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ABSTRACT 

Guiding of waves between parallel absorbing walls is considered. The principal mode is constructed; its absorption is 
estimated. The agreement with previous results about reflection of waves from absorbing walls is discussed. Roughly, 
the effective absorption of the principal mode is proportional the minus third power of the distance between walls, mi-
nus 1.5d power of the wavenumber and minus 0.5d power of the local absorption of the wave in the wall. This estimate 
is suggested as hint for the design of the atomic waveguides, and also as tool for optimization of attenuation of the am-
plified spontaneous emission (and suppression of parasitic oscillations) in high power lasers. 
 
Keywords: Zeno Effect; Atom Optics; Waveguides; Suppression of Amplified Spontaneous Emission 

1. Introduction 

The consideration of reflection of waves from absorbing 
walls had been stimulated by the experiments with ridged 
mirrors [1] and their interpretation in terms of the Zeno 
effect [2,3]. The Zeno approximation [2] showed good 
agreement with experiments in wide range of parameters 
[3,4]; it describes reflection of waves of any origin. In 
particular, it applies to the atomic waves and to the 
optical waves.   

In addition to the atom optics (discussed in [2]), the 
reflection and guiding of waves may affect the suppres- 
sion of the Amplified Spontaneous Emission (ASE) that 
is considered as serious problem [5-9]. At the scaling-up 
the power, the efficient suppression of ASE becomes 
more important, and the unwanted guiding of ASE by the 
absorber (which is supposed to suppress it) might take 
place. The estimates of the conditions of such a guiding 
is necessary tool for the design of powerful devices.  

In this article, the wave function of a particle (atom, 
photon) between two absorbing walls is constructed. The 
effective absorption of such a mode is estimated and 
compared to the previous results. The results are ex- 
pected to have applications in both the atom optics 
(wanted guiding of neutral particles by the absorbing 
walls) and the design of powerful lasers (estimates of 
conditions of the unwanted guiding of the ASE by the 
walls that are supposer to absorb the ASE, and opti- 
mization of suppression of the ASE).  

This article is organized in the following way: 
In Section 2, the phenomenological absorbing Schrö- 

denger equation is suggested. The case with absorbing 
walls corresponds to the pure anti Hermitian potential. 

The frequency of decay is denotes with  . The special 
system of units is used in such a way that  and the 
energy of the particle in vacuum is assumed to be square 
of its wavenumber. 

= 1

In Section 3, the special case of uniform absorption is 
considered; this gives relations between parameters of 
the wave function and the physical quantities that can be 
determined experimentally. Such physical quantities are 
energy   of the particle and its absorpfion s  in the 
material of the wall; this quantities are assumed to be 
independent parameters. 

In Section 4, the case of channeling is considered; 
parameters of the principal mode (transversal wave- 
number , decay  and the damping p q  ) are defined 
and expressed through the holomorphic function  

   cosc = cosz z z 1acosc = cosc, its inverse function   
and    acosq = acosc exp iπ 4z z ; properties of these 
functions are discussed and the efficient C++ imple- 
mentations are indicated. 

In Section 5, the example of the principal mode is 
considered; the real and imaginary parts of the wave 
functions are built through the trigonometric function of 
complex argument and complex exponential for the 
damping = 1 4 . The amplitude and phase of the 
principal mode are shown for  and for  = 1 4

. = 1 50
In Section 6, the asymptotic behavior of parameters at 

small damping is considered; this is realistic case of good 
guiding conditions. 

In Section 7, the estimates for the effective absorption 
of the principal mode are compared with the previous 
results; the agreement is interpreted as confirmation of 
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the validity of the analysis.  , consider the case of the uniform absorption of the 
plane wave at  by (4); let UIn Section 8, the special case is suggested for phy- 

sically realistic parameters of the experimental condi- 
tions of realization of the guiding of waves between 
absorbing walls. 

  does not depend on the 
first argument, id est,    , =x z f z . Then, for  

 =f f x  we get the equation  

 i = 0f f   
In Section 9 (Conclusion), the asymptotic estimate of 

the effective absorption A  of the guided mode through 
the real and imaginary parts , c s  of the wavenumber 
in the wall is suggested. This main result is expected to 
be confirmed (or rejected) by the physical experiments 
with photons, atoms or any other wave of any origin. 

2. Schrödinger Wave and the Absorption 

In this case the dimension less Schrödinger equation is 
considered in the paraxial approximation.  

