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ABSTRACT 

The normal transverse electric field which appears in impurity graphene spontaneously in the presence of a high applied 
electric field was calculated. The given effect can be associated with non-equilibrium of electron subsystem in graphene. 
The characteristics of spontaneous field on the parameters of the problem were investigated. 
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1. Introduction 

A study of phase transitions is the one of the famous 
paradigm in modern fundamental physics. It should be 
noted that phase transition (in wide extend) means a sub-
stance’s transition from one phase to another at the change 
of external conditions-temperature, pressure, magnetic 
field and electric field, and so on. And phase transition, in 
restricted sense, is saltatory variation of physical proper-
ties at the continuous changing of the external parameters. 
So, in particularly, non-equilibrium phase transition takes 
place one of the main in variety of phase transitions. This 
kind of transition arises at the presence of external fields 
with the different characters.  

In [1,2] it was shown theoretically that under the action 
of a high electric field non-equilibrium phase transitions 
are possible in the electron gas in conductors with a 
body-centered cubic lattice. The effect consists in spon-
taneous appearance of a transverse field  playing the 

role of order parameter. The applied electric field , 

directed along one of the crystal symmetry axis, is the 
controlling parameter. A necessary condition for the ap-
pearance of a transverse field is the non-additivity of the 
electron energy spectrum when the electron energy: 

yE
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where p


is the quasi- 

momentum of electrons (e.g., when using a tight-binding 
approximation the electron spectrum in the body-centered 
cubic lattice becomes non-additive:  

, where а is the lattice constant. 

Besides, the spectrum must be bounded. 
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All these conditions are carried out for the impurity gra-

phene, and one can investigate an existence possibility of 
phase transitions in impurity graphene, which is considered 
in the frameworks of the Anderson model. It can be expect 
the appearance of transverse component x  when a filed E

yE
 
is applied (which plays the role of order parameter). 

Graphene is a structure which consists of one layer of car-
bon atoms, located in the units of hexagonal lattice. A great 
attention is paid to large electron mobility in the graphene 
and to its unique properties which are an alternative of silicic 
base in the modern microelectronics [3-6]. We note that 
electromagnetic waves in the carbon structures become 
strongly nonlinear even in the weak fields that gives rise to 
spread possibility of solitary electromagnetic waves in the 
graphene and carbon nanotubes. These properties of carbon 
nanostructures have theoretical interest and attempts of 
applying in the nonlinear optics [7]. Nonlinearity is caused 
by change of classical function of electron distribution and 
by non-parabolic dispersion law of electrons. 

Summarizing, one can draw a conclusion, that the prob-
lem of graphene response in the magnetic field with taking 
into account Anderson interaction between the impurity 
and graphene electrons, is very important and actual. 

2. Basic Equations 
Let us consider the response of graphene on external electric 
field along axis x in geometry is given in Figure 1. 

Then the Anderson Hamiltonian of the electron system 
can be written in the Formula (1) [8,9]. 
where , , ,j j j ja a b b 

     are the creation and annihila- tion 

operators of electrons in a graphene unit with spin , t is 

the overlap integral between adjacent grapheme units 
determined by overlapping of the wave functions of the 
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Figure 1. Geometry of a problem 
 
grapheme electrons, U is the constant of Coulomb repul-

sion of the electros at the same unit;  are the 

creation and annihilation operators of impurity electrons 
in a graphene spin; 

+
jσ jσd ,d

  is the energy of impurity electrons; 
U1 is the energy of Coulomb repulsion of impurity elec-
trons only. V is the hybridization parameter.  

The following parameters were estimated by MNDO 
method [10]: 2 eV, 12 eV,  12 eV, Vt  U  1U   2 

eV. Since the properties of the model described by the  
Anderson Hamiltonian is sufficiently complex, further 
we will use the approximation: U→∞ and consider, all 
mean value is to be spatially homogenous. Note that the 
approximation U→∞ is well supported by quantum 
chemical calculations for graphene-like. In this approxima- 

tion the Hamiltonian (1) can be written as [11,12].
 ( ) k k

k
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where  kkC ,C  are the creation and annihilation op-

erators of elementary excitations (with momentum k and 
spin σ), and  is the spectrum which, according to 

[11,12], can be presented as: 
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where V is the hybridization parameter, )(k  is the 

spectrum of graphene electrons determined by the Ham-

iltonian , а and are parameters determined 

from the self-consistency conditions of the problem. 
hH n imn

Note, that dispersion law, which describes graphene 
properties without taking into account Coulomb repulsion 
at the same unit, has a following form [13]. 

y 2
x
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where 7.2  eV, a 3b / 2  , b 0.142  nm is the 

distance between adjacent carbon atoms in graphene, and 
), yx p( pk  . According to [11,12], the self-consistency 

conditions are:  
We use the average electron method with taking into 
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account the motion equation can be written as [14].  

dp
= E

dt
                     (6) 

one can apply: 1 A
E

c t


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


, and for low-temperaturecase it 

is possible to obtain:  
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It should be noted: 
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Further, we use the average electron method, according 
to which the current can be expressed as [15]. 

( ( ))exp( )
¥

0

j = υ p t -t dt                (7) 

where j is the density of current, )(tp is the solution of (6) 

with some initial conditions, which correspond to the 
energy minimum. In our case, it is necessary to consider 
the solutions of (8) for four initial conditions (correspond 
to minimum of ):  )( pE

0 3x x y yap = ;ap = π;ap = π / ;ap = π2 3/ . 

