

A Note on Edge-Domsaturation Number of a Graph

Devadhas Nidha, Murugan Kala

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India Email: nidhamaths@gmail.com, karthipyi91@yahoo.co.in

Received April 27, 2012; revised May 30, 2012; accepted June 12, 2012

ABSTRACT

The edge-domsaturation number ds'(G) of a graph G = (V, E) is the least positive integer k such that every edge of G lies in an edge dominating set of cardinality k. In this paper, we characterize unicyclic graphs G with $ds'(G) = q - \Delta'(G) + 1$ and investigate well-edge dominated graphs. We further define γ' -critical, γ'' -critical, ds''-critical, ds''-critical edges and study some of their properties.

Keywords: Edge-Dominating Set; Edge-Domination Number; *ds'*-Critical; Edge-Domsaturation Number; Well Edge Dominated Graph

1. Introduction

Throughout this paper, G denotes a graph with order p and size q. By a graph we mean a finite undirected graph without loops or multiple edges. For graph theoretic terms we refer Harary [1] and in particular, for terminology related to domination theory we refer Haynes *et al.* [2].

1.1. Definition

Let G = (V, E) be a graph. A subset D of E is said to be an edge dominating set if every edge in E-D is adjacent to at least one edge in D. An edge dominating set D is said to be a minimal edge dominating set if no proper subset of D is an edge dominating set of G. The edge domination number $\gamma'(G)$ of a graph G equals the minimum cardinality of an edge dominating set of G. An edge dominating set of G with cardinality $\gamma'(G)$ is called a $\gamma'(G)$ -set or γ' -set.

Acharya [3] introduced the concept of domsaturation number ds(G) of a graph. For any graph G of order p, and for any integer r such that $\gamma(G) \leq r \leq p$, we call the set $DC_r(G) = \{u \in V(G)/u \in D \text{ forsome } D \in \mathfrak{A}_r(G)\}$ the r-level domination core of G. We say that G is r-level domination-saturated (or in short, "r-domsaturated") if $DC_r(G) - V(G)$. The domsaturation number ds(G) is then defined by $ds(G) = \min\{r/G \text{ isr-domsaturated}\}$. Arumugam and Kala [4] observed that for any graph G,

 $ds(G) = \gamma(G)$ or $ds(G) = \gamma(G) + 1$ and obtained several results on ds(G). We now extend the concept of domsaturation number of a graph to edges.

1.2. Definition

The least positive integer k such that every edge of G lies

in an edge dominating set of cardinality k is called the edge-domsaturation number of G and is denoted by ds'(G).

If G is a graph with edge set E and D is a γ' -set of G, then for any edge $e \in E-D$, $D \cup \{e\}$ is also an edge dominating set and hence $ds'(G) = \gamma'(G)$ or $\gamma'(G)+1$. Thus we have the following definition.

1.3. Definition

A graph G is said to be of class 1 or class 2 according as $ds'(G) = \gamma'(G)$ or $\gamma'(G)+1$.

1.4. Definition

An edge e of G is

1) γ' -critical if $\gamma'(G-e) \neq \gamma'(G)$;

2) γ'^+ -critical if $\gamma'(G-e) > \gamma'(G)$;

3) γ' -critical if $\gamma'(G-e) < \gamma'(G)$;

4) γ' -fixed if every γ' -set contains *e*;

5) γ '-free if there exists γ '-sets containing *e* and also γ '-sets not containing *e*;

6) γ '-totally free if there is no γ '-set containing *e*.

We use the following theorem.

1.5. Theorem [5]

For any connected unicyclic graph G = (V, E) with cycle C, $\gamma'(G) = q - \Delta'(G)$ if and only if one of the following holds.

