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ABSTRACT 
 
This paper utilized the compressive tests results to establish some critical mechanical 
properties and crashworthiness parameters that may be required to design GRP composites 
of polyester matrix in automobile structures. Third order polynomial function was used with 
numerical methods to establish the elastic properties whish could not be established due to 
sensitivity of the Monsanto tensometer used to obtain the compression results. This study 
showed that the finite difference method captured the general trend of experimental solution 
giving optimum value of compressive stress as 23.78MPa at strain of 0.018 and elastic limit 
of 12.01MPa at 0.01 strain through finite difference analysis while the solution with third 
order polynomial interpolation gave optimum compressive stress as 36.57MPa at 0.018 
strain and elastic limit of 12.143MPa. Also established with compression data is the 
compressive or buckling moduli of 1.2GPa. Gauss-Legendre two point rule was used to 
evaluate the area under the stress-strain curve which measured the amount of energy 
absorbed per unit volume of sample from where the energy absorbed at ultimate strength of 
0.025J/M3- 0.22 J/M3 , energy at fracture of 0.62 J/M3- 1.62 J/M3 and the absorbed specific 
work  0.001J/Kg are established. 
. 
Key words: viscoelastic behavior, crash parameters, energy absorption and crash work, 
absorbed specific work.  
 
 
 
1. INTRODUCTION 
 
The prediction of damage to structures caused by accidental collision – whether to 
automobiles, offshore installations or simply the packaging around an electrical appliance – is 
a crucial factor in their design. This important new study focuses on the way in which 
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structures and materials can be designed to absorb kinetic energy in a controllable and 
predictable manner. An investigation into energy absorption requires an understanding of 
materials engineering, structural mechanics, the theory of plasticity and impact dynamics. 
Whilst a great deal of research has been undertaken on various aspects of these subjects, this 
knowledge is diffuse and widely scattered [1]. 
 
The energy absorption capability of a composite material is critical to developing improved 
human safety in an automotive crash. Energy absorption is dependent on many parameters 
like fibre type, matrix type, fibre architecture, specimen geometry, processing conditions, 
fibre volume fraction, and testing speed. Changes in these parameters can cause subsequent 
changes in the specific energy absorption (ES) of composite materials up to a factor of 2 [2]. 
 
Composites with their high strength to weight ratio have become very important in many 
technological applications such as in aerospace, automobile and medical industries. Just like 
any other mechanical components in service, polymer composites are subjected to varying 
mechanical forces during manufacture and use. Budiansky [3], Sridharan [4], Chung and 
Weitzsman [5], Kyriakides [6] and HSU et al [7] used idealized macro-buckling mechanical 
models of fibre reinforced composites to establish that the compressive strengths of 
fibrecomposites subjected to compressive loads are only about 50% to 60% of their ultimate 
strength in tension. 
 
 The design values for the mechanical properties of any composite system are usually 
obtained from laboratory tests. These tests give valuable information on the mechanical 
behavior of composite materials to a significant degree. However, the ability to understand 
the response of the composites to general loading conditions or to improve their mechanical 
properties requires the knowledge of the behavior of the composite on the microscope scale. 
 
In this work buckling is considered the failure mode that governs the mechanical behavior of 
composite materials in service. The initial attempts to predict the mechanical behavior of 
composite were based upon the simple theory of strength of materials.  
 
The viscoelastic behavior of plastic composite makes the establishment of elastic range in 
plastic composites difficult that experimental methods give only the short time properties of 
plastic composites [8]. Foye [9] was the first to attempt the analysis of composite materials 
by numerical method to obtain an inelastic solution employing a generalized plane strain 
condition. 
 
2. METHODS AND MATERIALS  
 
The methods involve the use of the Ihueze [10] data of replicated samples of GRP composites 
tested for compressive failure and the application of some numerical methods to predict some 
limiting properties of GRP composites and applying some crash evaluation relations. The 
sample replication schemes are as presented in Figure 1. In the Ihueze [10] all the replications 
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have approximately the same pattern of behavior as designed so that in this study only sample 
A was used for analysis of energy absorption and crashworthiness. 
 

