a finite element analysis of aero-thermally buck- 
led composite shells by Shin et al. [66]. The displace- 
ment field of a layerwise theory was also used to develop 
laminated beam theories by Tahani [67]. 

2.3. Thin Shell Theory 

If the shell thickness is less than 1/20 of the other shell 
dimensions (e.g. length) and/or radii of curvature, a thin 
shell theory, where shear deformation and rotary inertia 
are negligible, is generally acceptable. Depending on 
various assumptions made during the derivation of the 
strain-displacement relations, stress-strain relations, and 
the equilibrium equations, various thin shell theories can 
be derived [5]. All these theories were initially derived 
for isotropic shells and expanded later for laminated 
composite shells by applying the appropriate integration 
through laminas, and stress-strain relations. For very thin 
shells, the shell is thin such that the ratio of the thickness 
compared to any of the shell’s radii or any other shell 
parameter, i.e., width or length, is negligible when com- 
pared to unity. Also, for thin shells, the normals to the 
middle surface remain straight and normal when the shell 
undergoes deformation. This assumption assures that 
certain parameters in the shell equations (including the 
z R  term mentioned earlier in the thick shell theory) 
can be neglected. The shear deformation can be neglected 
in the kinematic equations allowing the in-plane dis-
placement to vary linearly through the shell’s thickness 
as given by 
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where the midsurface strains, curvature and twist changes 
are 
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normal strains, and  is the in-plane engineering shear 
strain. The terms Qij are the elastic stiffness coefficients 
for the material. If the shell coordinates (,) are parallel 
or perpendicular to the fibers, then the terms Q16 and 
Q26 are both zero. Stresses over the shell thickness (h) 
are integrated to get the force and moment resultants as 
given by 

and where  
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Applying Kirchhoff hypothesis of neglecting shear 
deformation and the assumption that z is negligible, the 
stress-strain equations for an element of material in the 
kth lamina may be written as [1] 
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where Aij, Bij, and Dij are the stiffness coefficients aris- 
ing from the piecewise integration over the shell thick- 
ness (Equation (14b)). For shells which are laminated 
symmetrically with respect to their midsurfaces, all the 
Bij terms become zero. Note that the above equations are 
the same as those for laminated plates, which are also 
valid for thin laminated shells. Using principle of virtual 
work yields the following equilibrium equations. 

where  and  are normal stress components,  is the 
in-plane shear stress component [1],  and  are the  
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The following boundary conditions can be obtained for 
thin shells for  = constant (similar equations can be ob- 
tained for  = constant). 
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where 1  and 2  are, respectively, the start and end 
points of the shell in   direction. Qatu and Asadi [68] 
used the formulation in this section and simplified it to 
analyze different type of shells including cylindrical, 
spherical and paraboloidal shells. However, they did not 
give numerical examples for static analysis of different 
shells. Shen [69] studied buckling and postbuckling of 
laminated thin cylindrical shells under hygrothermal en- 
vironments. Soldatos and Shu [70] discussed modeling of 
perfectly and weakly bonded laminated plates and shal- 
low shells. Chaudhuri et al. [71] presented admissible 
boundary conditions and solutions to internally pressur- 
ized thin cylindrical shells. Khosravi et al. [72] illus-
trated a shell element for co-rotational nonlinear analysis 
of thin and moderately thick laminated structures. Sofi-
yev et al. [73] discussed buckling of laminated cylindri-
cal thin shells under torsion. Weicker et al. [74,75] in 
two companion papers derived governing equilibrium 
conditions for a thin-walled pipe subjected to general 
loading based on thin shell theory and found exact and 
finite element solutions and compared them with each 
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others. Kiendla et al. [76] proposed an isogeometric 
formulation for rotation-free thin shell analysis of struc-
tures comprised of multiple patches and applied that to 
real wind turbine problems. Prabu et al. [77] performed a 
parametric study on buckling behavior of dented short 
carbon steel cylindrical thin shell subjected to uniform 
axial compression by non-linear static buckling analysis. 
The elastic modulus reduction method (EMRM) was pro- 
posed by Yu and Yang [78] to calculate lower-bound 
limit loads of thin plate and shell structures. Challagulla 
et al. [79] performed micromechanical analysis of grid- 
reinforced thin composite shells. Stress, deformation and 
stability conditions for thin doubly curved shallow bi- 
metallic shells taking large displacements under homo- 
genous thermal field to account were done by Jakomina 
et al. [80]. Ghassemi et al. [81] employed a finite ele- 
ment model in order to analyze large displacements. 
Since, the finite-element implementation for this kind of 
problems suffers from membrane and shear locking, es- 
pecially for very thin shells, the mid-surface of the shell 
is regarded as a Cosserat surface with one inextensible 
director to overcome these numerical problems. Other 
studies include those of Morozov [82], Guz’ and Shner- 
enko [83], and Maksimyuk and Chernyshenko [84]. 