Then we should sum up all values for current. 
It is convenient to represent the dispersion law of gra-

phene in the following form:  
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Finally, in this case: 
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The transverse field is defined by boundary condi-

tions for the given applied filed . Let us assume that a 

circuit is opened in the x-direction: 

xE
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This condition corresponds to some solve for the trans-
verse field: . Equation (9) has two solves: )( yxx EEE 
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The transverse field spontaneously appears in one of 
two mutually opposite directions at the some values of 
parameters in the second equation of (10). In this case, we 
deal with non-equilibrium one-order phase transition. The 
appearance of the transverse field component represents 
perhaps the simplest example of self-organization in the 
impurity graphene. 

3. Calculation Results 

A typical dependence of  on , which described by 

(8), is represented in Figure 2. Dependence of the trans-
verse field  on the applied field , which deter-

mined as non-zero solve of (10) is given in Figure 3 and 
Figure 4. 

xj xE

xE yE

It worth to note that analogous dependence on the pa-
rameter V is weak, and existence of two non-zero solves is 
more important. One of this solve (smaller in module) is 
thermodynamically unstable. As might be expected, ac-
cording to the numerator of expression (10) increase in the 
field 

 
leads to an increase in the field , due to the yE xE

non-additivity of the electron dispersion. Note the fact that 
the dependence of the field  on  is mainly asso-xE yE

ciated with the view of the electron spectrum without 
interaction (4), and the effects of the interaction of elec-
trons with impurities contribute only relatively small 
corrections. This can also be attributed to the effect is due 
to non-additivity of the dispersion and less sensitive to the 
particular type of spectrum. It should be noted that it fol-
lows from (10) and Figures 3 and 4 at large 

 
can be yE

written: yx EE   that may be useful in evaluating the field 

intensities in the experiment. Dependence of a minimal 
value of the field , at which the transverse field appears, 

on the at the different is given in Figure 5. 

yE

imn
n

Note, that the minimal value of 
 
is more strongly 

depends on impurity concentration. It can be associated 
with reconstruction of the graphene electron spectrum in 
the presence of impurities. 

yE

The transverse field xE , which is emergent sponta- 

neously, can be thermodinamically unstanble, as opposite 
to always stable solve for open circuit in the x-direction 

= 0. xE

We also investigate the stability using the method pro- 
posed in [1]. We introduct the following function:   

fixedE

tconsEdEjEФ
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The given function is usually called with synergetic 
potential and it is the analogue of a thermodynamic 
potential for non-equilibrium tasks. According to [1], the 
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Figure 2. Dependence of current density on the field Ex, 
when the field Ey is fixed (Ey = 4.0). All magnitudes are in the 
non-dimensionless units 
 

 

Figure 3. Dependence of the field Ex on the field Ey:(a) 

; (b) . All magni-

tudes are in the non-dimensionless units 

25.0,1.0nim  
 n 25.0,5.0n im  

 n

 
stable conditions are:
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These formulas mean that in given non-equilibrium 
situation the function (11) attains its minimum in the 
stationary state. Thus the function Ф may be regarded as 
the analogue of a thermodynamic potential for equilibr- 
ium systems. Dependence of the “potential” Ф on the field 

 for some values of the  is presented in Figure 6. 

It can be seen that the function Ф has the minimum and the 
maximum. It should be noted, maximum corresponds to a 
smaller in module solve of Equation (10), and minimum 
corresponds to a larger in module solve. It means the 

xE yE

 

Figure 4. Dependence of the field  on the field :(a) 

; (b) . All magni-

tudes are in the non-dimensionless units 
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Figure 5. Dependence of the minimum on the : 

(a) ; (b) ; (c) . All magnitudes 
are in the non-dimensionless units 

yE imn

25.0n 50.0n 75.0n

 
larger in module solve is stable. Note that dotted branhes 
in Figure 3 and Figure 4. correspond to the maximum of 
function Ф (unstable solve), but solid curve and dashed 
curve correspond to minimum (stable solve). 

This transition, in which the electric field appears 
spontaneously, is concerned to ferroelectric type. Though, 
the transverse field plays the role of the order pa-

rameter, and the field 
xE

yE is the analogue of temperature 

(controlling parameter).  
The transverse field occurred spontaneously, obviously, 

can be found by measuring the charge on the capacitor, 
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Figure 6. Dependence of the function Ф on the field Ex, when 
the field Ey is fixed: (a) Ey = 3.5; (b) Ey = 4.5; (c) Ey = 5.5. All 
magnitudes are in the non-dimensionless units 
 
which is must be attached to the ends of graphene sheets, 
oriented in the x direction. A transverse field will con-
tribute to accumulation of charge on the capacitor plates, 
and the total charge will be clearly defined potential dif-
ference, which creates an electric field necessary to com-
pensate for a transverse electric field. 

4. Conclusions 

In conclusion we formulate our main results: 
1) The appearance of the electric field, which is per-

pendicular to the external applied field, in impurity The 1. 
The appearance of the electric field, which is perpen-
dicular to the external applied field, in impurity graphene 
with the Anderson interaction was obtained. 

2) The minimal value of the applied field is strong 
defined by electron concentration in the impurity. 

3) The analysis of the synergetic potential has shsown 
that the emergent state with the spontaneous transverse 
field is stable. 
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