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ABSTRACT

A finite element functional solution procedure was presented employing variational calculus.
The Functionals of field continuum were developed on adoption of Euler minimum integral
theorem and finite element procedures on Laplace model. The elements functionals minimization
resulted to series of partial differential equations describing the variation of the function of
interest at various discrete nodal points. The assembly of the partial differential equations gave
a unifying algebraic system of equation was solved for the unique solutions of the function. To
simulate the finite element model, boundary conditions of temperature field was assumed. The
solution and post processing of FEM of this study showed that once the stiffness matrix of a
continuum is established and the boundary conditions specified the continuum is solved
uniquely. Regression method was used to establish the error associated with FEM results and to
establish a simple prediction model for environmental temperatures. The procedure of this study
presented the basis for insulation design for solid, hollow or shell pipes in fluid transport design
in oil and gas transport system. The finite element method evaluated the temperature distribution
of the region to serve as a guide in quantifying quantity of heat to the environment from the
transit fluid. The error of FEM prediction was estimated at 0.006 and the coefficient of
determination for goodness of regression fit is estimated as 0.99999. This study also presents an
approximate procedure for processing polar systems as rectangular systems by using the
circumference of the circular section as one dimensional independent variable and the difference
between the inner and outer radius (thickness) as the second independent variable.

Keywords: Calculus of variation, functional, finite element, continuum, field problems, boundary
conditions.
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1. INTRODUCTION

The essence of this work is to use a simple bounded region to present a procedure to solve
functional problems in fluid transport piping system. A finite element functional solution
procedure was presented using variational calculus. Mechanics field problems of heat and mass
transfer and fluid flow problems in oil and gas industries is intended to be solved following the
formulations of this article. Fluid mechanics problems can be studied by isolating a discrete
domain with boundary values such as fluids within shelled pipes in which boundary conditions
are known. The functional approach expects the flow function to be approximate to known field
phenomenon, such as wave phenomenon, , diffusion phenomenon and potential phenomenon,
though, some complex phenomena of engineering sciences may be a combination of the above
phenomena [1].

An immense number of analytical solutions for conduction heat-transfer problems has been
accumulated in the literature over the years past. Even so, in many practical situations the
geometry or boundary conditions are such that an analytical solution has not been obtained at all,
or if the solution has been developed, it involves such a complex series solution that numerical
evaluation becomes exceedingly difficult [2]. However, presently the most fruitful approach to
the problem is one based on finite different techniques, the basic principles of which are outlined
in [3, 4, 5, and 6]. But because of the short falls of finite difference method the major objective
of this article is to present the finite element method, as the most elegant approach of solving
function such as the temperature distribution in a medium. Finite element approach is suited to
solving partial differential equation so that this work used the finite element approach to develop
the partial differential equations of the function at the discrete nodes, and as such the values of
the function at the boundary nodes must be known, may be from the field data. In this study
linear triangular element is used to discretize the field domain or the mathematical model
representing the function, and the following the variational principle and Euler minimum integral
theorem to arrive at the elements equations. The elements equations are then added in a finite
element format called assembly and the system of the equations solved after the application of
boundary conditions to obtain the value of the function that minimizes the functional at the
stationary points. The procedure is analogous to Raleigh — Ritz method for stationary total
potential applied to elastic problems [7].

Above all, Most Quasi — harmonic field phenomenon are represented by either the partial
derivatives of the function or by the well known Laplace and Poisson’s equation [8]. The
velocities, temperatures and densities of fluids in oil and gas pipelines are expected to be known
at various sections of transport line as the mentioned variables determine efficiency of the
transportation unit.
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Also working in polar coordinates for circular or polar systems in engineering and science often
posses some difficulties that this study presents an approximate procedure for processing polar
systems as rectangular systems by using the circumference of the circular section as one
dimensional independent variable and the difference between the inner and outer radius
(thickness) as the second independent variable. The function of interest as the dependent variable
is then analysed by solving an approximate function through FEM approaches, which in this
study is the Laplace steady state 2-D heat equation in cartesian coordinate. The geometry of
field quantities or continuum may be a problem to close form solution of field functions
encountered in engineering and science that appropriate algorithm becomes necessary to obtain
optimum solution, it is then necessary to employ calculus of variation principles and FEM to
obtain optimum continuum field functions whose boundary conditions are specified.

The methodology of this work is also supported by the fact that in calculus of variations, instead
of attempting to locate points that extremize function of one or more variables that extremize
quantities called functional, functions of functions that extremize the functional are found [9].
Also in the finite element process an approximate solution is sought to the problem of
minimizing a functional.

2. THEORETICAL BACKGROUND: BASIC FINITE ELEMENT FUNCTIONS

Figure 1 shows the typical triangular element considered, with nodes I,j,m numbered in
anticlockwise order.

