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ABSTRACT 

One of the simplest tests of a radiation portal monitor (RPM) is a series of n repeats (a vehicle drive-through) in which 
the ith repeat records a total number of counts Xi and alarms if Xi ≥ T where T is an alarm threshold. The RPM perform-
ance tests we consider use n repeats to estimate the probability p = P(Xi ≥ T ) . This paper addresses criterion A for test-
ing RPMs, where criterion A is: for specified source strength, we must be at least 95% confident that p ≥ 0.5. To assess 
criterion A, we consider a distribution-free test and a test relying on assuming the counts Xi have approximately a Pois-
son distribution. Both test options require tolerance interval construction. 
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1. Introduction 

This paper considers testing the response of a specific 
radiation portal monitor (RPM) to a specified source be-
ing transported in a vehicle. One of the simplest tests of 
an RPM is a series of n repeats (a vehicle drive-through) 
in which the ith repeat records a total number of counts Xi 
and alarms if Xi ≥ T, where T is an alarm threshold. The 
RPM performance tests we consider use n repeats to es-
timate the probability p = P(Xi ≥ T). This paper addresses 
criterion A for testing RPMs, where criterion A is: for 
specified source strength, we must be at least 95% con-
fident that p ≥ 0.5. To assess criterion A, we consider a 
distribution-free test and a test relying on assuming the 
counts Xi have approximately a Poisson distribution. 
Both test options require tolerance interval construction. 
The following sections include additional background, 
statistical models and assumptions, numerical examples, 
and extensions. 

2. Background 

Radiation detection systems are deployed at ports of en-
try into the U.S. to protect against entry of illicit nuclear 
and radiological materials or so-called threat sources [1]. 
Radiation Portal Monitors (RPMs) are passive, non-in- 
trusive devices used to screen vehicles, containers, and 
other conveyances for Special Nuclear Materials (SNM) 
such as uranium and plutonium. These materials emit 
neutrons and/or gamma rays (or gammas), which many 
RPMs aim to detect using Helium-3 (3He) tubes for neu-

trons and plastic scintillator and other materials for 
gammas. A gamma detector not only counts gammas but 
also measures their associated energies. In some de-
ployments, the gamma counts are coarsely binned into 
low and high energy channels. In others using plastic 
scintillator detector material, the gamma counts are less 
coarsely binned into approximately eight energy chan-
nels [2]. 

Data from these passive RPMs have been collected at 
various ports of entry since 2003 [2-6]. As a vehicle 
slowly passes by a set of fixed radiation sensors, a time 
series of measurements from each sensor is recorded. 
The most common sensor configuration for vehicular 
RPMs consists of top and bottom panels on both the 
driver’s side and passenger’s side, with each panel con-
taining a neutron counter and a gamma counter that re-
cords every 0.1 second during a “vehicle profile”; a ve-
hicle screening lasts approximately 10 to 30 seconds de-
pending on the vehicle speed, resulting in approximately 
100 to 300 data records per vehicle profile.  

An important issue in fielding RPMs is that an RPM 
vendor must be selected among viable candidates. One of 
the simplest tests of an RPM is a series of n repeats (a 
vehicle drive-through) in which the ith repeat records a 
total number of counts Xi and alarms if Xi ≥ T, where T is 
an alarm threshold. The RPM performance tests we con-
sider use n repeats to estimate the probability p = P(Xi ≥ 
T). This paper addresses criterion A for testing RPMs, 
where criterion A is: for a specified source strength, we 
must be at least 95% confident that p ≥ 0.5. To assess 
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criterion A, we consider a distribution-free test and a test 
relying on assuming the counts Xi have approximately a 
Poisson distribution. Our experience suggests there is 
some misunderstanding regarding tolerance interval con-
struction, which is required in either test for criterion A. 

2.1. RPM Testing Criteria 

We begin with definitions of RPM testing criteria as used 
in several vendor selection experiments. 

Definitions: Drive-through: In a drive-through, a vehi-
cle drives by a portal at a required speed. We refer to a 
drive-through as a “repeat”. 

