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ABSTRACT 

The work is to present the energetic nature of the rigidity. It starts with the definition by introducing the notion of sen- 
sual magnitudes with the pyramidal structure of all surrounding magnitudes known by a human being. Next the selec- 
tion of the subject is provided in view of a smooth categorization of magnitudes describing the reality. The adequate 
description of the considered mechanical phenomenon is presented by formulating general stiffness characteristics. 
There are several characteristics analyzed, both functional and parametric. An essential, quite a new one is the characte- 
ristic of stiffness energy measure which is the stiffness potential. The proper and gained stiffness potentials situated on 
stable and unstable potential fields have been analyzed. An example of using of this theory to practice is given. It has 
been referred to a cylindrical grinder case. The presented theory allowed describing the entire stiffness characteristics, 
including its initial very essential course which has been usually, though inequitably, extrapolated by a straight line 
segment coming out of zero point with zero coordinates. 
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Potential Field; Proper Stiffness Potential; Gained Stiffness Potential; Rigidity Work; Rigidity Force;  
Deflection 

1. Introduction 

The rigidity of solid or a material body system is the 
resistance to its deformation. In case of shape deforma- 
tions the shape stiffness is considered; whereas in case of 
contact strains it should be referred to the contact stiff- 
ness. 

Thus the stiffness is the magnitude which may be 
determined qualitatively by engaging senses (of touch and 
sight), forming in fact sensual, not a physical magnitude. 
Therefore the stiffness may be determined as small, big, 
very big, or immense. A determined measure may be 
ascribed to this sensual magnitude/stiffness. That measure 
is the coefficient of stiffness and it is a physical magnitude. 
It may be determined by measuring the component mag- 
nitudes and then calculating in accordance to a proper 
formula. 

That physical magnitude, the coefficient of stiffness k, 
is defined as the first derivative (derivative of the first 
order) of the rigidity force S against the deflection f, then 

d

d

S
k

f
                  (1) 

This work determines generally the stiffness, by 
introducing the notion of the coefficient of stiffness; it 
does not divide it into springy, flexible, elastic, and 

plastic rigidity, or just flexibility, elasticity, plasticity. 
The considerations are provided with the load of system 
where no firm deformations occur. 

Until now three categories of magnitudes have been 
separated, namely: sensual, physical, and material. There 
are also intellectual magnitudes, and the considered stiff- 
ness energy has such a character. 

One should admit that right order/arrangement of all 
these magnitudes is of importance. It was considered also 
in the previous works [1-3]. The structure of these mag- 
nitudes: intellectual I, sensual S, physical P, and material 
M, is significant. It may be presented in the form of a 
pyramid (Figure 1), as this kind of lump presents termi- 
nological stratification in the best way. One could say 
this figure presents pyramidal, laminar structure of mag- 
nitudes of the external human world. 

 

 

Figure 1. Pyramidal structure of magnitudes of the external 
human world [1-3]. *Corresponding author. 
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2. The Subject of Formulation 

The selection of the subject is fully justified. First of all 
there is no correct terminological description of the pheno- 
menon of shape deformation. To perform it in a right 
way, first a separation of all magnitudes is needed, i.e. 
intellectual, sensual, physical, and material, providing to: 
stiffness energy, rigidity, and stiffness measure of the 
described material system. One may refer now to the 
examples of material objects concerning their rigidity. 

The stiffness (reversal to flexibility) is an essential 
feature of the system material elements, their connections, 
joints (kinematic pairs), as well as of each separate ele- 
ment. Dependent on the use of such a system (device), its 
stiffness is in different value ranges. The proper (initial) 
rigidity, with the force as a measure, is of importance for 
a link, node, and all material system. 

Let us focus on the machine tools to evaluate their 
resistance to deformation of the component assemblies. 
This resistance, covering the rigidity, should be as high 
as possible. It is of special attention in the machine tools 
to be used for fine machining. 

In [4] the rigidity of the working spaces of machining 
centres was assessed. The indexes determining the effect 
of the carrying machine tool system on the machining 
accuracy, related to the changing localization of cutting 
zone, were given. The evaluation results, as mentioned 
there, may be used to introduce changes in the design and 
technological process, to improve the rigidity of the 
machine tool in its working space. 

The work [5] reveals that there are some methods to 
eliminate negative effect of the machine tool flexibility 
and particular its elements. They are: 1) selection of such 
a machining scheme which does not require a big rigidity 
of the technological system, 2) using some compensational 
systems which allow to decrease or compensate defor- 
mations of the machine tool elements, and 3) increasing 
the proper rigidity of the design components. 