For simplicity, in this section the special system of 
units is used such that  and mass of the atom is 
half. Then, the Schrödinger equation for the wave func- 
tion 

= 1

, ,= x z t   can be written as follows 

 2z U x  

 x

2 2 2=i t x           (1) 

where the potential U U  depends only on the 
transversal coordinate x  (and does not depend on time 

 in the direction of propagation).  z
In the simplest approximation, the entangling with 

numerous degrees of freedom of scattered (or relaxed) 
atom can be taken into account with non Hermitian 
potential. Such an approximation is considered, in par- 
ticular, in the interpretation of the quantum reflection in 
therms of the Zeno effect [2]. For the wave guide, the 
absorption correspond to complex values of  U x  at 

>x X , where X  is half-width of the channel between 
the mirrors. 

Consider the quasi-monochromatic solution, assuming 
the exponential dependence on ; let   t

     i ,, , = expx z t t x z         (2) 

Then, instead of (1) we get the stationary Schrödinger 
equation   

 22 2 2= x z U x      

i = const

      (3) 

below, the two cases of the solution are considered: for   

  =U x              (4) 

and for  

   itStep x d 

UnitStep

d 

= i UnU x           (5) 

where  is the conventional unit step function 
implemented in various programming languages includ- 
ing Mathematica, and  is constant, that has sense 
of half-width of the channel that confines the particle. 

3. Uniform Absorption 

In order to understand the physical sense to the constant 

             (6) 

At positive values of  , the decaying in the direction 
 solution has form   z

 = exp if kz                 (7) 

     : 0 , 0k k kwhere     

2 = ik

 is solution of equa- 
tion  

                 (8)  

0Assuming   0,   k, wavenumber  can be 
expressed as follows:   

= ik                   (9)   

= ik c sFor the compactness of notations, let  , 
where  and c s  are real parameters. Then   

2 2 =c s                  (10) 

2 =cs                   (11) 

Alternatively, we may consider the absorption of wave 
in the medium, id est,  k

T

 as initial parameter. Mak- 
ing estimates for the ridged atomic mirror with distance 

 between ridges, the absorption by intensity can be 
approximated as 1 T , and the absorption by amplitude is 
of order of  1 2T    

   s = = 1 2k T

k

             (12) 

Real part of  is determined by the mass and the 
energy of the particle we intent to reflect or to guide, or 
just 2πn  , where   is vacuum wavelength of the 
waves (perhaps, ASE) that could be guided, and  is 
the refraction index of the medium. 

n

k

In order to avoid additional guiding by the step of the 
refraction index, the real part of the refraction index of 
the wall is supposed to be matched to that of the central 
region; but some reflection still may happen due to the 
imaginary part. Then, the real and imaginary parts of the 
swiare o wavenumber  can be expressed as follows:   

     2 22 2 2=  =  = k k k c s           (13) 

     2= = 2 ) = 2k k k sc             (14) 

Parameter   has sense of the energy of the particle, 
and also sense of the square of wavenumber, while   
has sense of the decay rate at the time scale, if a wave 
would be uniform in the space. For the estimates, the 
term with  k  in (13) can be neglected; however it is 
kept in the deduction that may be applied not only to 
atoms, but also to other kinds of waves (optical, acous- 
tical, waves on the surface of a liquid, etc.) For optics 
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(both atom optics and conventional optics), the typical 
case is of low absorption; waves rather propagate than 
absorb, to,  

 
 

= 1
k

c k






 2 2k c 

 =

s
              (15) 

In this case, for the estimate of the primary parameters, 
we may use the approximation   

                (16) 

and treat  and  =c k s k  as initial parameters 
of the model describing the absorption of the wave inside 
the walls. 

On the other hand, one may consider as “given” the 
energy   of the particle and the absorption  k

 

. 
Then,  

  2
  k= =c k   

 

           (17) 

  2
k k= 2                (18) 

In the following consideration, parameters   
and    and  are supposed to be known. 
These parameters determine behavior of the wave inside 
the absorbing wall. 

k

 =
For the atom optics, id est, for the atom wave, the 

absorption s k  should be positive. For the optical 
wave, in principle, the absorption may be negative (gain 
medium), but the amplified spontaneous emission (un- 
avoidable in the gain medium) limits the application of 
the formalism to very short distance of propagation. For 
this reason, the channeling in the pumped region may 
have more applications. In such a way, this section gives 
the sense to the parameters   and   that appear in 
the Equations (3) and (5) , that describe the channeling of 
a particle by the potential  by (5). This channeling is 
considered in the next section. Then, the effective pro- 
pagation constant  is estimated in terms of  
and half-width  of the channel. 