Figure 1. An Element of Continuum for deriving Element Equation.
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2.1 Approximation Function Determination
Linear Polynomials of the form

W om g - X g (1)
Tm g Gk Gy (2

are usually chosen for horizontal and vertical responses or degrees of freedom(DOF).
By passing these polynomials in turn through nodes i,j,m ,the system of the function is obtained
for the element following the method of [7] as

Wy = g b 6 X b G (3)
W = g + e A+ A2, @))
oy, ™ Gt Gy Koy T 205 )

2.2 Shape Function and Interpolation Function Definition

By employing Crammer’s rule for the polynomial coefficients, oy, o a,, also called the shape
constants, the interpolation function is established as

u= %{'Em + byoe -+ e+ (g + Bpx + €ty s (i BraX + € hit) ©)
where
G =X = A D
&y = P = = Yim ®
6 = K — Xp = Kyg 9)
and

1 % »
24m |1 % 3| = 2farea of triangle, im) (10)

So that the shape functions are expressed at the nodes as follows
.“ﬁ: if{ﬂfﬂ' bf.’»‘?'f‘ Cf}’} (11)

Ny == :; fa + B+ 6p) (12)

i = (G B ) (13)
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and interpolation function expressed as

ud o i:ﬁ':-l."H.g L L - (14)

2.3 Basic Field Equations and Approximating Functionals

[8] Presented the general equation governing quasi-harmonic field functions as

e oL e e -0 1
While the theorem of Euler presented by [10] states that if the integral

Hw) = [ ez a5 o) dxdydz (16)

is to be minimized, then the necessary and sufficient condition for this minimum to be reached is
that the unknown function u (x, y, z) should satisfy the following differential equation

& [__&F B |_8& _
o= lepuco &y[&'mmﬂ o &m‘ﬁﬂ] il (17)

within the same region, provided u satisfies the same boundary conditions in both cases,
where

u = unknown function assumed to be single valued within the region
Py Ry o §F specified functions of x, y, z

X,V,Z = space variables
The equivalent formulation to that of equation (3) is the requirement that the volume integral
given below and taken over the whole region, should be,

o= (A fey eauy” ]

= M) #ma () +alEe) | - ufmsaren as)
3. FORMATION OF FUNCTIONAL OF TWO DIMENSIONAL FIELD FUNCTIONS
The functions that can be approximated by two dimensional Laplace equations such as the two

dimensional steady state heat transfer problem with constant thermal conductivity are said to be
governed by the equation [2]

iy
m*‘a-s'ﬂ (19)



Vol.9, No.5 Finite Elements in the Solution of Continuum Field Problems 432

The functional of this model is established considering a 2-D case of (15)
expressed as

o= (ke (e, 22 el TE=10 (20)
So that by (18) the equivalent functional to be minimized becomes

1, fBui But
= jﬂE;[a—w(a) + a-..,,,(ﬂ—f) ]— Qu}dmy 1)

The functional equation (21) is transformed to a more useful form by using the interpolation
functions of elements to obtain each element functional.

3.1 Derivation and Description of Element Characteristics and Functional

This process is accomplished by evaluating the contributions to each differential, such as %i
from a typical element then adding such contribution and equating to zero. Only the elements

. .. . &
adjacent to node 1 will contribute to E‘i.

3.2 Element Characteristics and Functional Minimization Scheme

The contribution of elements to the differential % is evaluated as follows:

If the value of functional associated with the element is expressed from (21) as

2= [T

ky [%j + Fc;,[;%j] - q:x.s} dxely (22)
Then by partially differentiating  ©,

I ean G w i - enley @3)
With the interpolation function, u; defined as
u = (Nj, Nj, Nin){ae* (24)

and the shape function defined as

Ni= %f{ﬂ.t + By -+ ) (25)
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(23) becomes

= =7 _ﬁhﬂ Epﬂ.m[é’t..é’;, %l + ke [ﬂlﬂ'ﬁﬂu]{iﬁ“ﬁ}ﬂd}’— —H Qe+ bux + eyl dxdy  (26)

Hug

An element contributes three differentials associated to its nodes. The contributions of the three
nodes are listed

7l
duy

Yl
il ;,jf; 27)

¥l
iy

Equation (27) can be written in the form
8z7" £ g
e = [dacde + {F) (28)

The matrix [#] is easily written if kg, &, are taken as constant within the element, also by nothing

that over the area of the element

[ dxdy =4 (29)

["1-] —— é‘ E'_: g'.;é'_; b b.; +—'E Ceey  bpy  Cmly
E' By E'}-E'm ':rt':‘rm CiSm  “mSm

byby Byl byl el 66 Cuty
(30)

The vector {F}¥ can be found as follows: If Q is assumed constant within an element then the

integral

R = =2 [ @€ + bur + e ddy (31)

can be evaluated

F, = —Q, SRl (32)

3
Where £ and ¥ are the coordinates of the centroid ie

pe Eﬂ-lﬁﬂgmn.'l , F= (wtt3ptwm] (33)

B
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so the integral expressed by (31) becomes

. 1 = » .
Fo=3 1 % ¥ =:A (34)
1 iy P

3.3 Assembly Procedure for Functional Minimization Scheme

The final equations of the minimization procedure require the assembly of all the differentials of
¥ and equating of these to zero, expressed typically as
-

5 _ _
=zl =0 (35)

Equation (35) says that the functionals of all elements are established and partially differentiated
with respect to the associated nodal degrees of freedoms [11].