2.4. Nonlinear Theories 

The magnitude of transverse displacement compared to 
shell thickness is the third criterion used in classifying 
shell equations. In many cases, nonlinear terms in the 
fundamental shell equations are expanded using perturb- 
bation methods, and smaller orders of the rotations are 
retained. Most frequently, the first order only is retained 
and occasionally third orders have been included in 
nonlinear shell theories. In some shell problems, the ma- 
terial used can also be nonlinear (e.g., rubber, plastics 
and others). Theories that include materials nonlinearity 
are also referred to as nonlinear shell theories as well. 
The vast majority of shell theories, however, deal with 
geometric nonlinearity only. 

Galishin and Shevchenko [85] determined the axi- 
symmetric nonlinear thermoelastoplastic state of lami- 
nated orthotropic shells. Wang et al. [86] studied the non- 
linear dynamic response and buckling of laminated cy- 
lindrical shells with axial shallow grooves. Nonlinear 
finite element analyses were performed by Kundu et al. 
[87], Naidu and Sinha [88] and Guo et al. [89]. Patel et al. 
[90,91] investigated nonlinear thermo-elastic buckling 
characteristics of cross-ply laminated joined conical and 
cylindrical shells. Xu et al. [92] studied nonlinear stabil- 
ity of double-deck reticulated circular shallow spherical 
shell based on the variational equation of the nonlinear 
bending theory. Panda and Singh [93] studied thermal 
buckling and post-buckling analysis of a laminated com- 

posite spherical shell panel embedded with shape mem- 
ory alloy fibers using nonlinear finite element methods. 
Sze and Zheng [94] studied a hybrid-stress solid element 
for geometrically nonlinear laminated shell analyses. 
Andrade et al. [95] and Kima et al. [96] performed geo- 
metrically nonlinear analysis of laminated composite 
plates and shells using various shell elements. Huang [97] 
performed nonlinear buckling of composite shells of re- 
volution. Ferreira et al. [98] conducted a nonlinear finite 
element analysis of rubber composite shells. Material 
nonlinearity was discussed by Khoroshun et al. [99,100]. 

Other nonlinear analyses include Chaudhuri [32], Kho- 
sravi et al. [72], Han et al. [40], Hsia [101], Wang et al. 
[102], Moitaa et al. [103], Jakomina et al. [80], Li and 
Lin [34], and Razzaq and El-Zafrany [104].  

2.5. Shell Geometries 

Shells may have different geometries based mainly on 
their curvature characteristics. In most shell geometries, 
the fundamental equations have to be treated at a very 
basic level. The equations are affected by the choice of 
the coordinate system, the characteristics of the Lame 
parameters and curvature [1-4]. Equations for cylindrical, 
spherical, conical and barrel shells can be derived from 
the equations of the more general case of shells of revo- 
lution. Equations for cylindrical, barrel, twisted and shal- 
low shells can also be derived from the general equa- 
tions of doubly curved shells. Cylindrical shells, doubly 
curved shallow shells, spherical and conical shells are the 
most treated geometries in research. 

Bespalova and Urusova [105] studied contact interact- 
tion between prestressed laminated shells of revolution 
and a flat foundation. Pinto Correia et al. [106] investi- 
gated modeling and optimization of laminated adaptive 
shells of revolution. Vasilenko et al. [107] described con- 
tact interaction between a laminated shell of revolution 
and a rigid or elastic foundation. Khoroshun and Babich 
[108] discussed stability of laminated convex shells of 
revolution with micro-damages in laminate components. 
Vasilenko et al. [109] analyzed stresses in laminated 
shells of revolution with an imperfect interlayer contact. 
Gureeva et al. [110] analyzed an arbitrary loaded shell of 
revolution based on the finite element method in a mixed 
formulation. Merzlyakov and Galishin [111] investigated 
thermoelastoplastic non-axisymmetric stress-strain analy- 
sis of laminated shells of revolution. Ye and Zhou [112] 
analyzed the bending of composite shallow shells of 
revolution. Stability of composite shells of revolution 
was picked up by Trach [113] and Khoroshun and Ba- 
bich [114]. 