Table 1: Sample A Replication Data 
Sample 
variables 

Sample A 
A1 A2 A3 A4 

Mass (kg) 0.0166 0.015 0.0157 0.0167 
Length (m) 0.0829 0.0827 0.0839 0.0824 
Width (m) 0.0296 0.0275 0.0279 0.0295 
Thickness (m) 0.0048 0.0048 0.0048 0.0048 
Area (m2) 0.00014   0.00013 0.00013   0.00014 
Density (kg/m  1409   1374 1397    1431 

 
Each of the samples replications described in Table 1 were subjected to compression loading 
individually in the testing kit of monsanto tensometer of Figure 1 and appropriate beam load 
size applied each time by application of operating handle, H. Readings of displacements 
versus loads were then obtained from the autographic recorder and tabulated. The measured 
readings of sample A presented in Table 2b is used in this study for analysis. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 1: Line Diagram of Hounsfield Monsanto Tensometer 
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Table 2a: Compression Force-Deformation Response Data 
Sample A [10] 

               1                   2                3               4 
Deforma-

tion 
(mm) 

Force 
(N)  

Deforma-
tion 

 (mm) 

Force 
 (N) 

Deforma-
tion 

 (mm) 

Force 
 (N) 

Deforma-
tion 

 (mm) 

Force 
 (N) 

0.00 0 0.25 100 0.25 0 0.25 100 
0.50 600 0.75 1000 1.00 1100 0.50 1000 
0.75 1200 1.13 2100 2.38 1600 0.88 2000 
1.25 2100 1.75 3100 2,75 1450 1.25 2900 
1.50 3100 2.00 2.400 3.38 1300 1.63 2300 
2.00 3600 3.00 1700 4.00 1100 2.25 2000 
2.25 2600 3.50 1600 4.63 1000 2.88 1800 
2.63 2200 4.25 1300 5.13 805 3.50 1700 
3.00 1900 4.75 1200 5.63 500 4.25 1500 
3.75 1700     5.00 1200 
4.25 1500       
4.75 1350       

Mass (kg) 0.0166            0.015 0.0157 0.0167 
Length (m) 0.0829 0.0827 0.0839 0.0824 
Width (m) 0.0296 0.0275 0.0279 0.0295 
Thickness (m) 0.0048 0.0048 0.0048 0.0048 
Area (m2)  0.00014   0.00013   0.00013   0.00014 
Density (kg/m3) 1409 1374 1397 1431 

 
Table 2b: Compression Stress-Strain Data of Sample A [10] 

              A1                   A2                A3               A4 
Strain 

(mm/mm) 
Stress 
(MPa)  
 

Strain 
(mm/mm)  
 

Stress 
(MPa)  

 

Strain 
(mm/mm)  
 

Stress 
(MPa)  

 

Strain 
(mm/mm)  
 

Stress 
(MPa) 
 

0.00 0.00 0.003 0.77 0.003 0.00 0.003 0.71 
0.006 4.29 0.009 7.69 0.012 8.46 0.006 7.14 
0.009 8.57 0.014 16.15 0.028 12.31 0.010 14.29 
0.015 15.00 0.021 23.85 0.033 11.15 0.015 20.17 
0.018 22.14 0.024 18.46 0.040 10.00 0.020 16.43 
0.024 25.71 0.036 13.08 0.048 8.46 0.027 14.29 
0.027 18.57 0.042 12.31 0.055 7.69 0.035 12.86 
0.031 15.71 0.051 10.00 0.061 6.19 0.042 12.14 
0.036 13.57 0.057 9.23 0.067 3.85 0.052 10.71 
0.045 12.14     0.061 8.57 
0.051 10.71       
0.51 9.64       
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3. NUMERICAL INTERPOLATIONS OF INTERMEDIATE PROPERTIES 
 
The interpolation schemes of this section established the intermediate values of the study 
such as the elastic values of the data that is needed the analysis of crashworthiness of the 
material as proposed in [11]. The elastic modulus, proportionality limit and the elastic limit 
are established with this interpolation schemes. The elastic modulus and limit are evaluated at 
strain 0.01 [12]. 
 
3.1 Finite Difference Formulations and Polynomial Regression Method 
 
Polynomial interpolation aids interpolation and extrapolation of data which could not be 
measured due to limited sensitivity of instrument. 
 
Analysis of a cross section of experimental data of Ihueze [10] is shown as Table 2b.By 
taking a section of experimental data to the ultimate stress, a polynomial equation was 
established as in figure 2 and expressed in equation (1). Our target is to capture the elastic 
properties of the material being studied which will not be measured with the sensitivity range 
of our instrument.  
 

 
Figure 2: Third Order Polynomial Model for Finite Difference 
Approximations 

 
                                       

 
Supposing  represents a regular partition of interval 

 so that following the method of [14], 
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where  
 

  . 

