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ABSTRACT 

This paper evaluates different factors and parameters contributing to likelihood of bicycle crash injury severity levels. 
Multinomial Logit (MNL) model was used to analyze impact of different roadway features, traffic characteristics and 
environmental conditions associated with bicycle crash injury severities. The multinomial model was used due to its 
flexibility in quantifying the effect of the independent variables for each injury severity categories. Model results 
showed that, severity of bicycle crashes increases with increase in vehicles per lane, number of lanes, bicyclist alcohol 
or drug use, routes with 35 - 45 mph posted speed limits, riding along curved or sloped road sections, when bicyclists 
approach or cross a signalized intersection, and at driveways. In addition, routes with a high percentage of trucks, 
roadway sections with curb and gutter, cloudy or foggy weather and obstructed vision were found to have high pro- 
bability of severe injury. Segments with wider lanes, wide median and wide shoulders were found to have low likeli-
hood of severe bicycle injury severities. Limited lighting locations was found to be associated with incapacitating injury 
and fatal crashes, indicating that insufficient visibility can potentially lead to severe crashes. Other findings are also 
presented in the paper. 
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1. Introduction 

The average annual number of bicycle fatal crashes from 
1998 to 2008 in United States was 721. In 2008, 716 
pedalcyclists were killed and an additional 52,000 bicy- 
clists were injured in traffic crashes. Pedalcyclist deaths 
accounted for 2 percent of all traffic fatalities, and made 
up 2 percent of all the people injured in traffic crashes in 
2008 (NHTSA, 2008 [1]). The same report highlights 
that pedalcyclist fatalities occurred more frequently in 
urban areas (69%), at non-intersection locations (64%), 
between 5 p.m. and 9 p.m. (28%), and during the months 
of June (9%) and September (12%). This paper evaluates 
factors influencing bicycle crash injury severities.  

Bicycle crashes have been studied by several re- 
searchers for the past decade. Cheryl et al. [2] developed 
a bicycle route safety rating model based on injury seve- 
rity. The model development was conducted using a lo- 
gistic transformation of bicycle crash data from Jersey 
City, New Jersey, for the period 1997 to 2000. The re- 
sulting model met 90% confidence level by using various 
operational and physical factors like traffic volume, lane 
width, population density, highway classification, and 
presence of vertical grades, one-way streets, and truck 

routes to predict the severity of an injury that would re- 
sult from a motor vehicle crash that occurred at a specific 
location. In another study, Jeremy and Asad [3] exam- 
ined the effect of roadway and environmental factors on 
injury severity in bicycle-motor vehicle collisions. An 
ordered probit model for injury severity was estimated 
using the Highway Safety Information System (HSIS) 
data set for two-lane roadways. The model parameters 
and the marginal effects of significant variables were 
used to examine the influence of roadway and crash cha- 
racteristics on injury severity of cyclists. In this study, 
speed limit, straight and curved grades, fog and unlighted 
darkness were found to increase injury severity, while 
average annual daily traffic, an interaction of the shoulder- 
width and speed-limit variables, and street lighting were 
found to be associated with decreased injury severity. 

Karl and Lei [4] found that bicyclists are more likely 
to be attentive than motorists, and slightly less likely to 
be associated with misjudgment or alcohol or drug use 
than motorists. The same study found that bicyclists are 
much more likely to disregard traffic controls or go the 
wrong way on a street just before becoming involved in a 
collision than motorists. Motorists are more likely to fail 
to yield, to engage in improper overtaking, or to follow 
too closely before becoming involved in a collision than *Corresponding Author. 
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bicyclists. Shankar and Mannering [5] found that riding 
without a helmet, and under the influence of alcohol in- 
creased the likelihood of a disabling injury or fatality. 
The same study found that the use of alcohol, over- 
speeding, and older motorcyclists were associated with 
higher likelihood of severe injury.  