Portal monitor test: A portal monitor test consists of 
series of n repeats. The portal registers a number of 
counts, Xi, for repeat i (i = 1, ··· n). In the following, we 
will consider n = 20, but the results can be generalized 
for any n. 

Alarm: Each time a repeat results in Xi ≥ T where T is 
an alarm threshold, we call it an “alarm” and define the 
alarm probability p = P(Xi ≥ T). 

For selection of portal monitors we consider criterion 
A, defined as: Criterion A: be at least 95% confident that 
p ≥ 0.5. We consider two possible tests of criterion A. 

2.2. Tolerance Intervals 

Researchers in the physical sciences are usually familiar 
with the concept of a confidence interval (CI). For exam-
ple, the sample mean x  and the sample standard devia-
tion s of a sample of size n can together be used to con-
struct an approximate 95% CI for the true population 
mean using 

 1x t df n    

where 

 1 2 1t df n    

is the 1 2 0.975   percentile of the t distribution 

with n – 1 degrees of freedom. 
Somewhat similarly to a confidence interval, a toler-

ance interval is an interval within which, with some con-
fidence level, a specified proportion of a population falls. 
If a population’s parameters were known exactly, one 
could compute a range within which a certain proportion 
of the population falls. For example, if we know that a 
population is normally distributed with mean μ and stan-
dard deviation σ, then the interval μ ± 1.96σ includes 
95% of the population. However, in most situations, we 
know only the sample mean ˆx   and sample standard 
deviation ˆs  , which are only estimates of the true 
parameters. In that case, ˆ ˆ1.96   will not necessarily 
include 95% of the population, because of variability 
(across hypothetical replicates of obtaining n observa-
tions) in ̂  and ̂ . A tolerance interval bounds this 

variability by introducing a confidence level γ, which is 
the confidence with which this interval actually includes 
the specified proportion of the population. Calculations 
and software for computing approximate tolerance inter-
vals for various distributions are available for example 
by Young [7]. 

In this paper, we first assume the RPM counts have a 
Gaussian distribution. Note that counts are integer-valued 
so a better model (see Appendix 1) is the familiar Pois-
son distribution. However, provided the mean μ of the 
Poisson is large, say 30 or higher, the Gaussian is an 
adequate approximate to the Poisson. For completeness, 
Section 2.5 considers the case of RPM counts having a 
Poisson distribution. 

2.3. Test Options for Criterion A 

2.3.1. Test Option “1” for Criterion A: A  
Nonparametric “Sign” Test 

Using standard binomial sampling theory and the Clop-
per-Pearson so-called “exact” method of confidence in-
terval construction [7], we find that if 

 
1

15
n

i
i

I X T


   

for n = 20 then criterion A is satisfied, where the indica-
tor I (Xi ≥ T) = 1 if Xi ≥ T and 0 otherwise. In other words, 
this test option to meet criterion A simply requires 15 or 
more alarms in n = 20 repeats. 

As an aside, if instead of a 95% confidence interval for 
p we tested the hypothesis H0: p ≥ 0.5, this test option 
would change to require only 14 or more alarms in n = 
20 repeats. To be conservative, we use the 15 or more 
alarms requirement as test option 1. 

2.3.2. Test Option “2” for Criterion A: A Parametric 
Mean and Standard Deviation Test 

We assume here that Xi has a normal (Gaussian) distri-
bution with mean μ and variance σ2, which is a good as-
sumption provided the mean count rate is large so the 
Gaussian provides a good approximation to the Poisson 
distribution. 

Record the number of counts Xi in each repeat and 
calculate the sample average 

1

ˆ
n

i

i

X
X

n




    

and the sample variance 

 
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


  
   

where the “hat” notation denotes that the quantity is an 
estimate of a population parameter, in this case, the 
population mean μ and variance σ2. Standard tolerance 

Copyright © 2012 SciRes.                                                                                   MI 



T. BURR, A. GAVRON 29

interval construction can be used to show that 
ˆX k    with probability 0.95 for k = 0.3866. This 

test option is therefore ˆX k T   because the sym-
metry of the Gaussian distribution implies that if μ = T, 
then p ≥ 0.5. 

