

The Middle Equitable Dominating Graphs

Anwar Alwardi¹, Nandappa D. Soner¹, Ahmad N. Al-Kenani²

Department of Studies in Mathematics, University of Mysore, Mysore, India ²Department of Mathematics, King Abdulaziz University, Jeddah, KSA Email: aalkenani10@hotmail.com

Received April 20, 2012; revised May 25, 2012; accepted June 15, 2012

ABSTRACT

Let G = (V, E) be a graph and A(G) is the collection of all minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by $M_{ed}(G)$ with vertex set the disjoint union of $V \cup A(G)$ and (u, v) is an edge if and only if $u \cap v \neq \phi$ whenever $u, v \in A(G)$ or $u \in v$ whenever $u \in v$ and $v \in A(G)$. In this paper, characterizations are given for graphs whose middle equitable dominating graph is connected and $K_p \subseteq M_{ed}(G)$. Other properties of middle equitable dominating graphs are also obtained.

Keywords: Eqitable Domination Number; Middle Equitable Dominating Graph; Intersection Graphs

1. Introduction

All the graphs considered here are finite and undirected with no loops and multiple edges. As usual p = |V| and q = |E| denote the number of vertices and edges of a graph *G*, respectively. In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of vertices *X* and N(v) and N[v] denote the open and closed neighbourhoods of a vertex v, respectively. A set D of vertices in a graph G is a dominating set if every vertex in V - D is adjacent to some vertex in *D*. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of *G*. For terminology and notations not specifically defined here we refer reader to [1]. For more details about parameters of domination number, we refer to [2], and [3].

A subset *D* of V(G) is called an equitable dominating set of a graph *G* if for every $u \in (V - D)$, there exists a vertex $v \in D$ such that $uv \in E(G)$ and

 $|\deg(u) - \deg(v)| \le 1$. The minimum cardinality of such a dominating set is denoted by $\gamma_e(G)$ and is called equitable domination number of G. D is minimal if for any vertex $u \in D$, $D - \{u\}$ is not a equitable dominating set of G. A subset S of V is called a equitable independent set, if for any $u \in S$, $v \notin N_e(u)$, for all $v \in S - \{u\}$. If a vertex $u \in V$ be such that

 $|\deg(u) - \deg(v)| \ge 2$ for all $v \in N(u)$ then *u* is in each equitable dominating set. Such vertices are called equitable isolates. The equitable neighbourhood of *u* denoted by $N_e(u)$ is defined as

 $N_e(u) = \left\{ v \in V / v \in N(u), |\deg(u) - \deg(v)| \le 1 \right\} \text{ and} \\ u \in I_e \iff N_e(u) = \emptyset \text{ . The cardinality of } N_e(u) \text{ is}$

Copyright © 2012 SciRes.

denoted by $\deg_e(u)$. The maximum and minimum equitable degree of a point in *G* are denoted respectively by $\Delta_e(G)$ and $\delta_e(G)$. That is $\Delta_e(G) = \max a_{u \in V(G)} |N_e(u)|$, $\delta_e(G) = \min_{u \in V(G)} |N_e(u)|$. An edge e = uv called equitable edge if $|\deg(u) - \deg(v)| \le 1$, for more details about equitable domination number see [4]. Let *S* be a finite set and let $F = \{S_1, S_2, \dots, S_n\}$ be a partition of *S*. Then the intersection graph $\Omega(F)$ of *F* is the graph whose vertices are the subsets in *F* and in which two vertices S_i and S_j are adjacent if and only if

 $S_i \cap S_j \neq \phi$, $i \neq j$. Kulli and Janakiram introduced new classes of intersection graphs in the field of domination theory see [5-8].

The purpose of this paper is to introduce a new class of intersection graphs in the field of domination theory as follows:

Let G = (V, E) be a graph and S be the collection of minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by $M_{\omega d}(G)$ with vertex set the disjoint union

 $V(G) \cup S$ and uv is an edge if and only if $u \cap v \neq \phi$ whenever $u, v \in S$ or $u \in v$ whenever $u \in V(G)$ and $v \in S$.