1) $C = C_3;$

2) $G=C_3=(u_1, u_2, u_3, u_1)$, $\deg u_1 \ge 3$, $\deg u_2 = \deg u_3 = 2$, $\deg(u_1, w) \le 2$ for all vertices *w* not on *C* and $\deg w \ge 3$ for at most one vertex *w* not on *C*;

3)
$$G = C_3 = (u_1, u_2, u_3, u_1), \deg u_1 \le 3, \deg u_2 \le 3, \deg u_3 = 2$$

all the vertices not on C adjacent to u_1 have degree at most 2 and all vertices whose distance from u_1 is 2 are pendent vertices;

4) $C = C_3 = (u_1, u_2, u_3, u_1)$, deg $u_1 = 3$, deg $u_2 \le 3$, deg $u_3 \le 3$ and all vertices not on *C* are pendent vertices;

5) $C = C_4$;

6) $C = C_4$, either exactly one vertex of C has degree at least 3 and all vertices not on C are pendent vertices.

2. Main Results

2.1. Lemma

An edge *e* of *G* is γ^r -critical if and only if $\gamma'(G-e) = \gamma'(G) - 1$

Proof

For any edge e, we observe that $\gamma'(G-e) = \gamma'(G)-1$ or $\gamma'(G)$ or $\gamma'(G)+1$. Now, suppose e is γ' -critical. Then $\gamma'(G-e) < \gamma'(G)$. Hence $\gamma'(G-e) = \gamma'(G)-1$. The converse is obvious.

2.2. Theorem

An edge *e* is γ' -critical if and only if

$$N(e) \subset \bigcup_{f \in D-e} N(f) \tag{1}$$

for some γ' -set *D* containing *e*.

Proof

If *e* is γ' -critical, $\gamma'(G-e) = \gamma'(G) - 1$ by lemma 2.1. Let *S* be a γ' -set of G - e. If *S* contains an edge of N(e), then *S* will be an edge dominating set of *G* and hence $\gamma'(G) \le \gamma'(G-e)$, a contradiction. Thus *S* does not contain any edge of N(e). Since $\gamma'(G-e) = \gamma'(G) - 1$, $D = S \cup \{e\}$ is a γ' -set of *G* and so Equation (1) holds. Conversely, suppose *e* is an edge such that (1) is true. Then G - e is an edge dominating set of G - e and hence $\gamma'(G-e) = \gamma'(G) - 1$. Thus *e* is γ' -critical.

2.3. Theorem

Let *G* be a graph without isolated edges. An edge *e* in *G* is γ^{-} -critical if and only if

1) *e* is γ' -free, and

2) no γ' -set of G - e contains any edge of N(e).

Proof

If *e* is γ^{r} -critical, then $\gamma'(G-e) = \gamma'(G)-1$ by Lemma 2.1. As in theorem 2.2, if *S* is any γ' -set of G - e, then *S* will not contain any edge of N(e) and $S \cup \{f\}$ is a γ' -set of *G* for every $f \in N[e]$. This implies that *e* is γ' -free. Conversely, suppose (1) and (2) are true. Let *S* be a γ' -set of G - e. By (2) *S* does not contain any edge of N[e]. Hence *S* cannot be an edge dominating set of *G*. But, for any edge $f \in N[e]$, $S \cup \{f\}$ is an edge dominating set of *G* - *e*, $S \cup \{f\}$ is a since *S* is a minimum edge dominating set for G - e, $S \cup \{f\}$ is also a minimum edge dominating set for *G*.

and hence $\gamma'(G) = |S \cup \{f\}| = \gamma'(G - e) + 1$. Thus *e* is γ' -critical.

2.4. Theorem

Let *G* be a graph and $e \in E(G)$. Then

1) *e* is γ' -fixed if and only if there exists no edge dominating set of G - e with $\gamma'(G)$ edges which is also an edge dominating set of *G*.

2) *e* is γ' -totally free if and only if every γ' -set of *G* is a γ' -set of G - e.

Proof

1) Assume that *e* is γ' -fixed. Suppose there exists an edge dominating set *S* of *G* – *e* with $|S| = \gamma'(G)$ which is also an edge dominating set of *G*. Then *S* is a γ' -set not containing *e* which is impossible as *e* is γ' -fixed. The converse is obvious.