NOTE 1: We have verified the Clopper-Pearson result 
for test option 1 using the binconf function in R [8] and 
verified the tolerance interval result k = 0.3866 using 
simulation in R. 

NOTE 2: A summary of test options 1 and 2 is as fol-
lows. 

Test option 1 is a “nonparametric” test and it requires 
at least 15 passes in 20 trials.  

Test option 2 is a “parametric” test and it requires 
ˆX k T  . 

Using either option 1 or 2, if the criterion is met, then 
with probability at least 0.95, p ≥ 0.5. 

2.4. Requirement for a 95% Pass Rate 

Suppose for cost reasons it is desirable to have a high 
pass rate for RPMs. Then it is useful to evaluate the size 
of compared to the alarm threshold T so that test option 1 
(or option 2) results in a “pass” with high probability (we 
will use 0.95). 

2.4.1. Test Option “1” for Criterion A: Requirement 
for a 95% Pass Rate 

In order for 

 
1

15
n

i
i

I X T


   

with probability 0.95, standard binomial calculations (we 
used pbinom in R) imply that p ≥ 0.86.  

Next, in order for p = P(Xi ≥ T) ≥ 0.86, we require μ ≥ 
T + 1.0803σ. Recall that we assume Xi ~ N(μ, σ2), so the 
factor 1.0803 is the 0.86 quantile of the normal distribu-
tion, which we calculated using qnorm in R. 

Therefore, provided Xi ~ N(μ, σ2) and μ ≥ T + 1.0803σ, 
criterion A will be met (by having at least 15 alarms in n 
= 20 repeats) with probability at least 0.95. 

2.4.2. Test Option “2” for Criterion A: Requirement 
for a 95% Pass Rate 

Recall that tolerance interval construction for the Gaus-
sian distribution can be used to show that ˆX k    
with probability 0.95 for k = 0.3866. If we require 

ˆX k T   for test option 2, then by the same tolerance 
interval calculation (which we again verified by simula-
tion in R), if μ ≥ T + 2 × 0.3866 × σ then criterion A is 
met with probability at least 0.95. 

In summary, the requirement for μ is μ ≥ T + 1.083 × σ 
for the nonparametric test and μ ≥ T + 0.77 × σ for the 
parametric test. Therefore, the lower limit of detection is 

smaller for the parametric test, which is not surprising 
because it makes more assumptions about the underlying 
distribution.  

2.5. Criteria for Options 1 and 2 for Poisson 
Data 

The key issue with Poisson data is that the Poisson vari-
ance depends on mean; specifically, if X ~ Pois(μ) then 
σ2 = μ. By symmetry of the Gaussian, we need μ ≥ T in 
order for p ≥ 0.5. For any underlying distribution, we 
need p = P(X ≥ T) ≥ 0.86. It is simple to verify numeri-
cally (see Figure 1) that provided μ ≥ 1, then P(X ≥ μ) ≥ 
0.5. Therefore, as with the Gaussian case, we will con-
vert assessment of whether P(X ≥ μ) ≥ 0.5 to assessment 
of whether μ ≥ T which results in a conservative ap-
proach, requiring a slightly larger mean count rate µ than 
is actually necessary to meet the criterion. 

2.5.1. Test Option “1” for Criterion A: A  
Nonparametric “Sign” Test 

As with the Gaussian assumption, we require 15 or more 
alarms, which occurs with probability 0.95 or higher if p 
= P(X ≥ T) ≥ 0.86 as test option 1. In order for p ≥ 0.86, 
recall that we need μ ≥ T + 1.0803σ for the Gaussian case. 
For the Poisson case, we require  

T k T k        . 

We have found by simulation in R (see Appendix 2) that 
kμ ≤ 1.0803, and that it is too conservative to simply use 
the 1.0803 value that is appropriate for the Gaussian case. 
For example, if μbkg =2, 10, or 40 (2 to 40 is approxi-
mately the range of the count rate per second across 
world-wide RPM deployments of the same type of neu-
tron detector) and 
 

 

Figure 1. The probability that X > μ for a range of μ values. 
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4bkg bkgT     

(see Section 4), then 

0.91T k T       . 