The contact rigidity in the grinding zone is a very im- 
portant feature of grinders. The work [6] presents results 
of the studies of dependence of that feature on the quo- 
tient of velocities (ratio of the grinding wheel velocity to 
the workpiece velocity). 

The study results presented in [7] show that the real 
thickness of the cut layer, while in-depth turning with the 
traverse feed, depends on the deformation of carrying 
assemblies of a machine tool. A mathematical model, to 
determine the cut layer regarding the flexibility of the 
machine tool, was derived. 

The work [8] presents a theoretical model, describing 
the influence of a grinder rigidity on the cohesion of 
ground elements made of sintered Si3N4. The described 
verifying actions showed that there is a critical rigidity 
while grinding that material, distinctly dependent on the 
depth of grinding. 

An extremely essential feature of a machine tool is its 
proper rigidity. It was shown in [9] that a high proper 
rigidity may be even replaced by a foundation. That idea 
was realized in relation to the machining centre to machine 
the workpieces of big overall dimensions (1600  1600  
1200 mm). One should add that the machining on this 
centre is possible under one fixed position from five sides/ 
directions at the same time. 

Some more certificates of exemplary studies of rigidity 
of the component elements of the machine tools may be 
added to this analysis. The work [10] provides the study 
results of this feature in reference to the needle segments 
of the rolling guides of machine tools, the bedways made 
by 1NA-HYDREL Company. It was found that the rigi- 
dity of the bedways plays an important role in modeling 
and analysis of dynamics of the slide systems of machine 
tools, especially regarding the non-linearity. 

The presented literature references show that the need 
to describe the mechanical phenomenon of deformation 
of the material systems is still of importance and valid. 
The necessity exists to describe this phenomenon more 
adequately and precisely. The resistance to deformations 
(rigidity) and the tendency to deformations (deformability) 
of these systems are their reverse features characterizing 
the considered phenomenon. The rigidity is, however, the 
feature which is more often introduced to evaluate the 
technological systems. It appears that also due to the 
exploitational reasons they should be more resistant to 
deformations. Thus the rigidity is to be the subject of 
considerations of this work. 

Furthermore, at first the general indicative rigidity 
characteristics will be given as the basis to explain the 
title energetic nature of the rigidity. Its adequate presenta- 
tion in the form of dependence of the rigidity force on the 
deflection results from the source differential description 
of the magnitude in the interstate spaces. 

3. Adequate Description of the Considered 
Mechanical Phenomenon 

At the source of cognitive way of all physical phenomena 
which occur with variable rate/intensity or velocity be- 
tween the neighbouring energetic states there is a general 
differential equation, namely: 

d d
Z

Z N
N


                (2)  



where: dZ—total differential of magnitudes forming 
dependent variables, dN—total differential of magnitudes 
forming independent variables, Z N  —partial deriva- 
tive of dependent magnitudes against independent ones. 
The symbols (±) are the algebraic operators with a 
determined function. The operator (+) fulfills a formal 
function, just confirming the physical significance of the 
described phenomenon, whereas the sign (–) provides a 
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physical sense to a determined description. That general 
source differential equation has been presented in [11], 
referred to the real determined technological conditions 
with different initial conditions. These initial conditions 
determine a detail solution of this type of equation. They 
refer to the initial conditions of a phenomenon or process 
but not those connected with the beginning of measure of 
determined physical magnitudes. The measurement of 
these magnitudes is a necessary though not a sufficient 
condition. The sufficient condition is ascribed to their 
measurement at the very beginning of a phenomenon.  

The record of the Equation (2), applied to the consider- 
ed phenomenon, possesses the following configuration: 

d d
S

S f
f


 



 0

              (3) 

where the sign (+) concerns the progressively rising 
changes of the rigidity force, and (–) is considered in 
describing degressively rising changes of this magnitude. 
In the first case the rate of force changes rises with the 
increase of deflection, whereas the second one informs 
that the rate of changes will be decreasing respectively. 
One should add that the rate of changes of the considered 
magnitude is just the coefficient of stiffness defined by 
the formula (1). 

4. General Rigidity Characteristics 

The rigidity characteristics, being the dependence of the 
rigidity force on deflection (Figure 2), has a progressive 
exponential course in the direction of the system loading 
(Figure 2(a)); whereas the degressive course of this kind 
takes place in the direction of de-loading system (Figure 
2(b)); as it results from the joining of these curves (Fig-
ure 2(c)) and they do not overlap forming a sort of the 
rigidity hysteresis loop. 