2) Let *e* be γ' -totally free. Then *e* does not belong to any γ' -set of *G* and so every γ' -set *D* of *G* is an edge dominating set of G - e. Thus $\gamma'(G-e) \leq \gamma'(G)$. If $\gamma'(G-e) \leq \gamma'(G)$, then by theorem 2.3, *e* is γ' -free and so $\gamma'(G-e) = \gamma'(G)$, *D* is a γ' -set of G - e. The converse is obvious.

2.5. Theorem

Let G be a connected graph. If a cut edge e of G is γ' -fixed, then e is γ' -critical

Proof

Let S be a γ' -set of G. Let e be a cut edge that is γ' -fixed. Then e belongs to every γ' -set. Since e is a cut edge, G - e is a disconnected graph with at least two components G' and G". Let e' and e" be the neighbors of e in G' and G" respectively. Therefore $D = (S - e) \cup \{e', e''\}$ is a minimum edge dominating set of G - e so that $\gamma'(G - e) = \gamma'(G) + 1$. Hence e is γ'' -critical.

2.6. Theorem

An edge *e* in a graph *G* is $\gamma^{\prime+}$ -critical if and only if

- 1) *e* is not isolated edge
- 2) *e* is γ' -fixed and

3) There is no edge dominating set for G - N[e] having $\gamma'(G)$ edges which also dominates N[e].

Proof

If e is γ'^+ -critical, then $\gamma'(G-e) = \gamma'(G)+1$, by lemma 2.1. Clearly e is not an isolated edge. If S is a γ' -set of G-N[e] having $\gamma'(G)$ edges which also dominates N(e) then $\gamma'(G-e) \le \gamma'(G)$, a contradiction. Thus no edge dominating set of G-N[e] having $\gamma'(G)$ edges can dominate N(e). By Theorem 2.4, e is γ' -fixed. The converse is obvious.

We now investigate relationships between, γ' -free edges, γ' -totally free edges and graphs which are class 1 and class 2.

2.7. Theorem

If G is a graph without isolated edges, then G is of class 2 if and only if G has γ' -totally free edges.

Proof

Suppose *G* has a γ' -totally free edge *e*. By Theorem 2.4 (2), *G* is of class 2. Conversely, suppose *G* is of class 2. Then there exists an edge *e* which is not in any γ' -set. Hence every γ' -set of *G* is also a γ' -set of *G* - *e* so that *e* is γ' -totally free.

2.8. Theorem

Proof

Let G be a connected graph. If G has a γ' -fixed edge, then it has a γ' -totally free edge.

Suppose G has a γ' -fixed edge e. Then e belongs to every γ' -set.

Claim: No neighbor of *e* belongs to any γ' -set of *G*. Suppose at least one of its neighbor say *e'* belongs to a γ' -set *D*. Let e = uv and *e'* be incident with *u*. Then $D_1 = D - \{e\} \cup \{e''\}$, where *e''* is any edge incident with *v* is an edge dominating set of G - e with γ' -edges which is also an edge dominating set of *G*. But by Theorem 2.6, this is a contradiction, since *e* is a γ' -fixed edge. Therefore no neighbor of *e* belongs to any γ' -set of *G*. Thus neighbors of *e* are all γ' -totally free in *G*.

We now investigate the class of graphs which are ds'^+ , ds'^- -critical.

2.9. Lemma

Let $e \in E(G)$. If e is γ' -totally free and G - e is of class 1, then ds'(G) = ds'(G - e) + 1.