Shin et al. [115] investigated thermal post-buckled be- 
haviors of cylindrical composite shells with viscoelastic 
damping treatments. Bhaskar and Balasubramanyam [116] 

Copyright © 2012 SciRes.                                                                                OJCM 



Review of Recent Literature on Static Analyses of Composite Shells: 2000-2010 69

showed accurate analysis of end-loaded laminated 
orthotropic cylindrical shells. Merglyakov and Gatishin 
[117] performed analysis of the thermoelastoplastic non- 
axisymmetric laminated circular cylindrical shells. Wea- 
ver et al. [118] investigated anisotropic effects in the 
compression buckling of laminated cylindrical shells. 
Huang and Lu [119], Shen and Xiang [120] studied 
buckling and postbuckling of cylindrical shells under 
combined compression and torsion. Diaconu et al. [121] 
studied buckling characteristics and layup optimization 
of long laminated composite cylindrical shells subjected 
to combined loads. Fu and Yang [122] and Yang and Fu 
[123] described delamination growth for composite la- 
minated cylindrical shells under external pressure. Shen 
[124] conducted a study on the hygrothermal effects on 
the postbuckling of laminated cylindrical shells. Wang 
and Dong [125] were interested in local buckling for tri- 
angular delaminations near the surface of laminated cy- 
lindrical shells under hygrothermal effects. Goldfeld and 
Ejgenberg [126] were interested in linear bifurcation 
analysis of laminated cylindrical shells. Shen [127,128] 
and Shen and Li [129] analyzed postbuckling of axi- 
ally-loaded laminated cylindrical shells with piezoelec- 
tric actuators. Panda and Ramachandra [130] studied 
postbuckling analysis of cross-ply laminated cylindrical 
shell panels under parabolic mechanical edge loading. 
Rahman and Jansen [131] presented a finite element 
formulation of Koiter’s initial post-buckling theory using 
a multi-mode approach for coupled mode initial post- 
buckling analysis of a composite cylindrical shell. 

Studies on buckling of cylindrical shells include 
Wangi and Xiao [132], Shen [133-135], Wang et al. 
[136], Geier et al. [137], Weaver et al. [138], Wang and 
Dai [139], Zhu et al. [140], Patel et al. [141], Yang and 
Fu [142], Hilburger and Starnes [143], Semenyuk et al. 
[144], Tafreshi [145], Solaimurugan and Velmurugan 
[146], Semenyuk and Zhukova [147], Tafreshi [148], 
Weaver and Dickenson [149], Kere and Lyly [150], 
Vaziri [151], Semenyuk et al. [152], Tafreshi [153,154], 
Babich and Semenyuk [155], Biagi and Medico [156], 
Sheinman and Jabareen [157], Prabu et al. [77], Li and 
Lin [34], and De Faria [158]. 

Wang et al. [159] presented a method for interlaminar 
stress analysis in a laminated cylindrical shell. Lin and 
Jen [160] performed analysis of laminated anisotropic 
cylindrical shell by Chebyshev collocation method. Le- 
manski and Weaver [161] were interested in optimization 
of a 4-layer laminated cylindrical shell. Gong and Ling- 
Feng [162] did experimental study and numerical calcu- 
lation of stability and load-carrying capacity of cylindri-
cal shell with initial dent. Khoroshun and Babich [163] 
investigated stability of cylindrical shells with damage- 
able components. Alibeigloo [164] performed a static 
analysis of an anisotropic laminated cylindrical shell with 

piezoelectric layers. Goldfeld [165] studied the influence 
of the stiffness coefficients on the imperfection sensitive- 
ity of laminated cylindrical shells. Zenkour and Fares 
[166] picked up the problem of thermal bending analysis 
of composite laminated cylindrical shells. Jinhua et al. 
[167] performed variational analysis of delamination 
growth for composite laminated cylindrical shells under 
concentrated load. Meink et al. [168] studied filament 
wound composite cylindrical shells. Solaimurugan and 
Velmurugan [169] researched progressive crushing of 
stitched glass-polyester composite cylindrical shells. 

Other analyses include those of Sheng and Ye [18], Li 
and Shen [21,25,26], Shen [36,37], Li [41], Zenkour [42], 
Shen and Li [44], Zen and Wanji [47], Chaudhuri et al. 
[71], Sofiyev et al. [73], Patel et al. [90], Khoroshun et al. 
[99,100], Wang et al. [102], Zhu et al. [140], Seif et al. 
[170], Burgueño and Bhide [171], Belozerov and Kireev 
[172], Alibeigloo and Nouri. [27], Semenyuk and Trach 
[173], Paris and Costello [174] and Movsumov and 
Shamiev [175]. As can be seen from the above review, 
cylindrical shells received the most attention (as com- 
pared with other shell geometries. 

Khare et al. [48] presented closed-form thermo-me- 
chanical solutions of cross-ply laminated shallow shells. 
Soldatos and Shu [70] discussed modeling of perfectly 
and weakly bonded laminated plates and shallow shells. 
Zang et al. [176] were interested in nonlinear dynamic 
buckling of laminated shallow spherical shells. Kioua 
and Mirza [177] investigated piezoelectric induced bend- 
ing and twisting of laminated shallow shells. Niemi [178] 
developed a four-node bilinear shell element of arbitrary 
quadrilateral shape and applied that to find the solution 
of static and vibration problems of shallow shells. Zari- 
vnyak [179] researched the probability of the critical 
state of glue joints of a shallow laminated shell. Other 
studies on shallow shells include those of Grigorenko et 
al. [180] Matsunaga [53], Wang et al. [86], Ye and Zhou 
[112], Jakomina et al. [80], Xu et al. [92], Gupta [181], 
and Zhu et al. [140]. 