Recall that in the Gaussian case, provided Xi ~ N(μ, σ2) 
and μ ≥ T + 1.0803σ, criterion A will be met (by having 
at least 15 alarms in n = 20 repeats) with probability at 
least 0.95. In the Poisson case if we re-express the re-
quirement for μ in terms of the background mean rather 
than the background + signal mean, then μ ≥ T + kμμbkg 
then kμ is approximately 1.38 rather than 0.91 for μbkg 
=10. The mean reasons that the Poisson model has a dif-
ferent kμ than k for the Gaussian are: 1) the variance of 
the Poisson distribution can be estimated with lower er-
ror (by using the sample mean rather than the sample 
variance) than can the variance of the Gaussian, and 2) 
the Poisson variance equals the poisson mean. 

2.5.2. Test Option “2” for Criterion A: A Parametric 
Mean and Standard Deviation Test 

If X has a Poisson distribution with mean µ then an opti-
mization method in R (see Appendix 2) shows that for μ 
= 2, 10, and 40, we require k = 0.36, 0.36, and 0.35, re-
spectively, in the expression  

2 1.15 bkgT k T         

for μbkg = 10. Recall that the value of k for the Gaussian 
distribution is k = 0.3866. Because the k values for the 
Poisson for μ ranging from 2 to 40 are all very close and 
slightly less than the required value of k for the Gaussian, 
it is adequate to simply use the value k = 0.3866 that is 
also used for the Gaussian. The reason the k values for 
the parametric Poisson case are so close that the k value 
for the Gaussian case is that the values of m are reasona-
bly large (larger than 1 for example) and the central limit 
theorem suggests that the average of n = 20 Poisson re-
peats will therefore have approximately a Gaussian dis-
tribution. 

In summary, the requirement for the case is 

1.38 bkgT    

for the nonparametric test and  

1.15 bkgT    

for the parametric test. 
Therefore, again the lower limit of detection is smaller 

for the parametric test, which is not surprising because it 
makes more assumptions about the underlying distribu-
tion. 

3. Estimation of the Threshold T 

We have assumed the threshold T is known without error 

ow 100 seconds for a background 
m

 errors in Figure 4 were 
es

and that it corresponds to some user-specified small false 
alarm probability (FAP). For example, Figure 2 plots the 
value of T needed for a 0.001 FAP for a range of back-
ground averaging times for μ = 2, 8, and 40 counts per 
second (approximately the range observed in similar 
RPMs deployed worldwide). These values were obtained 
by simulation in R [8]. 

It is impractical to all
easurement prior to each repeat. Fortunately, the true 

mean μ drifts slowly with time [5,6]. For example, Fig-
ure 3 shows a smooth curve through the estimated value 
μ prior to each profile in real data. Because the mean μ is 
slowly varying, a running average is used to estimate the 
current μ, using some combination of the current estimate 
and the newest estimate from each profile using ap-
proximately 1 second of new background counts prior to 
each profile. Figure 4 shows the mean squared estima-
tion error in estimating the background μ as a function of 
the background averaging time using the local mean (ob-
tained just prior to the profile). 

The mean squared estimation
timated by assuming the smooth curve in Figure 3 is 

the true slowly-varying mean, say μt, generating Poisson 
observations having mean μt, and using either the local 
mean estimated just prior to each profile to estimate μt. 
Figure 5 is similar to Figure 4, but shows that a running 
mean (using 1ˆ ˆ0.9 0.1i i x     as the running mean, 
where x  is th  smaller estimation error 
than the ocal mean.  

In practice, T is es

e local mean) has
 l

timated using an estimate of the 
background and either Gaussian or Poisson probabilities 
to estimate the FAP. Estimation error in T can be viewed 
in our context as leading to estimation error in the FAP, 
but provided the running mean approach is used, that 
estimation error in the FAP is quite small. 

 

 

Figure 2. Alarm threshold k for 0.001 false alarm rate a  
function of the duration of the background averaging pe-
riod for 3 background means (2, 8, and 40 cps). 

s a
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Figure 3. Example of real neutron average counts over ap-
proximately 48 hours. 
 