U

  k

U


d

4. Channeling 

For the case of potential  by (5), search the solution 
  in the following form:  

    i, =  e zx z f x 

 
 B 

k

          (19) 

where  is constant.  
For the experimental realization,  is ex- 

pected to be of order of , determined in the 
previous section. As for the imaginary part, 

c 
 A    

is expected to be small compared to  s k
 B  

, and 
 is expected to decrease as  s k  in- 

creases, allowing the interpretation in terms of the Zeno 
effect [2]: the stronger is the absorption in the region of 

the “observation” (id est, x d ), the better is the 
channeling.  

Substitution of (19) to (3) gives the equation for 
 f f x  in the following form:   

  2 i UnitStep = 0f x d f      

 

    (20) 

Search the solution of (20) as the combination of the 
cosinusoidal and the exponential, let   

 
  

cos ,
=

exp  ,

px x d
f x

r q x d x d

 


  

r

     (21) 

 ,  p, where     q


k

2 2 2=  = p k 

2 2 = i  q

,  are constant para- 
meters. From the physical reasons (almost free propa- 
gation inside the channel), parameter  is expected to 
be of order of wavenumber  from the previous sec- 
tion.  

The substitution of (21) into (20) determines that  

               (22) 

                  (23) 

From the physical reasons, it is expected that q  is 
small compared to =k   and, therefore, q .  

 f x = at xThe continuity of d  and the conti- 
nuity of   give the relations   f

 cos =  pd r               (24) 

 sinp pd qr              (25)   

, , ,k p q r
The four Equations (22), (23), (24), (25) allows to ex- 

press new parameters  in terms of the already 
defined parameters   and  .  

Subtraction of (23) from (22) gives   

2 2 = ip q  

 22 2tan =p pd q

 

              (26) 

Dividing of (25) by (24) gives 

             (27) 

The combination of (26) and (27) gives   

 2 21 tan = ipd p  

   

         (28) 

2 2
1 tan = 1 cosUsing the relation  

 
 

, Equation 
(28) can be written as   

2

2
2 = i

cos

pd
d

pd
            (29) 

 
 



then  
2

2 2

cos i
=

pd

dpd
            (30) 



This equation can be written as follows:   
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 
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2

2

i
=pd

d
cosc


             (31) 

where for all complex ,  0z 

   cos
=

z
z

z

1osc = cosc

cosc               (32) 

Complex map of function cosc is shown in the left 
hand side of figure 0; properties of this function and its 
inverse function ac   are described in TORI 
[10]. The name of function cosc is chosen in analogy with 
well established name of function sinc [11], defined with  

   sin
=

z
z

z
sinc               (33) 

As usually, the name of the inverse function is created 
adding prefix “a” or “arc”. 

Equation for one of solutions with   acosc > 0pd  
llows:  can be written as fo

  2

i
=pd

d
cosc


             (34) 

Equation (34) can be “inverted”, giving  

  

2= acosc  = acosc

= acosc exp iπ 4 =

pd
d

 
  
 

 

1/2

i exp(iπ 4)

acosq

d

 

 
 
 

1acosc = cosc

     (35) 

where   is inverse function of cosc. Dam- 
ping    is dimensionless parameter determining the 
efficiency of channeling,  

    

1/2

1/2

1
Damping = =

1 1
= =

22

d

d sck k d




 

p

 

         (36) 

Properties of function acosc are described at TORI; the 
efficient implementation in C++ is suggested [10]. The 
complex map of acosc is show in the right hand side of 
Figure 1 with levels of constant real part and levels of 
constant imaginary part. Behavior of real and imaginary 
parts of function acosq of real argument is shown in fthe 
left hand side of Figure 2.  

The decay rate of mode in the region with absorption 
is determined with parameter q . Once  is deter- 
mined, from Equation (27),  

    
      

i /4 i /4= tan = acosc e tan acosc e

= acosq tan acosq = acosqq

qd pd pd   

  
(37) 

Function acosqq is shown in the right hand part of 
Figure 2. 

 

 

 cosc  Figure 1. Complex map of function f x iy   by (32) , left, and that of acoscf x iy  x by [10], right, in the , 

   constu f    and levels  constv f   are shown. y  plane. Levels 

 

 

    = acosqy         Figure 2. = acosqy    and   by (35), left; = acosqqy    and = acosqqy   by (35), right. 
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5. Assembling of Mode, Example 

2= p  



1

The damping   by (36) determines the properties of 
the mode with given distance  between walls and 
given real and imaginary parts of the wavenumber  
that determines the propagation of wave in the material 
of the wall. With tools defined above, the principal mode 
of wave guided between absorbing walls is expressed 
with Equation (21). Parameters ,  and  are de- 
fined with Equations (35), (37), (24). 