 
The points 
 
   
 
are called interior mesh points of the interval    
By forming a differential equation of equation (1) 
 

 

 
 
By adding (1), (5) and (6) 
 

 
 
By expressing (7) in standard linear differential equation format 
 

                                                                                                               

 
By expressing (8)   as 
 

 
 
and by letting 
 

 

 
and by replacing   by their central difference approximations derived as  
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So that equation   (4) becomes  
 

 
 
Or by rearrangement  
 

 
 
(10) gives the finite difference equation which is an approximation to the differential 
equation of equation  (9). It enables the approximation of the solution at the interior mesh 
points 1, 2,  of the interval [a, b]. 
 
By allowing i take on the values 1, 2, n-1 in (10) we obtain n-1 equations in the n-1 
unknowns (  , , …  ). Remembering that we have and  since these are the 
prescribed boundary conditions:  

 
and  

 
 
By observing that  and  in equation and  
as evaluated from 
 

= 0.002 

Equation (9) reduces to 

 
 
By considering the interior mesh points 
For        i = 1 to n-1 = 9 the following system of equations is obtained 
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The right hand side of the system above is evaluated with excel spread sheet package for 

    evaluated with the relation of interior mesh points 
expressed in as 

 
So that since a = 0   and : 

 , as presented in table 3. 
 

Table 3: Computed Mesh Point Data for Equations 
 

I Xi f(xi) 0.000004f(xi) 
1 0.002 167921.8 0.671687 
2 0.004 130226 0.520904 
3 0.006 92458.67 0.369835 
4 0.008 54619.75 0.218479 
5 0.01 16709.08 0.066836 
6 0.012 -21273.5 -0.08509 
7 0.014 -59328.1 -0.23731 
8 0.016 -97454.9 -0.38982 
9 0.018 -135654 -0.54262 

 
The boundary conditions are specified from graphics of Figure 2 as  
 

 
 
With the values of Table 3 and substituting the boundary conditions the system of equation 
reduces to 
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The matrix equation of the system of equations becomes 
 

=

 
Solving equation (30) with numerical toolkit of Chapara and Canale [13] gives values of the 
function at the mesh points as: 
 
y1 = 1.38716MPa, y2 = 3.442584MPa, y3 = 6.014278MPa, y4 = 8.950264MPa, y5 = 
12.09867MPa, y6 = 15.3075MPa, y7 = 18.42493MPa, y8 = 21.29905MPa, y9 = 23.77803MPa 
 
3.2 Newton’s Divided Difference Interpolation  
 
The Newton’s interpolation polynomial is expressed in [13] as   
 

 
 
Data points are used to evaluate  to obtain 
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Where the bracketed functions are the divided differences and the nth divided difference is 
expressed as 

 
This is a general relation for the computation of the finite divided difference of Newton’s 
polynomial so that the general interpolation polynomial can be expressed as 
 

 
 
A section of experimental data up to the ultimate stress is considered as presented in table 4. 

 
Table 4: A section of Experimental  
Data up to the Ultimate Stress 

I xi f(xi) 
0 0.000 0.00 
1 0.006 4.29 
2 0.009 8.57 
3 0.015 15.00 
4 0.018 22.14 
5 0.024 25.71 

 
But for nth order polynomial, (n+1) data points are needed for complete interpolation of the 
points within the interval 0  so that for this study n = 5 that is nth order 
polynomial is needed. 
 
3.2.1 Computation of finite differences 
 
By using equation (33) and the divided differences, 
 
0th order order divided difference 

 
 
For the 1st order divided difference 
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For the 2nd order divided differences 
 

 
So that similarly, 
 

 

 

 
 
For the 3rd order divided differences 
 

 
So that similarly 
 

 

 
                          
For the 4th order divided differences 
 

 
 
So that similarly 

 



96                                                            Chukwutoo Christopher Ihueze                                         Vol.11, No.1 

For the 5th order divided differences 

 
By considering third interpolation polynomial Newton’s interpolation polynomial can be 
expressed as 
 

 

 
 
3.2.2 Error estimation 
 
The truncation error is estimated with the following relation as expressed in Canale and 
Chapara [13] as: 
 

 
So that for n =3 

 
 

 
 
3.3 Polynomial Interpolations with Numerical Tool Kit 
 
Numerical tool kit developed by Canale and Chapara [13] was used to establish a third order 
interpolation polynomial model that is of coefficient of determination 0.9898 and correlation 
coefficient 0.9949 and standard error 1.62 as 
 

 
 
This model is applied to arguments of finite difference method for comparism using excel 
package and result presented as in table 5.  
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Table 5: Results of Interpolation Schemes Compared  
 