Example. Let *G* be a graph as in **Figure 1**(a), then the equitable dominating sets are $\{1,4,5\},\{2,4,5\},\{3,4,5\}$ and the The middle equitable dominating graph shown in **Figure 1**(b).

2. Main Results

Theorem 2.1. A graph G with $p \ge 3$ vertices is without equitable edge (equitable edge-free graph) if and only

Figure 1. Example.

if $M_{ed}(G) \cong K_{1,p+1}$.

Proof. Suppose that $M_{ed}(G) \cong K_{1,p+1}$ and if its possible that *G* has equitable edge uv. Then *G* has at least two minimal equitable dominating set $(p \ge 3)$, a contradiction.

Conversely, assume that G is equitable edge-free graph with p vertices. Then clear all the vertices are equitable isolated vertices, that is there is only one minimal equitable dominating set contains all the vertices and according the definition of $M_{ed}(G)$, we get

 $M_{ed}(G)\cong K_{1,p+1}\,.$

Corollary 2.2. If $M_{ed}(G) \cong K_{1,2}$ if and only if $G \cong K_2$.

Corollary 2.3. If $M_{ed}(G) \cong K_{r,m}$, where $|r-m| \ge 2$, then $\gamma_e(M_{ed}(G)) = p+1$.

Corollary 2.4. Let G be complete multi bipartite graph $K_{n_1,n_2,...n_t}$, where $|n_i - n_i \ge 2|$, where $i, j = 1, 2, \cdots t$, then

 $M_{ed}(G) \cong K_1, \sum_{i=1}^{t} n_i.$ **Proposition 2.5.** $M_{ed}(G) = pK_2$ if and only if $G = K_p$.

Proof. Suppose that $G = K_p$. Then clearly each vertex in G will form a minimal equitable dominating set. Hence $M_{ed}(G) = pK_2$.

Conversely, suppose $M_{ed}(G) = pK_2$ and $G \neq K_p$. Then there exists at least one minimal equitable dominating set *S* containing two vertices of *G*. Then *S* will form p_3 in $M_{ed}(G)$.

Proposition 2.6. If $G = K_p$, then $\chi(M_{-}(G)) = \chi(M_{-}(G)) = n$

 $\gamma \left(M_{ed}(G) \right) = \gamma_e \left(M_{ed}(G) \right) = p.$

Proof. The proof coming directly from Proposition 2.5.

Theorem 2.7. Let G be a graph with p vertices and q edges. $M_{ed}(G)$ is a graph with 2P vertices and p edges if and only if $G \cong K_p$.

Proof. If $G \cong K_p$, then that is clear the $M_{ed}(G)$ is a graph with 2P vertices and p edges.

Conversely, let $M_{ed}(G)$ be (2p, p)-graph. Since only the graph pK_2 is of 2p vertices and p edges, then by Proposition 2.5 $G \cong K_p$.

Theorem 2.8. Let G be a graph with p vertices and

Copyright © 2012 SciRes.

q edges. $M_{ed}(G)$ is a graph with P+1 vertices and p edges if and only if G is equitable edge-free graph.

Proof. Let G be equitable edge-free graph. Then by Theorem 2.1 $M_{ed}(G)$ is a graph with P+1 vertices and p edges.

Conversely, let $M_{ed}(G)$ be a graph with P+1 vertices and p edges that means $M_{ed}(G) \cong K_{1,p}$, and by Theorem 2.1 G is equitable edge-free graph.

Theorem 2.9. [1] Let G be a graph, if D is maximal equitable independent set of G, then D also minimal equitable set.

Theorem 2.10. For any graph G with at least two vertices $M_{ed}(G)$ is connected if and only if

 $\Delta_e(G) < p-1.$

Proof. Let $\Delta_e(G) < p-1$ and u, v be any two vertices if there is minimal equitable dominating set D containing u and v, the u, v are connected by the path uDv, and if there is no minimal equitable dominating containing both u and v. Then there exists a vertex w in V(G) such that w is neither adjacent to u nor v. Let D and D, be two maximal equitable independent set containing u, w and v, w respectively since every maximal equitable independent set is minimal equitable dominating set by Theorem 2.9, u and v are connected by the path uDD'v. Thus $M_{ed}(G)$ is connected. Hence $M_{ed}(G)$ is connected.