2d
k

p q r

As an example of the assembling of such a mode, the 
case = 1 4  is presented in Figure 3; the real and 
imaginary parts of the components of function f  are 
plotted versus dimensionless product xd

62381528i

290714528i

505906974i

. In this case,  

1.30652013112871 0.201085pd    (38) 

2.63604614403057 2.93518qd    (39) 

0.26650956316919 0.19541r      (40) 

The amplitude and phase of the mode f  for = 1 4  
and = 1 50  are shown in Figure 4. for = 1 50 , the 
parameters are  

1.54859380700524 0.0215pd  

35.33791574606151 35.37182qd  

9861746934i

445894684i

497306720i

 (41) 

 (42) 

0.02220587422227 0.02159r      (43) 

With functions ArcCosq and ArcCosqq implemented 
in TORI through [10], one can easy assemble the prin- 
cipal mode for other values of the damping parameter   
with minimal modification of the codes supplied there. 

6. Application to Atomic Waves and the  
Asymptotic 

The effective absorption of a guided mode is one of most 
important parameters of any waveguide. This section 
consider the case of low damping and, correspondently, 
strong channeling. 

According to (19) the effective absorption is deter- 
mined by parameter ,   

 Effective Absorption = = =v A       (44) 

From Equation (22),   

              (45) 

The real and imaginary parts of  determine the 
effective wavenumber and absorption of the guided mode 
“exactly” in the mathematical sense. As for the physical 
applications, the case of strong guiding (and low absorp- 
tion) is of interest. This case corresponds to the small 
values of the damping parameter   , and the asym- 
ptotic behavior of the absorption of the guided mode is 
considered in this section. 

For the strong guiding, the propagation constant   
can be expanded as follows:   

2 2
2 1

2 2

p p
p   

 
 

     
 

     (46) 

then, the absorption A  of the mode can be expressed as 
follows:  

     =A p p          (47)     

In order to provide the flux of probability from the 
center of mode to the absorbing walls, the imaginary part 
of the transversal wavenumber should be negative, 
  < 0p

 

. The expansion of funciton acocq at zero 
gives:  

 iπ /4 2π π
acosq = e

2 2
z z O z 

p

      (48) 

This gives the approximation for the transversal wave- 
number  in the following form:   

iπ /4π π
    e  
2 2

pd               (49)  

and the estimate for the effective absorption   

π π 1
 

2 2
A

d d
              (50) 


  

Then, 
1

d



  by (36) and 2 2s sc    should 

be used, giving 
1

 
2d sc

  . Then, the effective absorp-  

tion of the mode   
 

 

Figure 3. Combination of mode (21) from the cosinusoidal and the exponents for α = 1/4.  
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Figure 4. Amplitude and phase of the mode f by (21) for α = 
1/4 and for α = 1/50. 
 

2

2

π 1 1

8 2
A

cd d sc
  

2

3 3/2 1/2

π
=  

4 d c s

c

    (51) 

where  has sense of wavenumber, and s  is the 
absorption in the wall. 

In the similar way, the highest modes can be con- 
structed. For the mth transversal mode, the transversal 
wavenumber scales proportionally to ; and the absorp- 
tion of mode scales proportionally to . 

n
2m

r

7. Comparison to Previous Results 

The absorption of mode can be interpreted also in terms 
of the multiple reflection of guided wave from the walls. 
The coefficient of reflection zeno  is estimated in the 
description of the ridged mirrors in terms of the Zeno 
effect [2],  

 exp 8
4

zeno
4

1/ 1 1 2
= =

1/ 1 1 2
r r






  

  
    (52) 

where  

= KL 

K c
L

 

                (53) 

 is wavenumber and can be replaced to ; while 
 is distance between idealized absorbers that can be 

approximated as 1 2s , and   is the grazing angle. 
(Notation  of [2] is not used here, to keep letter  
denoting the transversal wavenumber; so, in (52) and 
(53) , notation 

p p

  is used instead.) 
For the good channeling conditions, the effective 

absorption can be approximated with   

zeno1
=

2

r
a

d 


d

                 (54) 

where  is half-width of the channel and = p K  is 
ratio of the transversal wavenumber   

π
=

2
p

d
                 (55) 

to the wavenumber K . At the reflection of wave from a 

ridged mirror, = p K  plays role of the grazing angle. 
Substitution of (52) and (55) into (54) gives the 

following expression for the absorption   
2

8
2

a KL
d


             (56) 

The grazing angle can be approximated with   

π

2d K
                 (57) 

giving the estimate for the efficient absorption   

2 2

3 2 3 3

π π
8

8 2 2

L
a KL

d K K d
 

L

         (58) 

For the comparison to the previous result,  should 
be replaced to  1 2s  and K  should be replaced to , 
giving the absorption by probability   

c

2

3 3/2 1/2

π

4 
a

d c s
              (59) 

This expression should be compared to (51). 
In the first approximation, the consideration of the 

multiple reflection from absorbing walls and the con- 
sideration of mode guided between the absorbing walls 
give the same prediction about effective absorption of 
this mode. The consideration of the multiple reflection 
from absorbing walls and the consideration of mode 
guided between the absorbing walls give the same 
prediction about effective absorption of this mode.  