 

Figure 4. The mean squared estimation error as a function 
of the background averaging time in 0.1 seconds. 
 

 

Figure 5. The mean squared estimation error as a function 
of thebackground averaging time in 0.1 seconds using either
a running mean or the local mean for the slowly vary g
real data shown in Figure 4.  

 candidates. This 
 test RPMs prior to 
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517
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4. Discussion and Summary 

An important issue in fielding RPMs is that an RPM 
vendor must be selected among viable
paper supports experiments aimed to
vendor selection. One of the simplest tests of an RPM is 
the “≥15 alarms in 20 repeats” rule, which arose from 
criterion A that requires at least 95% confidence that Xi ≥ 
T, where T is an alarm threshold, with at least 0.50 prob-
ability. Note that even if a test has ≥15 alarms in 20 re-
peats, we cannot claim that with probability 0.95, future 
Xi ≥ T with at least 0.50 probability. That’s why the term 
“confidence” is used, and it arises from defensible use of 
binomial probabilities. In fact, it is possible that the true 
P(Xi ≥ T) < 0.50 for ALL vehicles that pass the ≥15 
alarms in 20 repeats rule (although the pass rate would be 
low). 

We have provided a non-parametric and a parametric 
option for both the Gaussian and the Poisson models for 
criterion A. The numerical values required to implement 
these options are summarized in Sections 2.3 and Sec-
tions 2.5 and were estimated using a simple optimization 
function freely available in R, with example R code 
given in Appendix 2. 

Typically the alarm threshold T is estimated from the 
background data, so we included an assessment of the 
actual versus the nominal false alarm probability as a 
function of the background averaging period. 

We also added a practical requirement involving the 
RPMs detected count rate µ such that that vehicles pass 
the test with probability at least 0.95. We did not con-
sider the signal shape during the profile, because either 
the vehicle is assumed stationary, or the total neutron 
counts over the entire profile are used. References [4,5, 
9,10] provide analyses appropriate for alarm rules that do 
consider signal shape during the profile. 

5. Acknowledgements 

We acknowledge the Department of Ho

Contract Number DE-AC52
agement and operation of Los Alamos National Labora-
tory. 

REFERENCES 
[1] B. Geelhood, J. 

03 IEEE Nuclear Scienc
d, Portland, 19-25 Octo

. doi:10.1109/NSSMIC.2003.1352095 

[2] J. Ely, R. Kouzes, J. Schweppe, E. Siciliano, D. Strachan 
and D. Weier, “The Use Of Energy Windowing to Dis- 
criminate SNM from NORM in Radiation Portal Moni- 
tors,” Nuclear Instruments and Methods in Physics Re-

Copyright © 2012 SciRes.                                                                                   MI 

http://dx.doi.org/10.1109/NSSMIC.2003.1352095
http://dx.doi.org/10.1109/NSSMIC.2003.1352095
http://dx.doi.org/10.1109/NSSMIC.2003.1352095
http://dx.doi.org/10.1109/NSSMIC.2003.1352095
http://dx.doi.org/10.1109/NSSMIC.2003.1352095


T. BURR, A. GAVRON 

Copyright © 2012 SciRes.                                                                                   MI 

32 

search A, Vol. 560, No. 2, 2005, pp. 373-387.  
doi:10.1016/j.nima.2006.01.053 

[3] T. Burr, J. Gattiker, M. Mullen and G. Tompkins, “Statis- 
tical Evaluation of the Impact of Background Suppression 
on the Sensitivity of Passive Radiation D
Springer, New York, 2006.  

etectors,” 

1.010

[4] T. Burr, J. Gattiker, K. Myers and G. Tompkins, “Alarm 
Criteria in Radiation Portal Monitoring,” Applied Radia- 
tion and Isotopes, Vol. 65, No. 5, 2007, pp. 569-580.  
doi:10.1016/j.apradiso.2006.1  

, No. 2-3, 2008, pp. 383-400. 

[5] T. Burr and M. Hamada, “The Performance of Neutron 
Alarm Rules in Radiation Portal Monitoring,” in Revision 
for Technometrics, 2012. 