Conical shells are other special cases of shells of revo- 
lution. For these shells, a straight line revolves about an 
axis to generate the surface. Wu et al. [182] discussed a 
refined asymptotic theory of laminated circular conical 
shells. Das and Chakravorty [183] suggested selection 
guidelines of point-supported composite conoidal shell 
roofs based on a finite element analysis. Mahdi et al. 
[184] investigated the effect of material and geometry on 
crushing behavior of laminated conical shells. Goldfeld 
[185] studied the imperfection sensitivity of laminated 
conical shells. Goldfeld et al. [186] performed a multi- 
fidelity optimization of laminated conical shells for buck- 
ling. Mahdi et al. [187] were interested in the effect of 
residual stresses in a filament wound laminated conical 
shell. Singh and Babu [188] studied thermal buckling of 
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laminated piezoelectric conical shells. Wu and Chiu [189] 
picked up the problem of thermoelastic buckling of 
laminated conical shells. Rezadoust et al. [190] investi- 
gated the crush behavior of conical composite shells. 
Goldfeld et al. [191] presented design and optimization 
of laminated conical shells for buckling. Kosonen [192] 
described specification for mechanical analysis of coni- 
cal composite shells. Other studies on conical include 
Patel et al. [90,193,194], and Pinto Correia [52]. 

Spherical shells are other special cases of shells of 
revolution. For these shells, a circular arc, rather than a 
straight line, revolves about an axis to generate the sur- 
face. If the circular arc is half a circle and the axis of 
rotation is the circle’s own diameter, a closed sphere will 
result. Smithmaitrie and Tzou [195] discussed actions of 
actuator patches laminated on hemispherical shells. Mar- 
chuk and Khomyak [196] presented refined mixed finite 
element solutions of laminated spherical shells. He and 
Hwang [197] investigated identifying damage in sphere- 
cal laminated shells. Kadoli and Ganesan [198] analyzed 
thermoelastic buckling of composite hemispherical shells 
with a cut-out at the apex. Saleh et al. [199] described 
crushing behavior of composite hemispherical shells sub- 
jected to axial compressive load. Other studies on sphe- 
rical shells include those of Zang et al. [176], Wu and Lo 
[19], Xu et al. [92], Panda and Singh [93], and others. 

Tzou et al. [200] studied sensitivity of actuator patches 
laminated on toroidal shells. Mitkevich and Kul’kov [201] 
investigated design optimization and forming methods 
for toroidal composite shells. 

Sai et al. [202,203] investigated shells with and with-
out cut-outs. Other study includes Latifa and Sinha [204]. 

3. Types of Analyses 

Analyses can be dynamic in nature. These include free 
and transient vibrations, wave propagation, dynamic sta- 
bility, shock and impact loadings and others. These were 
covered in another review article [3]. The types of analy- 
ses that this work focuses on are static, buckling, post 
buckling, thermal and hygrothermal, and failure and dam- 
age. 

3.1. Static Analysis 

Pinto Correiaa et al. [205] described a finite element 
semi-analytical model for laminated axisymmetric shells 
under static and other loads. Prusty [206] performed lin- 
ear static analysis of composite hat-stiffened laminated 
shells using finite elements. Park et al. [207] analyzed 
laminated composite plates and shells using a shell ele- 
ment. Alijani et al. [208] studied application of the ex- 
tended Kantorovich method to the bending of clamped 
cylindrical panels. Santos et al. [23] presented a finite 
element bending analysis of 3D axisymmetric laminated 

piezoelectric shells. Babeshko and Shevchenko [209- 
211], Babeshko [212] and Shevchenko and Babeshko 
[213,214] discussed elastoplastic laminated shells made 
of isotropic, transversely isotropic and laminated materi- 
als. Maslov et al. [215] presented a method of stressed 
state analysis of thick-walled composite shells. Abou- 
hamze et al. [216] studied Bending of symmetrically 
laminated cylindrical panels using the extended Kan- 
torovich method. 

Other static analyses include Alibeigloo and Nouri 
[27], Yuan et al. [58], Maksimyuk and Chernyshenko 
[84], Razzaq and El-Zafrany [104], Vasilenko et al. [109], 
Ye and Zhou [112], Tafreshi [145], Wang et al. [159], 
Alibeigloo [164], Zenkour and Fares [166], Seif et al. 
[170], Semenyuk and Trach [173], Paris and Costello 
[174], Kioua and Mirza [177], Grigorenko et al. [180], 
Mahdi et al. [187], Marchuk and Khomyak [196], Saleh 
et al. [199], and Sai Ram and Sreedhar Batu [202,203]. 