Proof

Since *e* is γ' -totally free, by Theorem 2.4,

$$\gamma'(G) = \gamma'(G - e) \tag{1}$$

Since *e* is γ '-totally free, by Theorem 2.3, *G* is of class 2 and so

$$ds'(G) = \gamma'(G) + 1 \tag{2}$$

Since G - e is of class 1, we have

$$ds'(G-e) = \gamma'(G-e) \tag{3}$$

From Equations (1), (2) and (3), we have

$$ds'(G) = ds'(G-e) + 1.$$

2.10. Lemma

Let $e \in E(G)$. If e is γ' -totally free and G - e is of class 2, then ds'(G) = ds'(G - e).

Proof

If *e* is γ '-totally free, then by Theorem 2.4,

$$\gamma'(G) = \gamma'(G - e) \tag{1}$$

class
$$ds'(G) = \gamma'(G) + 1$$

and

$$ds'(G-e) = \gamma'(G-e) + 1 \tag{3}$$

From equations (1), (2) and (3), we have

Since G and G - e are of class 2, we have

$$ds'(G) = ds'(G-e).$$

2.11. Lemma

Let *e* be an edge of *G*. If *e* is γ '-free and G - e is of class 1, then ds'(G) = ds'(G - e) or ds'(G) = ds'(G - e) + 1.

Proof

Suppose *e* is a γ' -free edge. In any case *G* is either of class 1 or class 2.

Case (1). *G* is of class 1.

Let *S* be a γ' -set of G - e. If *S* does not contain any neighbor of *e*, then every neighbor of *e* is γ' -totally free in G - e. This implies that G - e is of class 2. But this is a contradiction and so *S* must contain a neighbor of *e*. Then by theorem 2.4, $\gamma'(G) = \gamma'(G - e)$. Since *G* and G - e are of class 1, we have

$$ds'(G) = \gamma'(G) = \gamma'(G-e) = ds'(G-e).$$

Case (2). *G* is of class 2.

Since G - e is of class 1, then by a similar argument, S must contain a neighbor of e. Since G is of class 2, we have $ds'(G) = \gamma'(G) + 1 = \gamma'(G - e) + 1 = ds'(G - e) + 1$.

2.12. Lemma

Let e be an edge of G. If e is γ' -free and G - e is of class 2, then ds'(G) = ds'(G-e), ds'(G) = ds'(G-e)+1 or ds'(G) = ds'(G-e)-1.

Proof

Case (1). *G* is of class 1.

Let *S* be a γ' -set of G - e. We have the following cases: **Subcase (1).** *S* contains a neighbor of *e*.

Now $\gamma'(G) = \gamma'(G-e)$. Since G is of class 1 and G-e is of class 2, we have ds'(G-e) = ds'(G)+1.

Subcase (2). *S* does not contain a neighbor of *e*.

Now $\gamma'(G) = \gamma'(G-e) + 1$. Since G - e is of class 2 and G is of class 1, we have ds'(G) = ds'(G-e).

Case (2). *G* is of class 2.

By an argument similar to that in case (1), we have ds'(G) = ds'(G-e) or ds'(G) = ds'(G-e)+1.

2.13. Lemma

Let *e* be an edge of *G*. If *e* is γ' -fixed and G - e is of class 1, then ds'(G) = ds'(G - e).

Proof

If e is γ' -fixed, then by Theorem 2.8, all of its neighbors are γ' -totally free. Then by Theorem 2.7, G is of

(2)

class 2 and hence

$$ds'(G) = \gamma'(G) + 1 \tag{1}$$

As *e* is γ' -fixed, by Theorem 2.4, $\gamma'(G) \neq \gamma'(G-e)$. If $\gamma'(G) > \gamma'(G-e)$, then *e* is γ' -critical. Then by Lemma 2.11, *e* is γ' -free and this is a contradiction. Therefore $\gamma'(G) = \gamma'(G-e) - 1$. Since *G* is of class 2 and G - e is of class 1, we have ds'(G-e) = ds'(G).

2.14. Lemma

Let $e \in E(G)$. If e is γ '-fixed and G - e is of class 2, then ds'(G) = ds'(G-e) - 1.

Proof

By an argument analogous to that in Lemma 2.13, since G - e is of class 2, we have ds'(G) = ds'(G - e) - 1.