Quddus et al. [6] used ordered probit model to study 
how various factors, including specific characteristics of 
the roadway and the riders, can lead to different levels of 
injury and damage severity. The rationale for using the 
ordered probit model was due to its capability to model 
categorical dependent variables. The authors dismissed 
the use of unordered multinomial, nested logit, or probit 
models because they do not account for the ordinal na- 
ture of the injury categories and the association of inde- 
pendence of irrelevant alternatives (IIA) in the multino- 
mial logit (MNL) models. The ordered probit models are 
known to have weakness in classification of injury seve- 
rity. However they are useful when the coefficient for 
each variable in the model is required to classify injury 
severities category. On the other hand, unordered multi- 
nomial model is appropriate for evaluating the effect of 
the variables to each injury severity category. Shankar 
and Mannering (1996) [5] used the multinomial logit 
model to examine factors affecting injury severities. 
Their findings revealed that the multinomial logit formu- 
lation was a potential approach to determine significant 
factors affecting severity. The main disadvantage of us- 
ing the multinomial logit model was that the error term 
follows a generalized extreme value (GEV) distribution, 
which leads to the issue of IIA.  

A review of these previous studies however indicated 
plenty of methodologies in evaluating bicycle crashes. In 
view of the methodologies used in previous studies and 
their recommendations for further research, this paper 
examines the use of the multinomial logit (MNL) model 
in analyzing bicycle crash severity. Ordered models are 
not used herewith due to their limited independent vari- 
ables effect outcome probabilities, Washington et al. [7].  

Based on the bicycle related statistics presented above, 
it is therefore warranted to examine the factors contri- 
buting to these types of crashes. This study complements 
the desire of many all any transportation related agencies 
and jurisdiction in ensuring the safe use of bicycle as the 
mode of transportation. Understanding the factors con- 
tributing to the levels of injury severity is an important 
step towards making bicycle one of the safe and more 
attractive modes. Furthermore, differentiating the con- 
tributing factors may help establish safer bicycle mode of 
transportation. 

2. Methods 

The MNL have been used widely on injury severity stu- 
dies. As an extension from the Logit model, MNL is used 

for dependent variable with more than 2 categories or 
indicators, Quddus et al. [5] and Mouskos, et al. [8]. The 
MNL model is built based on the assumption that the 
choice between any pair of alternatives of the response 
variable is independent of the availability of other alter- 
natives. It implies that the random part of utility function 
is independent among the alternatives. The multivariate 
response variable can be distinguished depending whe- 
ther the variable has an ordered or unordered category. 
When categories in the response variable are not ordered, 
MNL regression becomes appropriate compared to other 
type of regressions, Shankar and Mannering [4]. Suppose 
there are J categories of the injury severity as the re- 
sponse variable, then there will be J – 1 equations for 
MNL as a binary logistic regression comparing a group 
with the reference (base) category or comparison group. 
Using the maximum likelihood, MNL simultaneously 
estimates the J – 1 logit functions. The probabilities of 
other members in other categories are compared to the 
probability of membership in the reference category. 
Suppose the utility function is denoted as, Washington et 
al. [7]: 

ki k i kiU X                  (1) 

where kX  is the independent variable, i  is the coef-
ficient associated with each independent variable, and 

ki  is the error term. Suppose the response variable k , 
is subjected to different categories of severity, 0, ···, i, 
then 

q

 ,  if    for k kj kiq j U U j i   . 

In this study, i = 0, 1, 2 and 3 where 0k  represent 
non-injury crash, 1k  represent possible injury or non- 
incapacitating crash, 2kU  represent incapacitating in- 
jury and Uk3 representing fatal crash. From the four in- 
jury categories, three equations are formed, one for each 
category in relation to the reference or base category, in 
this case is Uk0. The general logistic equation is given as, 
Washington, et al. [6], Shankar and Mannering [4]; 
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The interpretation of the effects of explanatory vari- 
ables to the responses is based on comparing the coeffi- 
cient of variable in the category modeled to the reference 
(base) category. Possible or non-incapacitating injury, 
incapacitating injury and fatal crash model results are 
interpreted in relation to base category which is non- 
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injury crash. The marginal effect of an independent vari- 
able kx  on the choice probability for alternative j can be 
expressed as: 

  | j jk k
k

P q j x
P
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Equation (4) depends not only on the parameter jk  
but also on the mean of all other alternatives 
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Direct interpretation of the parameter estimates can be 
done using the log of odds ratio: 
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This is reduced to, 
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sons with the reference category i if the coefficients 
associated with the base category are set to zeros. A 
positive coefficient to the variable will mean the relative 
probability of injury severity J increases relative to the 
probability of the same variable in the base category. The 
estimation can be performed by using the maximum like- 
lihood (ML) method in which the log likelihood function 
is given as 