3.2. Buckling Analysis 

Lee and Lee [217] discussed a numerical analysis of the 
buckling and postbuckling behavior of laminated com- 
posite shells. Sai-Ram et al. [218] studied buckling of 
laminated composite shells under transverse load. Fan et 
al. [219] investigated creep buckling of viscoelastic 
laminated plates and circular cylindrical shells. Li et al. 
[220] performed buckling analysis of rotationally peri- 
odic laminated composite shells by finite elements. Sofi- 
yev [221] conducted torsional buckling analysis of cross- 
ply laminated orthotropic composite cylindrical shells. 
Patel et al. [222] were interested in thermo-elastic buck-
ling of angle-ply laminated elliptical cylindrical shells. 
Hilburger and Starnes [223] studied the effects of imper-
fections of the buckling response of composite shells. 
Rickards et al. [224] analyzed buckling of composite 
stiffened shells. 

Studies on buckling of cylindrical shells include 
Wangi and Xiao [132], Shen [133-135], Wang et al. [136], 
Geier et al. [137], Weaver et al. [138], Wang and Dai 
[139], Zhu et al. [140], Patel et al. [141], Yang and Fu 
[142], Hilburger and Starnes [143], Semenyuk [144], 
Tafreshi [145], Solaimurugan and Velmurugan [146], 
Semenyuk and, Zhukova [147], Tafreshi [148], Weaver 
and Dickenson [149], Kere and Lyly [150], Vaziri [151], 
Semenyuk et al. [152], Tafreshi [153,154], Babich and 
Semenyuk [155], Biagi and Medico [156], Sheinman and 
Jabareen [157], Prabu et al. [77], Li and Lin [34], and De 
Faria [158]. 

Other buckling analyses include Matsunaga [53], Shen 
[69], Sofiyev et al. [73], Wang et al. [86], Huang [97], 
Wang et al. [102], Weaver et al. [118], Huang and Lu 
[119], Shen and Xiang [120], Diaconu et al. [121], Wang 
and Dong [125 ], Hilburger and Starnes [143], Semenyuk 
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et al. [144], Tafreshi [145], Zang et al. [176], Goldfeld et 
al. [186,191], Singh and Babu [188], Wu and Chiu [189], 
Kadoli and Ganesan [198], and Pinto Correiaa [205]. 

3.3. Postbuckling Analysis 

Shin et al. [115] discussed thermal postbuckled behavior 
of cylindrical composite shells. Shen [225,226] discussed 
the same problem with piezoelectric actuators and ther- 
mal-dependant properties. Kim et al. [227] presented an 
8-node shell element for postbuckling analysis of lami- 
nated composite plates and shells. Kundu and Sinha [228] 
analyzed postbuckling of laminated shells. Kundu et al. 
[229] performed postbuckling analysis of smart lami- 
nated doubly curved shells. Xie and Biggers [230] con- 
ducted postbuckling analysis with progressive damage 
modeling in tailored laminated plates and shells with a 
cutout. Merazzi et al. [231] employed implicit finite ele- 
ment methods to analyze postbuckling behavior of shell- 
wised tools. 

Other studies on postbuckling analysis include Shen 
[36,37,43,69,124,127,128,133-135], Li and Shen [21,25, 
26], Li [41], Shen and Xiang [120], Shen and Li [44, 
129], Tafreshi [145,148], Semenyuk and Zhukova [147], 
Kere and Lyly [150], Sheinman and Jabareen [157], Patel 
et al. [193,194], Lee and Lee [217], Rahman and Jansen 
[131], Li and Lin [34], Panda and Ramachandra [130], 
and Sai Ram and Sreedhar [218].  

3.4. Thermal and Hygrothermal Loading 

Galishin [232] and Babeshko and Shevchenko [210, 233] 
performed analysis of the axisymmetric thermoelasto- 
plastic state of laminated transversally isotropic shells. 
Swamy and Sinha [234] investigated nonlinear analysis 
of laminated composite shells in hygrothermal environ- 
ments. Babeshko and Shevchenko [209,235] were inter- 
ested in thermoelastoplastic state of flexible laminated 
shells under axisymmetric loading. Cheng and Batra [236] 
showed thermal effects on laminated composite shells 
containing interfacial imperfections. Kewei [237] con- 
ducted weak formulation study for thermoelastic analysis 
of thick open laminated shell. Ghosh [238] studied hy- 
grothermal effects on the initiation and propagation of 
damage in composite shells. Saha and Kalamkarov [239] 
presented a micromechanical thermoelastic model for 
sandwich composite shells. El-Damatty et al. [240] per- 
formed thermal analysis of composite chimneys using 
finite shell elements. Roy et al. [241] developed an im- 
proved shell element for smart fiber reinforced composite 
structures under coupled piezothermoelastic loading. Also, 
Kulikov and Plotinkova [242] constructed a seven pa-
rameter geometrically exact shell element to study cou-
pled problem of thermopiezoelectricity in laminated 
plates and shells. 