These courses occur in a deformation-force space/zone 
(dotted area) limited by the deformation and force poten- 
tial field. To say more strictly, it concerns the stable de- 
formation potential field 

f
SPF

 1
 and unstable potential 

field of this type 
f

APF

 0
BSPF

 0
TSPF

 1STAPF

 0
BSPF

0
SV
S

. They are the fields limiting 
the mentioned space in the direction of deflection. 

In the force direction it is more complex in character 
and requires some extended explanations. Two energetic 
bands appear here (the spaces filled with horizontal lines). 
One of them concerns the proper rigidity energy (Figure 
2(a)) and is limited by the bottom stable force potential 
field 

S
 and the upper stable force potential field 

S
, whereas the second one refers to the gained 

rigidity energy (Figure 2(b)) and is limited by the up-
per/top unstable force potential field  and the 
bottom stable force potential field . 

S
The introduced notions of the rigidity energy are in full 

agreement with the definition of energy; the definition is 
not respected until now with the evidence being the ac- 

tions of aliasing the energy with work. It is not necessary 
to develop many references in the field to support or 
confirm the existing notion gap. It is enough to mention 
some recent books covering this energetic quest [12-16]. 

The proper rigidity energy of the system is its readiness 
to perform the rigidity work whereas the gained rigidity 
energy of this system, in turn, is the ability to perform the 
rigidity work over it. At this stage, while defining both 
these energies, one may state that the proper energy is 
lesser than the gained energy. One should admit that they 
are intellectual magnitudes (see Figure 1), and not the 
physical ones. This is why these energies may be evalu- 
ated qualitatively only, indicating that: the first one (proper) 
is lesser than the second one (gained), or the second one 
being bigger than the first one. 

A need for possessing measures of both these intellect- 
tual magnitudes exists. These measures will be the physic- 
cal magnitudes. The measure of the proper rigidity energy 
is the proper rigidity potential , being the product of 
the initial proper rigidity force 0  and the distance be-
tween the deformation potential fields, that is  f

0 1


 

. 
Thus 
 

(a) 

(b) 

(c) 

 

Figure 2. Indicative courses of the rigidity curves related to 
the directions of: loading (a), and de-loading (b) of the sys-
tem; as well as to the both directions (c). 
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 0 0 10 1
f S f


  

S

 0

0
SV S              (4) 

That corresponds with the field of horizontally dashed 
area (see Figure 2(a)), i.e. the proper energetic band, or 
the band of the proper energy. One should add that the 
magnitude 0  is at the same time the intensity of stable 
deformation potential field 

f
SPF

1V
S

. Thus the potential is 
the product of the intensity of the mentioned potential 
field and the distance between the deformation potential 
field, with the distance being the measure of deformation 
resistance of the deformation-force space. (Here, the 
analogy to the Ohm’s law may be noticed.) 

And now, getting to the gained rigidity energy: its 
measure is the gained rigidity potential S , being the 
product of the gained rigidity force 1  and the distance 
between the deformation potential fields, that is  1 0

f




 1 1 11 0
f S f


  

SU
1V 0

 1 0 1 1S f S f  



0

. 
Therefore 

1
SV S                 (5) 

It may be noticed, the band of the gained energy is 
considerably bigger than the band of the proper energy 
and it covers the entire deformation-force zone. The no- 
tion of the rigidity tension  is introduced now, being 
the potential difference of S  and SV . Thus, after tak- 
ing into account the formulae (4) and (5), one obtains 

1 0
S S SU V V S           (6) 

It results evidently from these considerations that the 
energy measure (the more to say the energy, being the 
intellectual magnitude) is not the same as the work, al-
though both these magnitudes have the same measure 
unit. The contents of these both magnitudes are generous 
and much differentiated. 

The oblique dashed fields (see Figure 2) present the 
areas referred to the rigidity works. In the direction of the 
system loading (Figure 2(a)) this kind of work is bigger 
than the rigidity measure of the proper energy. However, 
in the direction of de-loading of the system (Figure 2(b)) 
there is a reverse situation, because the gained energy 
measure is greater than the work. The difference of the 
rigidity works (Figure 2(c)), corresponding with the 
blackened area, denotes the rigidity hysteresis, as result- 
ing mainly from the fact that in the direction of the sys- 
tem loading a determined external stimulus acts, whereas 
in the reverse direction, the direction of return of the 
system into the stable state, this stimulus (due to suffi- 
ciently big the gained energy) does not work. In other 
words, at first the system collected/cumulated the energy, 
and then it was giving it out. 