Conversely, suppose $M_{ed}(G)$ is connected. let

 $\Delta_e(G) = p-1$ and let *u* be a vertex such that $d_e(u) = p-1$. Then $\{u\}$ is minimal equitable dominating set and *G* has at least two vertices, it is clear that *G* has no equitable isolated vertices, then V-D containing minimal equitable dominating set say D'. Since

 $D \cap D' = \phi$ in $M_{ed}(G)$ there is no path joining \mathcal{U} to any vertex of V - D, this implies that $M_{ed}(G)$ is disconnected, a contradiction. Hence $\Delta_e(G) < p-1$.

Corollary 2.11. Let G = (V, E) be a graph and u, vany two vertices in V(G). Then $d(u, v)_{M_{ed}(G)} \leq 3$, where $d(u, v)_{M_{ed}(G)}$ is the distance between the vertex u and v in the graph $M_{ed}(G)$.

Theorem 2.12. For any graph G, $K_t \subseteq M_{ed}(G)$ if and only if G contains one equitable isolated vertex, where t is the number of minimal equitable dominating set in G.

Proof. If G has equitable isolated vertex then the subgraph of $M_{ed}(G)$ which induced by the set of all minimal equitable dominating sets of G is complete graph K_t . Hence $K_p \subseteq M_{ed}(G)$.

Conversely, Suppose $K_p \subseteq M_{ed}(G)$, then it is clear that the vertices of K_t are the minimal equitable dominating sets of G. Therefor there exists at least one equitable isolated vertex in G.

Theorem 2.13. For any graph G, $M_{ed}(G)$ is either connected or it has at least one component which is K_2 .

94

Proof. If $\Delta_{cn}(G) < p-1$, then by Theorem 2.10 M_{ed} is connected, and By Proposition 2.5, if *G* is complete $M_{ed} = pK_2$ which is connected. Hence we must prove the case $\delta_e(G) < \Delta_e(G) = p-1$.

Let $\{u_1 \cdots u_s\}$ be the set of vertices in G such that $d_e(u_i) = p - 1$, where $i = 1, \cdots, t$, then it is clear $\{u_i\}$ is minimal equitable dominating set. Then each vertex u_i with the minimal equitable dominating set $\{u_i\}$ $i = 1, \cdots s$ form component isomorphic to K_2 . Hence it has at least one component which is K_2 .

Theorem 2.14. For any graph G with $\Delta_e(G) < p-1$, diam $(M_{ed}(G)) \le 5$.

Proof. Let G be any graph and $\Delta_e(G) < p-1$. Then by Theorem 2.10, $M_{ed}(G)$ is connected, suppose u, vbe any two vertices in $M_{ed}(G)$, then we have the following cases:

Case 1: Let u, v be any two vertices in V(G). Then by corollary 2.11, $d(u, v)_{M_{ad}(G)} \leq 3$.

Case 2: Suppose $u \in V(G)$ and v = D be a minimal equitable dominating set in G, If $u \in D$ then d(u,v) = 1 and if $u \notin D$ then there exists a vertex $w \in D$ adjacent to u. Hence

 $d(u,v)_{M_{ed}(G)} = d(u,w)_{M_{ed}(G)} + d(w,v)_{M_{ed}(G)}$ and from

corollary 2.11 we have $d(u, w)_{M_{ed}(G)} \leq 3$. Hence

 $d(u,v)_{M_{ad}(G)} \leq 4.$

Case 3: Suppose that both *u* and *v* are not in V(G), and u = D, v = D' are two minimal equitable dominating sets if *D* and *D'* are adjacent, then $d(u, v)_{M_{ud}(G)} = 1$,

suppose that D and D' are not adjacent then every vertex $w \in D$ is adjacent to some vertex $x \in D'$ and vice versa. Hence

 $d(u, v) = d(u, w) + d(w, x) + d(x, v) \le 5$ Hence diam $(M_{ed}(G)) \le 5$.