 
1 1
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with kj  = 1 if the crash record k falls into severity 
category j and  = 0 if otherwise. 

q

kjq

3. Study Data 

The study utilized crashes involving bicycles which oc-
curred on Florida State maintained highways from 2004 to 
2008. A total of 10,708 bicycle related crashes were 
screened, among them, 11% none injury, 28% possible 
injury, 42% non-incapacitating injury, 16% incapacitating 
injury, and 3% fatal crashes. The study combined the 
severity into three main groups. The first group coded as 
“0” (none-injury), representing bicycle crashes that re- 
sulted in no injury. The second group is possible injury 
and non-incapacitating injury combined together and 
coded as “1” (moderate injury) representing bicycle 
crashes that resulted in minor injuries. The third group is 
incapacitating injury and fatal coded as “2” (severe in- 
jury) representing all bicycle crashes resulted into body 
disability or death occurring within 30 days after the 
crash. The three categories were used in MNL model 
where category 0 is pivoted as a base. 

The analysis used both continuous and categorical 
variables in the model. The summary of continuous va- 
riables is included in Table 1. Categorical variables used  

Table 1. Variables summary statistics. 

 Mean Std. Dev Min. Max.

Average Annual Daily Traffic
(AADT) 

35,725 16,099 1000 161,000

Vehicle per Day per Lane 7206 2762 250 26,833

Number of Lanes 5 1 2 8 

Lane Width 29 8 8 84 

Shoulder Width 3 2 0 25 

Medium Width 19 16 0 800 

Percentage of Trucks 5 3 0 42 

Age 35 21 15 100 

Speed Limit 42 6 15 55 

 
are listed in Table 2. Most of these categorical variables 
were coded as binary (taking on values of 1 or 0). 

Analysis showed that 25% of all crashes analyzed re- 
sulted from the vehicle or bicycle making a right turn, 
2% when changing lane, 9% when making left turn and 
3% when slowing. For contributing causes failed to yield 
right of way comprised of approximately 36% of all 
crashes. With respect to land use, 24% of the bicycle 
crashes occurred in residential areas while 76% occurred 
in commercial or business areas. Signalized intersections 
and intersection influenced crashes contributed to about 
75% of the bicycle crashes. At intersection crashes are 
those which are within 50 ft from the intersection or 
ramp. The influenced areas are those within 250 ft from 
an intersection or ramp. Alcohol and drug related bicycle 
crashes comprised of about 10% of total crashes. For the 
crashes that resulted from Driving under the Influence 
(DUI) of alcohol, 15% resulted in fatality. General statis- 
tics of some numerical variables analyzed are summa- 
rized in Table 1. 

4. Results 

None-injury crash category (e.g. category 0) was kept as 
a base in MNL model. The models developed compared 
the coefficient magnitudes and signs of the independent 
variables in relation to the base category. The MNL re- 
sults are presented in Table 3. The model result parame- 
ters are interpreted in relation to the base category as in- 
dicated. It should be noted that some independent vari- 
ables were significant in one injury category but insig- 
nificant in other. 

4.1. Curved Sections 

The coefficient of the curved sections in the model is 
positive in both categories. The magnitude of the coeffi- 
cients increases steadily from category 1 to category 2, 
indicating that crashes occurring in curved areas will 
have strong probability of resulting into severe injury 
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Table 2. Coding of categorical variables. 

Categorical variable Coding 

Presence or absence of sloped roadway sections  Coded as 1 and 0 respectively 

Roadway section without or with shoulder Coded as 1 and 0 respectively 

At intersection and influenced or not intersection Coded as 1 and 0 respectively 

Driveways or non-driveway Coded as 1 and 0 respectively 

Dusk, night, no light or daylight Coded as 1 and 0 respectively 

Cloudy, rain, fog or clear Coded as 1 and 0 respectively 

Curved roadway sections or straight Coded as 1 and 0 respectively 

Special speed zone control or non-speed zone Coded as 1 and 0 respectively 

Signal control or no control Coded as 1 and 0 respectively 

Stop sign control or not Coded as 1 and 0 respectively 

Vision obstructed or not Coded as 1 and 0 respectively 

Urban areas or other areas Coded as 1 and 0 respectively 

30 mph or less speed limit or higher speed Coded as 1 and 0 respectively 

35 - 45 mph speed Limit or lower speed Coded as 1 and 0 respectively 

Drug or alcohol use or none Coded as 1 and 0 respectively 

 
Table 3. Injury severity modeling results. 