5. Creation of the Rigidity Characteristics 

At first the rigidity characteristics will be described, cor- 
responding with the direction of the system loading. That 

is an exponential, progressively rising curve which illus- 
trates the dependence of the rigidity force S on the de- 
flection f (Figure 3). 

This curve is the envelope of right-angled triangles of 
which the deformation leg is constant and equals to the 
so called deformation constant , with the force leg 
varying respectively. The initial point of the curve is on 
the intersection of the stable potential fields of: the stable 
deformation potential field  f

SPF
 0
TSPF

 1

 and the upper/top 
stable force potential field 

S
. The final point of 

this curve is situated on the intersection of the unstable 
potential fields of: the first unstable deformation poten-
tial field A

f
PF

 1TAPF

 0 1
f

 and the first upper/top unstable force 
potential field 

S
. The mentioned potential fields 

are the limits of the deformation-force space of which the 
dimension in the deformation direction is 


 , and 

in the force direction is  S

S

0 1
The force leg of this moving/shifting right-angled tri-

angle is, as it was mentioned, respectively variable that 
results from the changing position of tangent to the curve 
of rigidity force. For 

. 

 the length of this leg equals 
 S S

0 1
.   

Now one may come up to the integration of Equation 
(3), denoting limits of the integrals from the total diffe- 
rentials. It means that 

 0 0 1

0

2

d d
S S S f

S S f

S
S f

f

    





 

 

            (7) 

and 

0 1

d

d

S
S S

f
                  (8) 

or 
 

 

Figure 3. Illustration of scheme of creation of the rigidity 
characteristics in the direction of the system loading. 
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 0 1

d 1
df

S S



 
S

 
            (9) 

One may notice the partial derivative was substituted 
by the quotient of the total differentials. One could do that 
as the total differentials have been clearly determined by 
introducing the limits of their integrals. It is worthy ad- 
mitting that the sign (+), the positive algebraic operator, 
has been regarded because the changes in the rigidity 
force are rising progressively. 

Furthermore, by integrating both sides of the Equation 
(9), one obtains the result 

  *1
f C   0 1

ln S S


            (10) 

that is 

 
*

0 1

*
f f f

Ce e Ce  

0f

C
S S e





         (11) 

After regarding that for   the magnitude 0S 

 0 1
C S


 

 

, 
one obtains 

                    (12) 

and after substituting (12) to (11) 

0 1
1

f

e


 
  

 

 

S S               (13) 

that is (see Figure 3) 

0 0S S S S    
0 1

1
f

S e


 
   

 

 

         (14) 

or 

0 1S S S  0 1
f

S e
 

   
 

1S S

            (15) 

One may determine now the second coordinate of the 
point 1, that is the deflection corresponding with the end 
of the phenomenon of the system deformation. That re-
sult is obtained by introducing the force   and 
deflection 1f f

1 ln 2f  



 to the Equation (15). Therefore 

                     (16) 

The characteristics of the rigidity system, correspond- 
ing with the direction of its de-loading (Figure 4), is de- 
gressively rising in the nature. This curve is the envelope 
of right-angled triangles of which the deformation leg is 
constant and equals to the so called the deformation con- 
stant  (introduced above), and the force leg varies 
respectively. 

The deformation constant 

 

Figure 4. Illustration of scheme of creation of the rigidity 
characteristics description in the direction of the system 
de-loading. 
 

Now one may start integrating the Equation (3), mark- 
ing the limits of integrals from the total differentials and 
regarding with this the negative sign of the algebraic 
operator. Therefore 

 

  is on the nominal po- 
tential field (NPF), being the asymptote to which the 
second, apparent part of the curve (dashed line) is tend- 
ing. Along this field the mentioned triangle with its leg is 
moving. 