X f3nt(x) f3nd(x) FDM 
0 0.0748 0 0 

0.002 0.846154 0.42857 1.38716 
0.004 2.438781 1.963952 3.442584 
0.006 4.852552 4.29 6.014278 
0.008 8.087334 7.090566 8.950264 
0.01 12.143 10.0495 12.09867 

0.012 17.01941 12.85067 15.3075 
0.014 22.71645 15.1779 18.42493 
0.016 29.23397 16.71507 21.29905 
0.018 36.57186 17.14602 23.77803 
0.024 63.50636 8.640096 25.71 

 
4. CRASH PARAMETERS, ENERGY ABSORPTION AND CRASH WORK 

EVALUATION 
 
4.1 Crush Force Efficiency CFE 
 
This is a very important parameter to evaluate the performance of the structure during the 
crushing process. Crush force efficiency CFE is the ratio between the average crushing load 

and the maximum crushing load , and can be obtained from the reasoning of Tao [15] 
using values of Table 2a. 
 
From table 2a, 

 
 

 
 
Material with higher CFE will always be selected in design of energy absorbing systems. 
 
4.2  Crashworthiness Parameters 
 
4.2.1 Average failure load (Pav) 
 
Average failure load Pav is a very important factor of the crashworthiness parameters to the 
crushing energy absorbed by the structure. Material with higher Pav will always be selected 
in design of energy absorbing systems. 
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4.2.2 Load ratio (LR) 
 
The main purpose for using the load ratio parameter is because it is very important in the 
study of the failure modes.  The load ratio LR is the ratio between the initial failure load Pi 
and the maximum failure load Pmax and this can be expressed as 
 

 
 
When Pi is taken as the value established by the interpolation scheme of table 9 then, 
 

 
 
25.71MPa value used is the ultimate strength of table 4. 
 
When the initial failure load Pi is of the same value of the maximum failure load the load 
ratio will equal to 1 and this means that the structure initially crushed in a limited catastrophic 
failure mode. But if the load ratio LR is less than 1, a matrix failure mode will be observed in 
the initial crushing stage of the specimen [11].  
 
4.3 Absorbed Energy Evaluation with Gauss-Legendre Two-Point Rule and  
 
This is achieved by first obtaining the graphics of data of Table 6 of [10] and applying 
appropriate numerical method for the areas under the stress-strain curves. 
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Figure 3a-d: Sample A Depiction of Area under the Stress- Strain Curve 
 
By applying Gauss-Legendre two- point rule that will be exact for third order function the 
areas under the curves are estimated as follows: By employing the polynomials of Figure 3 
the areas under the curves are evaluated in order to estimate the work or energy absorbed by 
composite samples at ultimate strength and at fracture. 
 
For Figure 3a: 

 
        
The area under the curve in the finite interval [a, b] is given: 

 
                                                                                                                                                  
We shall attempt to determine this area using numerical approach: 
Since the function  is a polynomial of 3rd order, Gauss – Legendre Two – Point Rule will 
be exact for evaluation of the integral [13]. 
The rule states that; 
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It all means that to apply this rule, we shall always change our finite interval [a, b] to [-1, 1] 
using the transformation: 
 

                                                                                                                                                

Considering the area under the curve of figure10a from the starting point up to the maximum 
point A1 where the finite interval [a, b] = [0, 0.024] and 
 

 
                                                                    
Applying the transformation (56) where [a, b] = [0, 0.024]; 
 

                                                                                                                                           

                                                                                                                                                 

                                                                                                                                             
So that 
 

 
                                                                   

 
                                                                                                                                          
     

 
                          
Applying Gauss – Legendre 2 – point rule in evaluating (61) 
 

 
      
                                              and                                                  
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so that            
              
  A1=0.025                                                                                                                                          
 
Considering the area under the curve of (figure 3a) from the maximum point to the end A2 
where the finite interval [a, b] = [0.024, 0.052] 
 

 
                                                               
Applying the transformation where [a, b] = [0.024, 0.052]; 

                                                                                                                             

                                                                                                                                               

                                              
so that 

 
        

 
Applying Gauss – Legendre 2 – point rule to (69) 
 

 

 

 

 
A= A1+/A2/ =0.62 
 
Similarly for figure 3b:  
 

                                                                                    
and the finite interval is [a, b] = [0.003, 0.023]. 
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 Applying Gauss-Legendre transformation on (72) 
 
A1= 0.22, Also on the interval [0.023, 0.057] where also 
 

  and 
 

 
 Also, applying Gauss-Legendre transformation on (73) 
A2 = -1.4, A1+/A2/ =1.62 

 
where A1 = amount of energy absorbed or work performed on the material per 

unit volume of material within the ultimate strength of material, J/m3 
A1+A2  = amount of energy absorbed or work performed on the material per 

unit volume of material before fracture of material, J/m3 
Similar evaluations for Figures 3b and 3c are found in Table 6. 
 