2.15. Theorem

Let G be a graph without isolated edges. An edge e in G is ds'-critical if and only if one of the following holds.

1) *e* is γ' -totally free and G - e is of class 1.

2) *e* is γ' -free, *G* is of class 2 and *G* – *e* is of class 1.

3) *e* is γ' -free and both *G* and *G* – *e* are of class 2.

Proof

Suppose *e* is *ds*⁻-critical. Then

$$ds'(G) = ds'(G-e) + 1$$
 (1)

Let S be a γ' -set of G. Then we have the following cases:

Case (1). G and G - e are of class 1.

By (1), $\gamma'(G) = \gamma'(G-e)+1$. By theorem 2.3, *e* is γ' -free and no γ' -set of *G*-*e* contains any edge of *N*(*e*). Now every neighbor of *e* is γ' -totally free in *G* - *e*. Therefore *G* - *e* is of class 2, which is a contradiction.

Case (2). G is of class 1 and G - e is of class 2.

Then Equation (1) becomes $\gamma'(G) = \gamma'(G-e) + 2$. But this is not possible.

Case (3). G is of class 2 and G - e is of class 1.

Then Equation (1) becomes $\gamma'(G) = \gamma'(G-e)$. Then either *e* is γ' -free or γ' -totally free.

Case (4). G and G - e are of class 2.

In this case, Equation (1) becomes $\gamma'(G) = \gamma'(G-e) + 1$. Then by theorem 2.3, *e* is γ' -free.

From Lemmas 2.9, 2.11 and 2.12, the converse is true.

2.16. Theorem

Let *G* be a graph without isolated edges. An edge *e* in *G* is ds^{i^+} -critical if and only if one of the following holds.

1) *e* is γ' -free, *G* is of class 1 and *G* – *e* is of class 2.

2) *e* is γ' -fixed and G - e is of class 2.

Proof

Suppose e in G is ds^{+} -critical. Hence

$$ds'(G) = ds'(G-e) - 1 \tag{1}$$

Let S be a γ' -set of G. Then we have the following cases:

Copyright © 2012 SciRes.

Case (1). G and G-e are of class 1.

From equation (1) $\gamma'(G) = \gamma'(G-e) - 1$ and so G is γ'^+ -critical. Hence by Theorem 2.6, e is γ' -fixed, which is a contradiction.

Case (2). *G* is of class 1 and G - e is of class 2.

Now equation (1) becomes $\gamma'(G) = \gamma'(G-e)$. Then S must contain a neighbor of e. Since G is of class 1, e is γ' -free.

Case (3). G is of class 2 and G - e is of class 1.

Then Equation (1) becomes $\gamma'(G) = \gamma'(G-e) - 2$, which is not possible.

Case (4). G is of class 2 and G - e is of class 2.

In this case, Equation (1) becomes $\gamma'(G) = \gamma'(G-e) - 1$. Then by Theorem 2.4, *e* is γ' -fixed.

Conversely, suppose if (1) or (2) is true. Then by case (1) of Lemma 2.12 and Lemma 2.14, the result follows.

3. Edge-Domsaturation Number of a Graph Theorem

1 neorem

For any connected unicyclic graph G = (V, E) with cycle C, $ds'(G) = q - \Delta'(G) + 1$ if and only if one of the following holds.

1) $C = C_3 = (u_1, u_2, u_3, u_1)$, deg $u_1 \ge 3$, deg $u_2 \ge 3$, deg $u_3 = 2$, deg $u_{u \in N[u_1] \cap (V-C)} \le 2$ and there exists

 $w \in V - C$ such that $d(u_i, w) \leq 2, i = 1, 2$.

2) $C = C_3 = (u_1, u_2, u_3, u_1), \text{ deg } u_1 \ge 4, \text{ deg } u_2 = 2,$

 $\deg u_3 = 2$, exactly one vertex w not on C has $\deg w \ge 2$ and remaining vertices are pendent vertices.