0 1 02

d d
S S f

S f

S
S f

f

  
 

 

 

           (16) 

and further 

 0 1 0

d
2

d

S
S S S f f

f
     

 

    (17) 

which is 

0 1 0

d
2

d

S
S S S

f
     

 

         (18) 

or 

0 1 0

d 1

2

S
f

S S S


 
   

 

         (19) 

By integrating both sides of the Equation (19) one ob-
tains the following solution 

*
0 1 0

1
ln 2S S S f C


        

 

      (20) 

that is 

*
*

0 1 0
2

f f f
C CS S S e e e Ce

  
  


      

0f

   (21) 

After taking into account the initial conditions, mean-
ing that for 0S S ,  , one obtains 

 1 0
2C S


                   (22) 

and after substituting (22) to (21) 
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 0 2S S  
1 0

1
f

S e





 
  

 

  1 0S S S  

 

         (23) 

Regarding further that 
1 0

, the Equation 
(23) may be recorded as follows 

0 12 0 1
f

S S S  S e



 
   

 

SL

         (24) 

Thus two basic functional characteristics have been 
introduced, corresponding with the directions of: the 
loading (15), and de-loading (24) of the system. Now 
further characteristics, being the formulae on the coeffi-
cient of stiffness k and the rigidity work/labour , may 
be determined. 

6. Further Characteristics of the Rigidity 
System 

The consecutive functional characteristics are formed by 
the dependences of the coefficient of rigidity k on the 
deflection f, being the first derivatives (derivatives of the 
first order) of the rigidity force S against the latter 
parameter that has been reflected by the definition formula 
(1) given above. Therefore that kind of characteristics, 
referred to the direction of loading, takes the form 

1 0
0

f fS S
e k e  k




             (25) 

and in reference to the direction of de-loading of the 
system 

 1 02
2 0 1

f f f

k e k e
  
  

S S
k e


 


     (26) 

The illustration of both of these dependences (Figure 
5) indicates that for a determined deflection f* that coef-
ficient takes uniform, the same value k*. 

That deflection may be determined by comparing the 
formulae (25) and (26), respectively, that is  

* *

0 1

f f

k e k e


                    (27) 

 

 

Figure 5. Courses of dependences of the rigidity coefficients 
k0, k1 on the deflection f. 

The solution of that equation with one unknown f* 
takes the following form 

* 1

0

1
ln

2

k
f

k
                 (28) 

By substituting to the equation, for instance (25), one 
obtains 

 

11
2110

00

1ln 1 lnln 2
2* 12

0 0 0 0
0

2

0 11
0 0 1

0 0

    

k
kkk
kk k

k k e k e k e k
k

k kk
k k k

k k

  
 
 

 
     

 

  

1 02k k

  (29) 

Thus the coefficient of rigidity k* is the square root of 
the product of coefficients k0 and k1, that is the geometrical 
mean of these coefficients. Furthermore, by regarding 

 , one obtains 

 2*
0 02 2k k k 

 
1

0

d
f

SL S f f 

 

               (30) 

Now let us consider the following functional characte- 
ristics, being the formulae on the rigidity work  

                    (31) 

Therefore the rigidity work in the direction of the sys- 
tem loading is expressed by the formula 

   

1

1

0 1 0
0

1 0 1 1 0

1 d

    2

f f

SL S S S e f


f

S S S S e





 
        

f



   



 

      (32) 

and in the direction of the system de-loading  

   

1

1

0 1 0
0

1 1 0 1 0

2 1 d

    2 2

f f

SL S S S e f


f

S S S S e







 
        

f



    


     (33) 

7. Example of Using the Presented Theory 

The presented theory has been used to the adequate de-
scription of the rigidity characteristics of the tailstock 
(loose headstock) and the fixed headstock of the work-
piece with the assemblies being the design links of the 
system of thread grinder of type MM-582. In Table 1, 
there are the measurement results of the rigidity force S 
and the deflections of these links of the grinder, i.e. yw, zw, 
yk, zk; they have been excerpted from the work [17]. The 
measurements of deflections, related to the particular 
rigidity forces, have been performed in the planes per-
pendicular to the workpiece axes, in the directions: ver-
tical z, and horizontal y; thus the above markings the  
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Table 1. Results of measurements of rigidities and deflec-
tions of the loose headstock and fixed headstock of thread 
grinder of type MM-582 [17]. 

   + 
R 

yw zw yk zk 

N 10–6 m 

20 0.8 0.5 1.0 0.8 
30 1.5 1.0 2.0 1.2 

40 2.0 1.2 2.5 1.6 
50 2.4 1.6 3.2 2.0 
60 2.8 1.8 4.0 2.5 
80 3.8 2.5 5.4 3.0 
100 4.5 3.0 6.2 3.8 

 
deflections of: yw—the deflection of the fixed headstock 
in horizontal direction, zw—the deflection of the fixed 
headstock in vertical direction, yk—the deflection of the 
loose headstock in horizontal direction, zk—the deflec-
tion of the loose headstock in vertical direction. One 
should add that all these results are to determine the 
characteristics of links of the system in the direction of 
its loading. 