Multinomial logistic regression                                              Number of observations = 10,708 
Likelihood ratio chi2 = 7363.23                                              Prob > chi2 = 0.0000 
Log likelihood = –8082.3266                                                Pseudo R2 = 0.3130 

Possible or non-incapacitating injury severity Coefficient Std. error Z-value 

Vehicle per day per lane 9.0E–07 7.5E–08 12.03 

Number of lanes 0.1530 0.061 2.49 

Median width –0.0031 –0.002 1.82 

Lane width –0.0287 –0.011 2.65 

Shoulder width –0.0088 –0.005 1.74 

Bicyclist age 0.0079 0.001 8.28 

Percentage trucks 0.0089 0.006 1.42 

Sloped roadway sections 0.0104 0.005 2.13 

No shoulder 0.0468 0.004 10.83 

At intersection of influenced 0.2249 0.064 3.49 

Driveways 0.3101 0.071 4.37 

Dusk, night, no light 0.1010 0.048 2.1 

Cloudy, rain, fog 0.1308 0.051 2.58 

Curved roadway sections 0.2221 0.146 1.52 

Special speed zone control 0.1607 0.071 2.26 

Signal control 0.0685 0.031 2.22 

Stop sign control 0.1083 0.057 1.9 

Vision obstructed 0.1497 0.062 2.4 

Urban areas 0.2106 0.130 1.62 

30 mph or less speed limit –0.2057 0.103 –1.99 

35 - 45 mph speed limit 0.1085 0.043 2.5 

Drug or alcohol use 0.3130 0.077 4.05 



D. CHIMBA  ET  AL. 217

Continued 

Incapacitating injury or fatal 

Vehicle per day per lane –2.3E–05 1.1E–05 –1.98 

Number of lanes 0.4170 0.217 1.92 

Median width –0.0020 0.001 –2.42 

Lane width –0.0423 0.014 –3.11 

Shoulder width –0.0842 0.033 –2.55 

Bicyclist age 0.0248 0.003 8.56 

Percentage trucks 0.0206 0.011 1.89 

Sloped roadway sections 0.0499 0.022 2.22 

No shoulder 0.3371 0.167 2.02 

At intersection of influenced 1.1469 0.147 7.79 

Driveways 1.9544 0.253 7.74 

Dusk, night, no light 0.8689 0.128 6.81 

Cloudy, rain, fog 0.1854 0.080 2.31 

Curved roadway sections 0.4855 0.196 2.48 

Special speed zone control 0.4816 0.153 3.15 

Signal control –0.0916 0.173 –0.53 

Stop sign control 0.8683 0.248 3.5 

Vision obstructed 0.1384 0.085 1.62 

Urban areas 0.8300 0.253 3.28 

30 mph or less speed limit –1.3688 0.319 –4.29 

35 - 45 mph speed Limit 0.8890 0.160 5.55 

Drug or alcohol use 1.7918 0.138 13.01 

 
compared to light injury. The finding coincides with pre- 
vious study which found that higher crash rates can be 
expected on curves than tangents, with rates ranging 
from two to four times higher than tangents, Jeremy and 
Asad [3].  

4.2. Posted Speed Limit 

Speed limit is a function of several roadway parameters, 
sight distance and roadway condition. The study grouped 
the speed limit into three, from 15 - 30 mph were coded 
as “1” representing low speed, 35 - 45 mph coded as “2” 
and 50 mph or above representing higher speed coded as 
“0”. As it was found in curved sections, the coefficient of 
high speed is positive in both models (Table 3). The 
likelihood of severe injury is high at high speed com- 
pared to low speed. The finding is consistent with the 
previous researches which found speeding to be associ- 
ated with severe injury, Jeremy and Asad [3]. 

4.3. Lighting 

Lighting conditions is categorized in Florida crash form 
into daylight, dusk, dawn, dark with street light and dark 
without traffic light. These categories were grouped into 
two, one coded “0” representing day light and the other 

coded as “1” for limited lighting conditions, dusk, dawn 
and dark which represent “limited lighting” resulted with 
positive coefficient in both severe injury and fatal crash 
models. Based on the results, severe injury or fatal bicy-
cle crashes will be expected at locations with limited 
lighting conditions compared to locations with adequate 
lighting.  