[6] R. Kouzes, E. Siciliano, J. Ely, P. Keller and R. McConn, 
“Passive Neutron Detection For Interdiction Of Nuclear 
Material At Borders,” Nuclear Instruments and Methods 
in Physics Research A, 584  

doi:10.1016/j.nima.2007.10.026 

[7] D. Young, “Tolerance: An R Package for Estimating 
Tolerance Intervals,” Journal of Statistical Software, Vol. 

R Foundation for Sta-

felt, C. LoPresti, M. 
Evaluation of Radiation Portal 

36, No. 5, 2010. www.jstatsoft.org 

[8] R Development Core Team. R: A Language and Envi-
ronment for Statistical Computing. 
tistical Computing, Vienna, 2004.  
http://www.R-project.org 

[9] S. Robinson, S. Bender, E. Flumer
Woodring, “Time Series 
Monitor Data for Point Source Detection,” IEEE Trans- 
actions on Nuclear Science, Vol. 56, No. 6, 2009, pp. 
3688-3693. doi:10.1109/TNS.2009.2034372 

[10] T. Schroettner, P. Kindl and G. Presle, “Enhancing Sensi- 
tivity of Portal Monitoring at Varying Transit Speed,” 
Applied Radiation and Isotopes, Vol. 67, No. 10, 2009, 
pp. 1878-1886. doi:10.1016/j.apradiso.2009.04.015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1016/j.nima.2006.01.053
http://dx.doi.org/10.1016/j.nima.2006.01.053
http://dx.doi.org/10.1016/j.nima.2006.01.053
http://dx.doi.org/10.1016/j.nima.2006.01.053
http://dx.doi.org/10.1016/j.nima.2006.01.053
http://dx.doi.org/10.1016/j.nima.2007.10.026
http://dx.doi.org/10.1109/TNS.2009.2034372
http://dx.doi.org/10.1109/TNS.2009.2034372
http://dx.doi.org/10.1109/TNS.2009.2034372
http://dx.doi.org/10.1016/j.apradiso.2009.04.015


T. BURR, A. GAVRON 33

 
Appendix 1. The Distribution of the Detected 

ounts D. 

so C ~ Poisson(). Given a realization C, 

C

Assume the true counts C have a Poisson distribution 
with mean µ, 
the detected counts D have a binomial distribution with 
mean C , where the detector efficiency  < 1, so D C  
~ binomial(C, ). This appendix shows that the uncondi-
tional distribution of the detected counts D is Pois-
son(). 
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Therefore, D P  oisson   

Appendix 2
Repeated p

. R Code to Use Simulation in 
 Calls to the O timize Function 

rob 

= .05, nsim = 1000, do.normal = FALSE){ 
temp2 = mu 

s # do.normal == TRUE 
(x)^.5 

 sig); 
te

ize(f2, interval = c(0.1,1), nsim = 10^5, mu = 2, 
n  FALSE, lprob = 0.05) 

 mu 
id)) 

utemp) 
ean(x)^.5 

) 

f2 = function(k = 2, mu = 500, n = 20, sig = 30, lp
 

 for(isim in 1:nsim) { 
= n, lambda=mu)   x = rpois(n 

# assume Poisson unles
temp1[isim] = mean(x) - k*mean
if(do.normal) {x = rnorm(n = n, mean = mu, sd =

mp1[isim] = mean(x) - k*var(x)^.5} 
} 
   abs(1-lprob-mean(temp1 <= temp2)) 
} 
   

ample result: Ex
optim

= 20, maximum =
$minimum 
[1] 0.3648825 

 for parametric option Grid search
 
mu.grid = seq(4, 10, length = 10) 
 = 0.3866; mu = 2 k

nsim = 10^5; thresh =  4*mu^.5 +
c(length(mu.grgrid.save1 = numeri

for(i in 1:length(mu.grid)) { 
mutemp = mu.grid[i] 
temp2 = thresh 

m)  temp1 = numeric(nsi
sim) {  for(isim in 1:n

  x = rpois(n=n,lambda=m
- k*mtemp1[isim] = mean(x) 

 } 
  grid.save1[i] = mean(temp1 >= thresh
} 
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