Proof

Suppose $ds'(G) = q - \Delta'(G) + 1$.

Let $C = C_k = (u_1, u_2, \dots, u_k, u_1)$ be the unique cycle in G.

If $C = C_k$, then $ds'(G) = \lceil q/3 \rceil < q-1$ for all $n \ge 3$ and so $G \ne C_k$.

Let *S* denote the set of all pendent edges of *G* and let |S| = t.

Claim 1: $t \le \Delta'(G) - 2$. Since $E - (S \cup \{e\})$ is an edge dominating set for any edge *e* of *C*, $\gamma'(G) \le q - t - 1$. For any pendent edge *f*, $E - (S \cup \{g, e\}) \cup \{f\}$ is an edge dominating set of *G* containing *f*. Here *g* is an edge adjacent to *f* and *e* is any edge of the cycle. Hence $ds'(G) \le q - t - 1$, so that $t \le \Delta'(G) - 2$.

Claim 2: e = uv is an edge with degree Δ' . Then either u or v lies on C_k .

Now let $G \neq C_k$ and e = uv be an edge of maximum degree Δ' . If $e \in C_k$, then for some edge $e' \in C_k$, G - e' is a tree *T* of *G* with at least $(\Delta'(G)+1)$ pendent edges. If *X* is the set of all pendent edges of G - e, then

 $|X| \ge \Delta'(G) + 1$. Then E(T) - X is an edge dominating set of cardinality at most $q - \Delta'(G) - 1$. Therefore $ds'(G) < q - \Delta'(G) + 1$, which is a contradiction.

Case (1). u or v lies on C.

Claim 3: $G - C_k$ is the union of P_1 and P_2 . Suppose not. Then, $G - C_k$ contains $P_k = x_1 x_2 \cdots x_K, k \ge 3$. Suppose $u = u_1$ lies on C_K . Let T_{u_1} be the maximal tree rooted at u_1 not containing any edge of C_k . Clearly T_{u_k} has at least $\Delta'(G) - 2$ pendent edges, say S. Then

 $E(G) - (S \cup \{u_1u_2, u_ku_1, u_ix_1\}), i = 1, 2, 3, \dots, k \text{ is an edge}$ dominating set of cardinality less than $q - \Delta'(G)$. Therefore $ds'(G) < q - \Delta'(G) + 1$, which is a contradiction.

In this case, G has at least $\Delta' - 2$ pendent edges. Let W be the set of these pendent edges. Further $ds'(C_k) = \lfloor k/3 \rfloor$ and let Y denote a γ' -set of C_k . Let $Z = E(C_k) - Y$. If k > 14, then E(G) - W - Z is an edge dominating set of cardinality less than $q - \Delta'(G)$. Hence $C_k = C_3$ or C_4 . Since $t \ge \Delta'(G) - 2$. By claim 1, $t = \Delta'(G) - 2$.

Subcase (1). $C = C_3 = (u_1, u_2, u_3, u_1)$

 $G - C_3$ is the union of P_1 and P_2 . Also u or v lies on C. Let $u = u_1$. Therefore $G - C_3$ contains at least one P_2 . Since $t = \Delta'(G) - 2$, no other vertex other than u and v has degree > 3.

If $G - C_3$ is the union of $P_2's$ alone, then $\{x_1x_2, u_iu_i\}$ or $\{u_1x_1, u_iu_j\}, i \neq ji, j = 1, 2, 3$ is an edge dominating set and every edge lies in a γ' -set. Therefore $ds'(G) = q - \Delta'(G)$.