Table 6: Energy Absorption Data 
Figure A1(J/m3) A2(J/m3) A3(J/m3) 

 

10a 0.025 -0.037 - 0.62 

10b 0.22 -1.4 - 1.62 

10c 0.1959 0.6373 - 0.83 

10d 0.1531 0.8716 -0.5957 1.62 

 

4.3.1 Total work done  
 
The area under the load-displacement curve represents the total energy absorbed and it can be 
calculated by multiplying the area under the stress-strain curve by the volume of the sample 
so that from previous calculations, the work of the samples can be presented as in Table 7. 
 
4.3.2 Specific energy absorption (SEA) 
 
The specific energy absorption (SEA) is the most important factor in the design of the parts 
that are needed to reduce their weight, such as cars, airplanes and motorcycles, etc. The SEA 
is the energy absorbed per the mass of the specimen. It can be calculated by dividing the 
energy absorbed by the mass of the sample as presented in Table 8. 
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Table 7: Work Absorption Data 

 
Figure Sample A1(J/m3) A2(J/m3) A3(J/m3) 

(J/m3

) 

Volume(m3) W(J) 

10a A1 0.025 -0.037 - 0.62 0.0000116 0.000007 

10b A2 0.22 -1.4 - 1.62 0.000001 0.000017 

10c A3 0.1959 0.6373 - 0.83 0.0000109 0.000009 

10d A4 0.1531 0.8716 -0.5957 1.62 0.00001 0.000018 

 
Table 8: Specific Energy Absorption (SEA) 

 
Sample W(J) Mass(Kg) SEA 

A1 0.000007 0.0166 0.0004216868 

A2 0.000017 0.015 0.0011333333 

A3 0.000009 0.0157 0.0005732484 

A4 0.000018 0.0167 0.0010778443 

 
The average specific work is therefore calculated from table 8 as 
 

 
 
5. DISCUSSION OF RESULTS 
 
The tensile strength of GRP is reported to 303MPa while the compressive strength is about 
50-60% of the tensile strength of material [16]. The tensile strength recorded in this study 
shows that the material failed before the elastic limit of the material is reached a situation 
which may be attributed to buckling in engineering. This confirms that failure of GRP may be 
due to structural instability that leads to material failing before reaching the elastic limit. 
 
The interpolations of the three numerical schemes were compared as presented in Table 5 and 
figure 8 with the assertion that FDM is the better interpolation scheme for composites. 
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Figure 4: Results of Interpolation Schemes Compared  

 
The graphics of   this study depict the difficulty in establishing the other properties of 
engineering materials as modulus of elasticity, proportionality limit, yield strength and elastic 
limit. 
 
This study showed that the finite difference method captured the general trend of analytical 
solution as depicted in Figures 7 and 8. Also established by this study are the energy 
absorbed at ultimate strength of 0.025J/M3- 0.22 J/M3 and energy at fracture of 0.62 J/M3- 
1.62 J/M3 as depicted in table 6. 
 
The crush force efficiency was evaluated as 77% while the average failure load and the load 
ratio were evaluated as 2800N and 0.47 respectively. The load ratio 0.47 means that a matrix 
failure mode occurred, instead of the catastrophic failure that occurs when the load ratio is up 
to unity.  
 
Table 6 gave the value of absorbed energy as 0.62-1.62J/M3 while Table 7 presented the 
value of the total work to lie in the range 0.000007J-0.000018J. This is an indication that the 
material did not absorb much energy or that less work is done before crashing. Also table 8 
gave the average value of specific work absorbed as 0.001J/Kg. This will be useful in 
selecting material to be used during auto component design knowing material and limit of 
energy absorption. 
 
6. CONCLUSION 
 
This study showed that the finite difference method captured the general trend of 
experimental solution giving optimum value of compressive stress as 23.78MPa at strain of 
0.018 and elastic limit of 12.01MPa at 0.01 strain through finite difference analysis while the 
solution with third order polynomial interpolation gave optimum compressive stress as 
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36.57186MPa at 0.018 strain and elastic limit of 12.143MPa. Also established by this study 
are the compressive or buckling moduli of 1.2GPa, energy absorbed at ultimate strength of 
0.025J/M3- 0.22 J/M3 and energy at crash of 0.62 J/M3- 1.62 J/M3 and specific work as 
0.001J/Kg. Above all material with higher CFE will always be selected in design of energy 
absorbing systems. 
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