4.4. Traffic Volume per Lane and Percentage of 
Trucks  

Percentage of trucks is the average proportions of trucks 
to the total number of vehicles at that particular section. 
The variable has positive coefficient in the model (Table 
3). The safety problem between trucks and bicycles can 
lie on the visibility of the truck drivers and smallness of 
the bicycle itself. Traffic volume have strong positive 
coefficient in less severe (possible or non-incapacitating) 
but negative coefficient for incapacitating/fatal model 
indicating crashes occurring in the congested areas will 
have less severe injuries. The result related with AADT 
might be different if crash frequency was the subject, 
some previous studies has found increase in crash fre- 
quency with increase in traffic volumes, Mouskos et al. 
[8]. 
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4.5. Location 

Crash location refers to location on the roadway where 
the crash occurred. The location can be at the intersection, 
driveways, ramps, railroad, bridges, parking lots, toll 
booth and public bus stops. In modeling, the factors were 
grouped into 3 categories with code “0” representing 
non-intersection related crashes, “1” representing at in- 
tersection or intersection influenced crashes, “2” for 
driveways and “3” representing other remaining location 
categories. Result shows bicycle crashes occurring at 
driveways and intersections are likely to result in either 
non-incapacitating, incapacitating injury, or fatal (Table 
3).  

4.6. Age 

Older bicyclists seem to be more vulnerable to fatal in- 
jury than younger ones. The models show positive, sig- 
nificant coefficient in the fatal injury category in both 
models (Table 3). This finding is consistent with the 
previous research which found increase in age to be as- 
sociated with likelihood of severe injury crash (Shankar 
and Mannering [5]).  

4.7. Number of Lanes, Lane Width, Shoulder 
Width and Median Width 

As expected, number of lanes showed positive coeffi- 
cients to injury severity, the finding which is consistent 
with findings from previous studies that evaluated crashes 
involving bicycle and all other vehicle types, Theodore et 
al., Miao and Lump, Miao, Garber and Ehrhart [9-12]. In 
multilane segments, as the number of vehicles per lane 
increases, there become fewer gaps to allow lane chang- 
ing, turning movements, or merging, which eventually 
increases the likelihood of crashes. Median width is sig- 
nificant with a negative coefficient, indicating likelihood 
of bicycle crash injuries severity level decreases as me- 
dian width increases. This is consistent with many pre- 
vious studies, Milton and Mannering, Abdel-Aty and 
Radwan and Lee and Mannering [13-15]. The results 
show that wider lanes reduce the probability of severe 
injury. Wider lanes can be used by a bicyclist as a room 
for correcting errors in the situation of near crash occur- 
rence. Wider shoulders have negative coefficient show- 
ing its important role in reducing bicycle crash injury 
severities. From a highway safety point of view, a 
shoulder can be used by a bicyclist to stop in case of an 
emergency or during an incident, and drivers can take 
advantage of wider shoulders to avoid hitting roadside 
objects. In addition, bicyclists can veer to wider shoulders 
to avoid a crash. 

5. Conclusion 

The model results indicate that there are significant fac- 

tors that influence bicycle injury severities on the high- 
ways. Significance of these factors to the occurrence of 
crashes varies depending on human judgment, contribut- 
ing causes, environmental conditions, traffic characteris- 
tics, geometrics and location on highways. The multino- 
mial Logit (MNL) model was used for analysis as it al- 
lows the use of one injury severity as a reference cate- 
gory while analyzing others. The results showed that, 
increase in number of lanes, alcohol and drug use, high 
posted speed limit links, curved areas, turning move- 
ments, intersection and driveways, and driving with no 
adequate daylight have strong significance effects on 
intensifying injury severity. In addition, the higher the 
percentage of trucks and the older the bicyclist means the 
more severe the injury. Regarding traffic volumes, the 
study found that under congestion condition few severe 
incidents occur though higher crash frequencies can be 
expected. Limited lighting locations was found to be as- 
sociated with incapacitating injury and fatal crashes, in- 
dicating that insufficient visibility can potentially lead to 
severe crashes. 
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