Studies that treated thermal and/or hygrothermal ef- 
fects include those of Li and Shen [21,25,26], Ruhi et al. 
[30], Li [41], Shen [43,44,69,124], Khare et al. [48], Ma- 
tsunaga [53], Oh and Cho [54], Galishin and Shevchenko 
[85], Kundu et al. [87], Naidu and Sinha [88], Wang et al. 
[96,136], Merzlyakov and Galishin [111], Shin [115], 
Wang and Dong [125], Patel et al. [141,193,194,222], 
Shevchenko and Babeshko [213,214], Zenkour and Fares 
[166], Wang and Dai [139], Zhu et al. [140], Singh and 
Babu [188], Wu and Chiu [189], Kadoli and Ganesan 
[198], Panda and Singh [93], and in addition to articles 
that can be found on the dynamic problems in the review 
by Qatu [3]. 

3.5. Failure, Delamination and Damage Analyses 

Zhang et al. [243] studied progressive failure analysis for 
advanced grid stiffened composite plates/shells. Ikono- 
mopoulos and Perreux [244] investigated reliability of 
laminates through a damage tolerance approach. Khoro- 
shun and Babich [245] discussed stability of plates and 
shells made of homogeneous and composite materials 
subject to short-term microdamage. Zozulya [246] stud- 
ied laminated shells with debonding between laminas in 
temperature field. Larsson [247] discussed discontinuous 
shell-interface element for delamination analysis of lami- 
nated composite structures. Mahdi et al. [248] performed 
an experimental investigation into crushing behavior of 
filament-wound laminated cone-cone intersection com- 
posite shell. Huang and Lee [249] investigated the static 
contact crushing of composite laminated shells. Wagner 
and Balzani [250] performed simulation of delamination 
in stringer stiffened fiber-reinforced composite shells. 

Other studies on failure of composite shells include 
those of Galishin [232], Xie and Biggers [233], He and 
Hwang [197], Khoroshun et al. [99, 100], Khoroshun and 
Babich [108, 114, 163, 245], Mahdi et al. [184], Reza- 
doust [190], Saleh et al. [199], Solaimurugan and Velmu- 
rugan [169], and Ghosh [238]. 

3.6. Other Analyses 

Morozov [251] conducted a theoretical and experimental 
analysis of filament wound composite shells under com- 
pressive loading. Hossain et al. [252], Kim et al. [253] 
and Szea et al. [254] presented a finite element formula-
tion for the analysis of laminated composite shells. Wu 
and Burguen [255] studied an integrated approach to 
shape and laminate stacking sequence optimization of 
composite shells. Balah and Al-Ghamedy [256] dis-
cussed finite element formulation of a third order lami-
nated finite rotation shell element. Trach et al. [257] in-
vestigated stability of laminated shells made of materials 
with one plane of elastic symmetry. Kabir et al. [258] 
presented a train-gular element for arbitrarily laminated 
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general shells. Kalamkarov et al. [259] delivered an as-
ymptotic model of flexible composite shells of a regular 
structure. Haussya and Ganghoffer [260] investigated 
modeling of curved interfaces in composite shells. Roque 
and Ferreira [261] described new developments in the 
radial basis functions analysis of shells. 

4. Material Complexity 

Material complexity in composites occurs in various 
ways. Composite shells can have active or piezoelectric 
layers. They can also be braided or made of wood or 
natural fibers or a combination of materials. 

4.1. Piezoelectric Shells 

Ren and Parvizi-Majidi [262] presented a model for 
shape control of cross-ply laminated shells using a pie- 
zoelectric actuator. Bhattacharya et al. [263] and Zallo 
and Gaudenzi [264] presented finite element models for 
laminated shells with actuation capability. Pinto Correia 
et al. [265] conducted an analysis of adaptive shell struc- 
tures using a refined laminated model. Bhattacharya et al. 
[266] investigated smart laminated shells and deflection 
control strategy. Xue [267] studied effective dielectric 
constant of composite shells. 

Other studies on piezoelectric shells include Santos et 
al. [22], Nosier and Ruhi [29], Kioua and Mirza [177], 
Shen and Xiang [120], Shen [124,127], Alibeigloo [164], 
Alibeigloo and Nouri [27], Kulikov and Plotnikova [242], 
Singh and Babu [188], as well as others that dealt with 
dynamic response [3]. 

4.2. Other Materials 

Picha et al. [268] studied composite polymeric shells. 
Yan et al. [269] investigated post-tensioned composite 
shells for concrete confinement. Lopez-Anido et al. [270] 
studied repair of wood piles using prefabricated polymer 
composite shells. Burgueño and Bhide [171] discussed 
shear response of concrete-filled composite cylindrical 
shells. Other studies on concrete shells include Ferreira 
[46]. 

