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ABSTRACT 

In this present paper, firstly, the modified positive operators and its discrete operators are constructed. Then, we inves-
tigate the statistical approximation properties and rates of convergence by using modulus of continuity of these positive 
linear operators. Finally, we obtain the rate of statistical convergence of truncated operators. 
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1. Introduction 

First of all, let us recall the concept of statistical conver-
gence. The natural density (or density) of the set K IN  
is denoted as  K . 

For    1
: lim the number :

n
K k n k K

n
     

whenever the limit exists (see e.g. [1]) if for every 

 0, : | 0kk N x L        

then we say that a sequence  kx x  is said to be sta-
tistcally convergent to a number of L (see Fast in [2]). 

The concept of statistical convergence is very impor- 
tant in approximation theory because although any se- 
quence which is convergent in ordinary sense is statisti- 
cally convergent, but contrary can not be true all the time. 
For instance; 

If we choose  kx  as 
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then we can easily say that it is statistically convergent to 
 but not convergent in ordinary sense when 2 1 2L L L . 

Recently, linear positive operators and their Korovkin 
type statistical approximation properties have been in-
vestigated by many authors. It is well-known that lots of 
operators were defined with infinite series. Details can be 
found in [3]. For example, n-th Favard-Mirakjan-Szász 
operator was defined by  
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for every f belonging to Banach lattice , 2E  0,x   
and ,n IN where  
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is endowed with the norm 
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In [4], Doğru investigate the weighted approximation 
properties of general positive linear operators on infinite 
intervals. Later, in 2002, weighted approximation pro- 
perties of Szász-type operators are investigated by same 
author in [5]. In this note, we investigate the statistical 
approximation properties considering only the partial 
sums of the operators. In [6], J. Grof studied on the ope- 
rator 
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e  and he verified that if 
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 is a sequence of positive integers such that  

 
lim
n

N n

n
   then     ,lim n N

n
S f x f x


  for all 

0x   and  0, .f C   Here, f satisfies the inequality 

   , .mtt Ae A R m N  f  

In 1984, Heintz-Gerd Lehnhoff [7] studied the follow- 
ing Modified Szász operators  
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where    
, !
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 ,   0, .f C 

Grof and Lehnhoff obtained the conditions which en-
sure the convergence of the operators  to f.  ,nS f 

Notice that the notation    shows the largest integer 
and it is not exceeding the number  . 

The main aim of this paper is to investigate the statis-
tical approximation properties of the operators which 
constructed and examined the ordinary approximation 
properties by Agratini in [8]. 

2. Statistical Approximation Properties  

Let us recall the operators which were defined by Agratini 
in [8]. 

Throughout the paper  0 0IN   IN , K indicates a 
compact subinterval of IR  and je , the j-th monomial, 

  .j
je t t   
Let us assume that the following cases for each 

, n N
1) For every , a sequence of 0k IN k  exists such 

that  

  ,
k

n kx O n n  

 

 

a net on  is fixed.  , 0
, n n k k

IR x


 

2) There is a sequence such that   , 0n k k




,n k C IR  . Where,
 

C IR  is the space of all real- 
valued functions continuously differentiable in IR+. 

For this sequence the following conditions   , 0n k k




, 0 , 0 ,
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     , 1    (3) 

hold. 
3) A positive function ,IN IRIR

     ,.n C IR  , 
exists with the property, 

       , , , 0, ,n k n k n kn x x x x x k IN x      , 0.  (4) 

By using these requirements the operators were de- 
fined as 

   , , ,
0

( ; ) : , 0,n n k n k
k=

L f x = x f x x f F


      (5) 

where F stands for the domain of n  containing the set 
of all continuous functions on 

L
IR  for which the series 

in (5) is convergent. 
We note that, with specific choosing these operators 

turn into the operators mentioned in [1]. 
Lemma A. [8] Let nL , n IN , be defined by (5) and 

,n r  be the r-th central moment of nL . For every  
x IR , we have the following identities, 

   ,0 ,11, 0,n nx x 

        , 1 , , 1, ,n r n r n r ,x n x x r x r IN        (7) 

  ,2 , .n x n x               (8) 

A Korovkin type statistical approximation theorem for 
any sequence of positive linear operators was proved by 
Gadjiev and Orhan in [9]. First, let us recall this theorem. 
Where  ,MC a b  denotes all functions f that are con-
tinuous in [a,b] and bounded all positive axis. 

Theorem A. [9] If the sequence of positive linear ope- 
rators    : , ,n MA C a b C a b  satisfies the conditions 

   
,

lim 0, , 0,1,2j
n j j jC a bn

A e est e t t j     

then for any function  ,Mf C a b  we have, 

 ,
lim 0.n C a bn

st A f f    

Now, we can give the following theorem which in- 
cludes the satatistical convergence of the operators in (5). 

Theorem 1. Let n , be the operators defined in (5). If L
 lim , 0,

n
st n x 
f F

uniformly on K then for every 
  we have, 
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Proof. Because of (3) we can easily say that  
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and 
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We know from (8) that 
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rity of the operator  

       2 2, ; 2 ; 1n n nn x L t x xL t x x L x    ; .  

From (3) 
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In view of  lim , 0
n

st n x   we have 
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st L e e           (12) 

Now, we are able to say in the light of Theorem A that  

   
lim ;. 0n C Kn

st L f f    which ends the proof. 

By using modulus of continuity, we mention about the 
rate of statistical convergence of these operators. First, 
let us remember the definition of modulus of continuity. 
Let    , ;f C K f   the modulus of continuity of f, 
is defined as             (6) 
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Let n  be defined by (5), for every L   ,Bf C IR  
 and 0x  0.   We know from Theorem 1 in [8] that 

       1; 1 ,nL f x f x n x f ;        (13) 

If we take norm on K and choose , 

we get 

 1/2
,n n x      

     .n n;. 2 ;
C K

L f f f  



 Due to  

 lim , 0
n

st n x , we have the rates of statistical con- 

vergence of the operators in (5). 

3. Modified Discrete Operators 

In this section, we recall the modified discrete operators 
which were defined by Agratini in [8] and investigate the 
statistical approximation properties of these operators. If 
we specialize the net  and function n   respectively, 
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under these assumptions, the requirement of Theorem 1 is 
fulfilled. Starting from (5) under the additional assum- 
ptions (14) Agratini defined, 

   
  

, ,
0

; : ,

0,

na x n

n n k
k n

k
L f x x f

a

x f F



 
  



 
  

 
 

     (15) 

where,  is a sequence of positive numbers.    
1n

n 




The study of these operators were developed in polyno-
mial weighted spaces connected to the weights  
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Lemma B. [8] Let  be defined by (5) and the as-
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Where  is a constant depending only on m and 
the compact K.  

 ,C m K

Theorem 2. Let , ,nL   be defined by (15). If  
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holds for every mf E F  . 
Proof. We use the following, 

  22 2 1 22 ,

0, 0,

mm m mt x t x

t x m IN

  

  
        (17) 

and for ,f fa b  which are the positive constants 
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From this inequality, 
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The remaining term is ,:n n nR L L   and taking into 
consideration both (18) and (19) 
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By using (16)  
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If we take norm on K we have the following. 
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