The graphical illustration of the set of experimental 
points (Figure 6) has been substituted by the straight 
lines coming out of one, zero point of the coordination 
system: the rigidity force—deflection. One may notice 
here very simplified data handling of measurements of 
all these magnitudes. Position of the lines did not result 
from a statistical handling of the material, but was deter- 
mined approximately. That way (approximate) was treated 
also the approximation and the extrapolation of the phe- 
nomenon of deformation of both these links of the grinder.  

It appears the set of experimental points indicates dis- 
tinctly that the courses of deflections are exponential in 
their character and rising degressively. In the coordina- 
tion system: deflection—rigidity force, the system which 
should be considered, the courses of the rigidity force 
will be exponential and rising progressively. 

In the next part of the work the latter system was 
adopted as in this system the rigidity coefficients may be 
determined, being the derivative of the rigidity force 
against the deflection, and defined analytically by the 
formula (1). The first system (see Figure 6) allows to 
determine the reversal matter to the rigidity force k, 
which is the coefficient of flexibility c, namely 

1 d

d

f
c

k S
                 (34) 

Taking advantage of the presented theory, first of all 
the values of coordinates wy , w , kz y z, k , should be 
determined. These coordinates determine the position of 
straight line, tangent to this searched, adequate course of 
the rigidity force. These coordinates result from the for- 
mula (16), then 

ln 2
w

w

y
y                    (35) 

ln 2
w

w

z
z                    (36) 

ln 2
k

k

y
y                    (37) 

ln 2
k

k

z
z                    (38) 

The results of calculations of these coordinates (Table 
2) indicate that they are bigger as to their values than the 
experimental coordinates. The values of coordinates wy , 

w
 , k

 , kz y z , should be now handled statistically, by ap- 
proximating them in accordance to the following de- 
pendences:  

*
0 0 wS S k y 

0 0 wS S k z 

0 0 kS S k y 

0 0 kS S k z 

                (39) 

                (40) 

                (41) 

                (42) 

For generally recorded that kind of the linear depen- 
dence 

y a bx                   (43)  

 

the coefficients a and b are determined in accordance to 
the following formulae: 

1 1 1
2

2

1 1

n n n

i i i i
i i i

n n

i i
i i

n x y x y
b

n x x

  

 




   
 

  

 
          (44) 

1 1

1 n n

i i
i i

a y b x
n  

   
 
               (45) 

which are the result of using the rule of the least sum 
square of deviations of the experimental values from 
 

 

Figure 6. Graphical illustration of the set of experimental 
points [17]. 
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Table 2. Results of measurements and calculations of mag-
nitudes characterizing the design links of the investigated 
grinder. 

   + 
R 

yw wy  zw wz yk k


kzy  zk 


N 10–6 m 

20 0.8 1.2 0.5 0.7 1.0 1.4 0.8 1.2

30 1.5 2.2 1.0 1.4 2.0 2.9 1.2 1.7

40 2.0 2.9 1.2 1.7 2.5 3.6 1.6 2.3

50 2.4 3.5 1.6 2.3 3.2 4.6 2.0 2.9

60 2.8 4.0 1.8 2.6 4.0 5.8 2.5 3.6

80 3.8 5.5 2.5 3.6 5.4 7.8 3.0 4.3

100 4.5 6.5 3.0 4.3 6.2 8.9 3.8 5.5

 
theoretical ones, resulting from the position of the linear 
regression function. That rule has been described in de-
tail in references, such as [18-21]. 

Comparison of the magnitudes needed for calculation 
of the coefficients of linear regression, the initial rigidity 
force 0  and the initial coefficient of stiffness k0 in the 
formulae (39), (40), (41), and (42), has been presented in 
Table 3. 

S

*
For example, for the rigidity force S and deflection 

wy , that is the tangent shifted on the direction of tangent 
to the searched curve, tangent in the initial point, with the 
coefficients S0 and k0 described by the formulae 

 

 

 

 

* *

1 1
2

* *

1 1

n n n

w ii i
i i i

n n

w wi i
i i

y S

y

  

 

1
0

2

w in y S
k

n y




    



 

 
       (46) 

 *
0

1 1

n n

i w i
i i

k y
 

 
  
 

 

0

1
S S

n
             (47) 

Therefore 

0

7 1711 25.8

7 115.5
k

 


  2

380
15.2

25.8


  Nm–1   (48) 

0

1
380 15.2

7
S   25.8 1.8  

1.8 15.2 wS y

w

 N        (49) 

Thus 

                (50) 

One may notice, the initial rigidity force S0 has a nega-
tive value. The regression line (Figure 7) crosses the axis 
of abscissae, that is the axis of deflections y , wy , in a 
determined point. 