5. Structural Complexity 

Structural complexity occurs when the geometry or boun- 
dary conditions of the shells deviate from the classical 
shells described earlier. These include stiffened shells, 
shells with internal boundaries from cracks, imperfect 
shells as well as other types of complexities. 

5.1. Stiffened Shells 

Ambur and Janunky [271] demonstrated a design opti- 
mization process while investigating the local buckling 

behavior of stiffened structures with variable curvature. 
Optimum design of stiffened cylindrical shells with 
added T-rings subjected to external pressure was also 
performed by Bushnell [272]. The reliability of a post- 
buckled composite isogrid stiffened shell structure sub- 
jected to a compression load was studied by Kim [273]. 
Zeng and Wu [274] performed a post-buckling analysis 
of stiffened braided cylindrical shells subjected to com- 
bined external pressure and axial compression loads. For 
the same combined loading, Poorveis and Kabir [275] 
analyzed the static buckling of orthotropic stringer stiff- 
ened composite cyclindrical shells. The postbuckling be- 
havior of stringer stiffened panels by using strip ele- 
ments was determined by Mocker and Reimerdes [276]. 
Bisagni and Cordisco [277,278] tested stiffened carbon 
composite stringer-stiffened shells in the postbuckling 
range until failure. Rao [279] and Rickards et al. [224] 
used finite elements for buckling and vibration analysis 
of laminated composite stiffened shells. Prusty [206] 
used the finite element method to perform a linear static 
analysis of composite hat-stiffened laminated shells. Bai 
et al. [280] performed a numerical analysis using a finite 
element method to investigate the buckling behavior of 
an advanced grid stiffened structure. Kidane et al. [281] 
developed an analytical model to study the global buck- 
ling load of grid stiffened composite cylinders. De Vries 
[282] used a hierarchical method to analyze localized 
buckling of thin-walled stiffened or unstiffened metallic 
and composite shells. Accardo et al. [283] discuss the 
design of a combined loads test machine and test fixture 
to perform experimental investigations on curved rein- 
forced metallic and composite stiffened panels. Linde et 
al. [284] discussed the development of a virtual test plat- 
form used for parametric modeling and simulation of 
stiffened test shells to study the static behavior in the 
buckling and postbuckling range. Park et al. [207] and 
Patel et al. [285] used shell elements to perform both lin- 
ear and dynamic analysis of laminated stiffened compos- 
ite shells. An optimization design procedure based on 
surrogate modeling of stiffened composite shells was 
presented by Rikards et al. [286]. Using the finite ele-
ment method, Wong and Teng [287] investigated the 
buckling behavior of axisymmetric stiffened composite 
shell structures and Apicella et al. [288] studied the be-
havior of a stiffened bulkhead subjected to ultimate pres- 
sure load. Chen and Guedes Soares [289] modeled ship 
hulls as stiffened composite panels to perform a strength 
analysis under sagging moments. Rais-Rohani and Lokits 
[290] conducted an optimization study to study rein-
forcement layout and sizing parameters of composite 
submarine sail structures. Wu et al. [291] conducted an 
experimental investigation to study the behavior of grid 
stiffened steel-concrete composite panels under a buck-
ling load. Chen et al. [292] used a nonlinear finite ele-
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ment method to study the thermal mechanical behavior 
of advanced composite grid stiffened shells with multi- 
delaminations. The finite element method was used by 
Chen and Xu [293] and by Prusty [294] to study the 
buckling and postbuckling response of doubly curved 
stiffened composite panels under general loading. Sahoo 
and Chakravorty [295] used finite elements to solve a 
bending problem of a composite stiffened hypar shell 
subjected to a concentrated load. Zhang et al. [296] and 
Lu et al. [297] performed a stability analysis of advanced 
composite grid stiffened shells. A buckling load analysis 
of composite grid stiffened structures was investigated by 
the finite element method by He et al. [298]. Progressive 
failure analysis of composite laminated stiffened plates 
using a finite strip method for non-linear static analysis 
was performed by Zahari and El-Zafrany [299]. 

Studies on stiffened composite shells include Prusty 
[206], Goldfeld [165], Zhang et al. [243], Wagner and 
Balzani [250], and others on dynamic analysis [3]. 