If $G-C_3$ is the union of $P_1's$ and $P_2's$, then from Theorem 1.5, $\gamma'(G) = q - \Delta'(G)$. But pendent edges adjacent to u_1 does not lie in any γ' -set. Therefore $ds'(G) = q - \Delta'(G) + 1.$

Subcase (2). $C = C_4 = (u_1, u_2, u_3, u_4, u_1)$

As in subcase (1), $G - C_4$ also contains P_2 . Then

 $E(G) - W - \{u_1u_2, u_1u_4, u_2u_3\}$ is an edge dominating set of cardinality $\langle q - \Delta'(G) \rangle$. Therefore

 $ds'(G) < q - \Delta'(G) + 1$.

Case (2). *u* and *v* lies on C.

Claim 4: $G - C_k$ is the union of P_1 and P_2 .

Suppose not. Then, $G - C_k$ contains $P_k = x_1 x_2 \cdots x_k$, $k \ge 3$. Suppose $e = u_1 u_2$ lies on C_k . Let

$$\begin{split} T_{u_1u_2} &= T_{u_1} \cup T_{u_2} \cup \left\{ u_1, \ u_2 \right\}. \\ \text{Clearly } T_{u_1u_2} \text{ has at least } \Delta'(G) - 2 \text{ pendent edges,} \end{split}$$
say P.

Then $E(G) - P - \{u_i x_1, u_k u_1, u_2 u_3\}, i = 1, 2 \cdots k$ is an edge dominating set of cardinality less than $q - \Delta'(G)$. Therefore $ds'(G) < q - \Delta'(G) + 1$, which is a contradiction.

As in case (1), $t = \Delta'(G) - 2$. Let $e = u_1 u_2$ be an edge of maximum degree.

Subcase (1). $C = C_3 = (u_1, u_2, u_3, u_1)$

In this case, from Theorem 1.5, (3), u_3u_1 does not belong to any γ' -set. Therefore $ds'(G) = q - \Delta'(G) + 1$.

Subcase (2). $C = C_4 = (u_1, u_2, u_3, u_4, u_1)$

From Theorem 1.5, there does not exist an edge dominating set of cardinality $q - \Delta'(G)$.

The converse is obvious.

4. Well-Edge Dominated Graph

A graph G is called well dominated if all minimal dominating sets have the same cardinality. This concept was introduced by Finbow, Hartnell and Nowakowski [6].

4.1. Definition

A graph G is well-edge dominated if every minimal edge dominating set of G has the same cardinality.

4.2. Lemma

If G is a well-edge dominated graph and e is an edge of G, then there exists a minimum edge dominating set containing e and a minimum edge dominating set not containing e.

Proof

To obtain an edge dominating set containing e, place e in the set D, delete N[e] from G and continue in this greedy fashion until there are no edges left. Then D is minimal and since G is well-edge dominated, it is minimum.

To obtain a minimum edge dominating set not containing e, we use the same greedy method except that we use a neighbor of e as our initial edge in D.

4.3. Theorem

If G is well-edge dominated, then G is of class 1.

Proof

From the above lemma, it is clear that every edge belongs to any one of the γ 'set. Therefore G is of class 1.

REFERENCES

- F. Harary, "Graph Theory," Addison-Wesley Publishing [1] Company, Boston, 1969.
- T. W. Haynes, S. T. Hedetniemi and P. J. Slater, "Funda-[2] mentals of Domination in Graphs," Marcel Dekker, New York, 1998.
- B. D. Acharya, "The Strong Domination Number of a [3] Graph and Related Concepts," Journal of Mathematical Physics, Vol. 14, No. 5, 1980, pp. 471-475.
- [4] S. Arumugam and R. Kala, "Domsaturation Number of a Graph," Indian Journal of Pure and Applied Mathematics, Vol. 33, No. 11, 2002, pp. 1671-1676.
- S. Arumugam and S. Velammal, "Edge Domination in [5] Graphs," Taiwanese Journal of Mathematics, Vol. 2, No. 2, 1998, pp. 173-179.
- A. Finbow, B. L. Hartnell and R. Nowakowski, "Well [6] Dominated Graphs: A Collection of Covered Ones," Ars Combinatoria, Vol. 25, No. A, 1988, pp. 5-10.