The coordinate of this point 0
wy  may be calculated 

by substituting the rigidity force  to (50). There- 
fore 

0S 

 * 0

0w wS
y y


 

Table 3. Comparison of magnitudes needed to calculate the 
values of the coefficients of linear regression. 

(a) 

  
i R 

X1 X2 X3 X4 X5 X6 

1 20 1.2 1.4 24 0.7 0.5 14 

2 30 2.2 4.8 66 1.4 2.0 42 

3 40 2.9 8.4 116 1.7 2.9 68 

4 50 3.5 12.3 175 2.3 5.3 115 

5 60 4.0 16 240 2.6 6.8 156 

6 80 5.5 30.3 440 3.6 13.0 288 

7 100 6.5 42.3 650 4.3 18.5 430 

 380 25.8 115.5 1711 16.6 49 1113 

(b) 

 + 
i R 

X1 X2 X3 X4 X5 X6 

1 20 1.4 2.0 28 1.2 1.4 24 

2 30 2.9 8.4 87 1.7 2.9 51 

3 40 3.6 13.0 144 2.3 5.3 92 

4 50 4.6 21.2 230 2.9 8.4 145 

5 60 5.8 33.6 348 3.6 13.0 216 

6 80 7.8 60.8 624 4.3 18.5 344 

7 100 8.9 79.2 890 5.5 30.3 550 

 380 35 218.2 2351 21.5 79.8 1422 

1.8
0.12

15.2
  m         (51) 

Remark:  1 w i
y  2

2 w i
, x x y  3 w ii

, y R   4 w i
, z  2

5 w i
, z ,  x x x

 6 w ii
x z R 

 S f

. 

 
The following conclusion arises that the considered 

node of the grinder, which is the fixed headstock, has a 
determined clearance in horizontal direction. Thus for the 
described curve to possess the physical significance, not 
having negative values, it should be presented in a re- 
verse coordinates system, that is the deflection—rigidity 
force, and then elaborate/handle the experimental results 
in accordance with other theory, adopted to the descrip- 
tion of the degressive exponential curve. The essence of 
this theory has been presented above in this work. 

The authors have focused the attention on the adequate 
description of the dependence  for the sets of 
experimental points of which the statistical handling re- 
veals the positive initial rigidity force, reflecting the ini- 
tial tension of the design link. This is why the course of 
further actions is neglected and it is connected with han- 
dling the results revealing lack of a physical meaning/ 
sense  0S0  in the system the rigidity force—deflect- 
tion. That mentioned phenomenon is inordinate anyway 
and at least this is why its description has none a practi- 
cal justification. 

Coming to the description of the effects of loading of 
the link (the fixed headstock) in the vertical direction 
(Figure 8), one may calculate the coefficients S0 and k0  
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 1 4.5 ln 2 45 0.693 3.1wz     

0V
1
wz 1

6 
10-6m 

*
w

 

Figure 7. Dependence of the rigidity force S on the deflec- 
tions yw, y . 

 
 

6 
-6m 

*
wz

S  0 22k

10

 

Figure 8. Dependence of the rigidity force S on the deflec- 
tions zw and . 

 
occurring in the formula (40). 

These coefficients are 0 , and 2.1 N   
Nm–1, respectively. Therefore 

2.1 22 wS z                  (52) 

The deformation constant   corresponds with the 
coordinate  for , so wz 1 100 NS 

 *

100

10
w S

z


  
0 2.1

4.5
22




S S


 m    (53) 

Now substituting the values of parameters 0 , 1 , 
and  to the formula (15), one obtains the following 
configuration of the dependence   wS z

4.57.9 1
wz

e
 

  
 

z

1z

1

2.1 9S               (54) 

where, as may be noticed, the symbol w , relating to the 
deflection of spindle in the vertical direction has been 
introduced in the place of general denotation of the de-
flection f. 