8. Numerical Example 

Consider the application of the estimate (59) for the 
guiding of the realistic laser beam. Assume, the absorp- 
tion in the walls   

10.5
= 0.143 cm

35 cm
s            (60) 

Following the ideology of the Zeno interpretation of 
absorbing walls [2], such an absorption may be appro- 
ximated with series of slits separated by distance 35 mm. 

Let the wavenumber is   

12π
= 5.9 μ

1.064 μ
c 

= 500 μd

2 10.73 ma m 

            (61) 

Let the halfwidth of the channel  

                 (62) 

This gives the estimate for the absorption of guided 
modes,  

              (63)  

= 1m
= 35 cmZ

For the principal mode ( ), after to propagate 
distance , the attenuation factor is of order of  
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  AF = exp exp 0.73aZ   0.35 78% 

 1.02 36% 

d

c

     (64) 

that means, that the most of the initial power of the 
guided mode is still delivered. As for the second mode, 
its attenuation   

 AF = exp 4 expaZ       (65) 

that means significant dicrimination of the second mode. 
Using the approximation of the set of absorbers as a 

continuous medium [2], the example above may corres- 
pond to transfer of near infra-red light through the set of 
10 slits separated with distance 35 mm. Roughly, the 
amplitude of field after the set of slits can be approxi- 
mates with the cosinusoidal profile. However, the pre- 
sence of the highest modes, as well as the diffraction of 
the tails of the mode on the edges should make the 
similarity qualitative. Similar result one may expect to 
observe at propagation of light through the set of 
pinholes of radius . The similarity with the idealized 
cosinusoidal or Besseliean mode should improve at the 
increase of number of slits or pinholes; a hundred of silts 
or pinholes may be sufficient to get the quantitative 
agreement with the idealized cosinusoidal or Besselian 
profile. 

The accurate consideration of the discrete character of 
the absorbing walls, as well as construction of the mode 
for the case with circular symmetry may be continuation 
of this work. For the paraxial case, the estimates are 
universal and are not sensitive to the origin of waves. In 
particular, the results are expected to apply to the 
electromagnetic waves as well as to the cold atoms, 
exhibiting the wave properties. 

9. Conclusions 

Guiding of wave of any origin between absorbing walls 
is considered. Wavenumber  and the amplitude absorp- 
tion s  of wave in the wall, and the half-width  of 
the channel are considered as given parameters. 

d

The dimensionless damping parameter  = 1 2d sc

p

= iB A 

  
by (36) is suggested to characterize the scale of the 
effect. 

The first (principal) mode (21) with lowest absorption 
is explicitly constructed. The transversal wavenumber 

 of the mode is expressed through the function acosc 
of complex argument; properties of this function are 
described and the numerical implementation is supplied 
[10]. The propagation constant  is expressed 
with Equation (45); the asymptotic estimate (51) of the 
absorption A  of the mode is suggested. The estimate 
agrees with that on the base of the Zeno reflection of the 
waves from the absorbing medium reported earlier [2]. 

The estimates above are important in the design of the 
suppression of the amplified spontaneous emission (ASE) 
in the high power lasers. The guiding of modes by the 

absorption walls happens whenever the engineers want 
this effect or not. Similar estimate is valid for the highest 
modes. For the mth transversal mode, the asymptotic 
estimate is suggested for the absorption   

2 2

3 3/2 1/2

π
=

4 

m
A

d c s

d
c

             (66) 

through the half-width  of the channel, wavenumber 
 and absorption s  of wave in the walls. 
Similar estimate (with slightly higher absorption) corre- 

spond to the case with circular symmetry, that can be 
treated in the similar way; the mode is expressed with the 
Bessel function, parameter  plays role of the radius of 
the channel. At small value of damping 

d
  by (36), the 

transversal wavenumber  is almost real. p
The result should be useful in both, wanted guiding of 

cold neutral particles by their detection (absorption) and 
the efficient suppression of the unwanted guiding of 
waves, for example, ASE in powerful optical amplifiers, 
and optimization of the ASE absorbers. 
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