Theorem 2.15. *Let G be a graph. Then*

 $d_e(M_{ed}(G)) = 2$ if and only if $G = K_p$ or $G = K_2$, where $d_e(M_{ed}(G))$ is the equitable domatic number of the graph $M_{ed}(G)$.

Proof. If $G = K_p$ or $G = \overline{K_2}$, then $M_{ed}(G) = pK_2$ or $G = K_{1,2}$ by Proposition 2.5. Hence $d_{cn}(M_{ed}(G)) = 2$. The converse is obvious.

Theorem 2.16. For any graph G with at least one equitable isolated vertex,

 $\beta_e \left(M_{ed}(G) \right) = \beta \left(M_{ed}(G) \right) = p \,.$

Proof. Let G be a graph of p vertices, and has at least one equitable isolated vertex w. Then from the definition of $M_{ed}(G)$ if u and v any vertices in G then u and v can not be adjacent in $M_{ed}(G)$, that is there is equitable independent set containing w and of

size p, and this equitable independent will be the maximum equitable independent because w is adjacent for all the equitable independent sets. Therefore

 $\beta_e(G) = \beta(G) = p \; .$

Corollary 2.17. For any graph G with at least one equitable isolated vertex,

 $\alpha_e(M_{ed}(G)) = \alpha(M_{ed}(G)) = |S|$, where |S| is the number of minimal equitable dominating set in G

Proof. We have for any graph *G* with *p* vertices $\alpha_{cn}(G) + \beta_{cn}(G) = \alpha(G) + \beta(G) = p$, and from [1]. Theorem 3.8.4 corollary is proved.

Theorem 2.18. For any graph G,

 $d_e(G) = \beta_e(M_{ed}(G))$, if and only if G is complete graph.

Proof. Let *G* be complete graph K_p . Then from Theorem 2.16 $\beta_e(M_{ed}(G)) = p$, and we have

 $d_e(G) = p$. Hence $d_e(G) = \beta_e \left(M_{ed}(G) \right)$.

Conversely, suppose $d_e(G) = \beta_e(M_{ed}(G))$. From Theorem 2.16 $\beta_e(M_{ed}(G)) = p$ implies that $d_e(G) = p$. Hence $G = K_p$.

3. Acknowledgements

The authors wish to thank the referees for their helpful comments.

REFERENCES

- K. D. Dharmalingam, "Studies in Graph Theorey-Equitable Domination and Bottleneck Domination," Ph.D. Thesis, Madurai Kamaraj University, Madurai, 2006.
- [2] F. Harary, "Graph Theory," Addison-Wesley, Boston, 1969.
- [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, "Fundamentals of Domination in Graphs," Marcel Dekker, Inc., New York, 1998.
- [4] V. R. Kulli and B. Janakiram, "The Minimal Dominating Graph," *Graph Theory Notes of New York*, Vol. 28, Academy of Sciences, New York, 1995, pp. 12-15.
- [5] V. R. Kulli, B. Janakiram and K. M. Niranjan, "The Common Minimal Dominating Graph," *Indian Journal of Pure and Applied Mathematics*, Vol. 27, No. 2, 1996, pp. 193-196.
- [6] V. R. Kulli, B. Janakiram and K. M. Niranjan, "The Vertex Minimal Dominating Graph," *Acta Ciencia Indica*, Vol. 28, 2002, pp. 435-440.
- [7] V. R. Kulli, B. Janakiram and K. M. Niranjan, "The Dominating Graph," *Graph Theory Notes of New York*, Vol. 46, 2004, pp. 5-8.
- [8] H. B. Walikar, B. D. Acharya and E. Sampathkumar, "Recent Developments in the Theory of Domination in Graphs," *MRI Lecture Notes in Mathematices*, Vol. 1, Mehta Research Institute, Alahabad, 1979.