5.2. Shells with Cutouts 

Several recent studies have focused on various composite 
shell structures with cutouts. Hillburger and Starnes [143] 
and Hillburger [300] performed numerical and experi- 
mental studies to determine the effects of unreinforced 
and reinforced cutouts in composite cylindrical shells 
subjected to compression loading. Li et al. [301] per- 
formed a three-dimensional finite element analysis to 
study the buckling response of sandwich composite shells 
with cutouts under axial compression. The princeple of 
minimum potential energy was used by Madenci and 
Barut [302] to investigate the effects of an elliptical cut-
out in a composite cylindrical shell subjected to com- 
pression. Nanda and Bandyopadhyay [303] looked at the 
nonlinear transient responses from static and dynamic 
analyses of composite cylindrical and spherical shell 
laminates with cutouts. The finite element method was 
used to study the bending behavior of laminated compos- 
ite shells without a cutout [202] and with a central circu- 
lar cutout [203]. Buckling and post-buckling due to in- 
ternal pressure and compression loading of composite 
shells with various size cutouts was investigated through 
the finite element method by Tafreshi [153]. Xie and 
Biggers [230] performed analysis on tailored laminated 
plates and shells with a central cutout subjected to com- 
pressive buckling loads. Other studies include Kadoli and 
Ganesan [198] and Hilburger and Starnes [143]. Asadi et 
al. [304] considered a layer containing several cavities 
and cracks and solved the problem under static point 
forces on the layer. 

5.3. Imperfect Shells 

Starnes and Hilburger [305] conducted an experimental 

and analytical study to investigate the effects of initial 
imperfections on the buckling response of graphite-ep- 
oxy cylindrical shells. Arbocz and Hillburger [306] used 
a probability-based analysis to investigate section prop- 
erties such as geometric imperfections to determine more 
accurate buckling-load “knockdown factors”. Biagi and 
Perugini [307] investigated the buckling behavior of the 
front composite skirt using linear and nonlinear finite 
element analysis to study the relationship between vari- 
ous shapes of geometrical imperfections and amplitudes 
and failure modes. Bisagni [308] studied the buckling 
and post-buckling characteristics of carbon composite 
cylindrical shells with geometric imperfections under 
axial compression using eigenvalue analysis. Carvelli et 
al. [309,310] performed a non-linear buckling analysis to 
study the geometric imperfections of composite shells in 
an underwater sea environment. Hilburger and Starnes 
[311,312] investigated the effects of imperfections such 
as shell-wall thickness variations, imperfections due to 
composite fabrication, shell-end geometric imperfections, 
and nonuniformly applied end-loads, on the buckling and 
post-buckling response of un-stiffened thin-walled graph- 
ite-epoxy cylindrical shells. Jayachandran et al. [313] 
also investigated the postbuckling behavior of imperfect 
thin shells by using secant matrices with the finite ele-
ment method to study postbuckling behavior of thin com- 
posite shells with initial imperfections. Kere and Lyly 
[150] considered geometric shape imperfections and dem- 
onstrated that the best numerical-experimental correla-
tion was achieved with diamond shape imperfecttions. 
Rahman and Jansen [131] investigated imperfecttion 
sensitivity of composite cylindrical shells under axial 
compression using a finite element method. Tafreshi and 
Bailey [314] investigated the effects of combined loading 
on imperfect composite shell structures. Wardle and La-
gace [315] compared experimental and numerical com-
putations of the buckling response from transversely 
loaded composite shell structures. Other studies on im- 
perfect shells include Goldfeld [165,185], Vasilenko et al. 
[107], Cheng and Batra [236], Shen and Li [44], Wang 
and Zhong [20], and Hilburger and Starnes [223]. 

Vasilenko et al. [109] studied contact interaction be- 
tween a laminated shell of revolution and a rigid or elas- 
tic foundation. 

6. Concluding Remarks 

It is interesting to see that despite advances made in 
computational power, researchers avoided in general us- 
age of 3D theory of elasticity. Experience shows that 
extensive usage of 3D elements in practical problems is 
not feasible even with advanced computers. Researchers 
looked for, developed and used thick shell theories to 
solve engineering problems. Finite element is the most 
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used method in the analysis. Its ability to treat general 
boundary conditions, loading and geometry have cer- 
tainly attributed to its popularity. 

Cylindrical shells are still the subject of research of 
most recent articles. Doubly curved shallow shells have 
also received considerable interest. These shells can be 
spherical, barrel, cylindrical, or other shape. 

Complicating effects of various kinds have received 
considerable interest. The use of piezoelectric shells ne- 
cessitated by various applications and certain advanced 
materials resulted in considerable literature in the field. 
Other complicating effect of stiffened shells received 
some attention. 

Looking at recent innovations in the area of composite 
plates, the authors think that it is a matter of time before 
these composites start making strong presence in re- 
search on shells. Areas of innovation include the use of 
natural fiber, single-walled and multi-walled carbon 
nanotubes, varying fiber orientation (both short and long 
fibers) as we as others. Such innovation are becoming 
more necessary as composite materials are required to 
deliver simultaneously structural functions (strength, stif- 
fness, damping, toughness…) and non-structural ones 
(thermal and electrical conductivity). Both modeling and 
testing of such composites can be a corner-stone of future 
research on composite shells. 
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