The coordinate w  (see Figure 8) may be calculated 
from the formula (16), substituting with this symbol the 
deflection 

 m     (55) 

The measure of the proper rigidity energy, that is the 
rigidity potential S , is calculated according to the for-
mula (4), with  substituted instead of f . Therefore 

 0 6 6 62.1 3.1 10 6.5 10  N m = 6.5 10  JSV         

1
SV

1
1 w

(56) 

The measure of the gained rigidity energy, that is the 
gained rigidity potential , is described by the formula 
(5). Thus, regarding that f z , one obtains 

 1 6 6

6

100 3.1 10 310 10  N m 

= 310 10  J

SV  



     


   (57) 

The coefficient of stiffness k is described by the for-
mula (25). Therefore 

f . Therefore 

4.522
wz

k e

ln 2f  
1 4.5 0.693 3.1z z   

1 22 2 44k

 Nm–1              (58) 

It appears that after substituting 1  to it, that 
is w w  the following relation oc-
curs 

 Nm–1          (59)   

1 02k k

then 

                     (60) 

One may also calculate the rigidity work, in accor- 
dance to the formula (32), then 

   
3.1

4.5

6 6

3.1 2 2.1 100 4.5 100 2.1

   580 N μm 580 10  N μm 580 10  J

SL e
 

       

      

ky

0 2.3S

  (61) 

By handling the results of measurements (Figure 9) of 
the rigidity forces S and deflections of the loose head-
stock in the horizontal direction, that is , one obtains 

0 10.4k   Nm–1, then   N, 

2.3 10.4 kS y 

9.4 

               (62) 

The deformation constant  m. Therefore  

3.42.3 97.7 1
ky

S e
 

    
 

1 6.5y 
0 615 10V

          (63) 

The values of further parameters of the characteristics 
of this design node are equal:  m,  k

S
  1 6650 10V   J, S  J coefficients of stiff-

ness k are described by the formula  

9.410.4
ky

k e
61207.5 10L  

kz
z

 Nm–1                (64) 

and the rigidity work equals  J. S

The results of measurement of the rigidity force S and 
the deflection , as well as the results of calculation of 
the magnitude k

  (Figure 10), handled in accordance 
to the above presented scheme, have led to the following  
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Figure 9. Dependence of the rigidity force S on the deflec- 
tions yk and y . 
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Figure 10. Dependence of the rigidity force S on the deflec- 
tions zk and . 

 
results: 0  N, 0  Nm–1. The regres-
sion line for the set of points of coordinates  takes 
the following form: 

2.5S  

                (65) 

Here also, as it appears, the initial rigidity force has a 
negative value, that means the occurrence of a clearance 
in this design link, that is in the loose headstock. Further 
handling of the results, similar like before (see Figure 7), 
has none a practical justification. That statistic handling 
of the experimental material/matter made it possible to 
reveal the clearance occurring in this subjective link. Any 
further actions should be directed rather to stiffen this 
link. 

8. Summary 

In the frames of the summary it is worthy indicating that 
simplification of a description of the real systems leads to 
the hiding of some valuable information. 

The rigidity problems, referred to the essential nodes of 
the grinder, have been analysed thoroughly. That approach 

made it possible to disclose the adequate rigidity charact- 
eristics of nodes both on the side of fixed headstock as 
well as of the loose headstock. It was found these charac-
teristics possess the configuration of exponential curves. 
The phenomenon of deformation of these nodes has been 
considered in detail; that made it possible to obtain some 
valuable utilitarian information. In the light of the cogni- 
tive approach it appears any aspiration to linearise the 
real non-linear characteristics is not justified. To say 
more, the tendency to substitute them by a straight line, 
coming through zero point, is incorrect. 

Moreover, in this work it was stated that the rigidity 
has the energetic nature. An adequate notion of the rigi- 
dity energy has been introduced, by determining its mea- 
sures for the initial and final energetic states of the stud-
ied design nodes. They are the notions of the proper ri-
gidity potential and the gained potential of this kind. It 
has been clarified the essential and fundamental difference 
between the energy and work, here in reference to the ri-
gidity energy and work. De facto it has a broader mean-
ing and refers to each kind of energy. The identifying the 
energy with work is erroneous and should not have place 
on the ground of science. Also the energy measures, as 
stated, also cannot be identified with the work. 

The method of the rigidity investigation presented in 
this work has values both cognitive and utilitarian. It may 
be used to study the effect of the rigidity on the course 
and results of machining, as well as the exploitational 
properties of tools cutting determined materials on de- 
termined machine tools. This method may be used also 
for the assessment of technical condition of the machine 
tools, concerning their rigidity. Also the research on the 
recipient’s request and/or the reliability compliance tests 
could be related to the rigidity aspect. 
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