4. METHODOLOGY
4.1 Finite Element Modeling of 2-D Steady State Regional Function Distribution

Working in polar coordinates for circular or polar systems in engineering and science often
posses some difficulties that this study presents an approximate procedure for processing polar
systems as rectangular systems by using the circumference of the circular section as one
dimensional independent variable and the difference between the inner and outer radius
(thickness) as the second independent variable. The function of interest as the dependent variable
is then analysed by solving an approximate function through FEM approaches, which in this
study is the Laplace steady state 2-D heat equation in cartesian coordinate. The geometry of
field quantities or continuum may be a problem to close form solution of field functions
encountered in engineering and science that appropriate algorithm becomes necessary to obtain
optimum solution, it is then necessary to employ calculus of variation principles and FEM to
obtain optimum continuum field functions whose boundary conditions are specified.

In Figure 2, the vertical dimension represents the thickness of a circular pipe or thickness of
insulation while the horizontal dimension represents the circumference of circular section of pipe
or cylinder. The continuum domain is discretized as shown in Figure 2.
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Figure 2. An Idealized Finite Element Model of a Continuum of GRP Composite .

Table 1. Elements Topology Description.

Element | Active degrees of Element coordinates Element

number | freedom for nodes
assembly

1 uy,Us,Us,Vi,Va,Vsg (0,0),(17,0),(17,15) 1,2,8

2 Uj,ug,u7,vivs,vy (0,0),(17,15),(0,15) 1,8,7

3 Up,U3,U7,V2,V3,V7 (17,0),(34,0),(17,15) 2,3,7

4 Uy,U7,U8,V2,V7,Vg (17,0),(34,15),(17,15) |2,7,8

5 U3,U4,110,V3,V4,V10 (34,0),(5,10),(51,15) 3,4,10

6 u3,U10,U9,V3,V10,V9 (34,0),(51,15),(34,15) | 3,10,9

7 Ug,Us,U11,V4,V5,V11 (51,0),(68,0),(68,15) 45,11

8 Ua,U11,U10,V4,V111,Vio | (51,0),(68,15),(51,15) | 4,11,10

9 Us,Ug,U12,V5,V6,V12 (68,0),(85,0),(85,15) 5,6,12

10 Us,U12,U11,Vs,Vi2,Vi1 | (68,0),(85,15),(68,15) | 5,12,11

11 U7,U8,U14,V7,V8,V14 (0,15),(17,15),(17,30) | 7,8,14
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12 u7,u14,U13,V7,via,vis | (0,15),(17,30),(0,30) 7,14,13
13 Ug,U9,U}5,V8,V9, V15 (17,15),(34,15),(34,30) | 8,9,15
14 ug,Ugs,Ui4,Vs,vis,via | (17,15),(34,30),(17,30) | 8,15,14
15 Ug,U10,U16,V9,V10,Vie | (34,15),(51,15),(51,30) | 9,10.16
16 Ug,U16,U15,Vo,Vi6,Vis | (34,15),(51,30),(34,30) | 9,16,15
17 Uj0,U11,U17,V10,V11,V17 | (51,15),(68,15),(68,30) | 10,11,17
18 U10,U17,U16,V10,V17,V16 | (51,15),(68,30),(51,30) | 10,17,16
19 u;1,U12,U18,V11,Vi2,Vig | (68,15),(85,15),(85,30) | 11,12,18
20 up,Ui8,u17,V11,Vis,vi7 | (68,15),(85,30),(68,30) | 11,18,17

4.2 Computation of Elements Partial Differential Equations

436

By using equation (35) all the systems of partial differential equations are computed for the

twenty elements as follows:

4.3 Assumptions

The function is assumed to be Laplace function so that equation (28) reduces to

&
fat = nhage
and (32) reduces to

by by byl G

i
L-ﬁ] =E EJEEJ.] a.’EJ.: EJmEJI; +E 3]
biby bby Bpby|  |CtGa

G Culy
CiCm  Cmbm

(36)

(37)

By computations of (37) and substitution in (36) for all elements respectively the elements PDEs
are presented for twenty elements assembly system as follows:

For element 1
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=
g (38)
L]

1)
84— |_ 441 1.008 —0567

Fiig [:1.4:1,1 —0441  0.000
0000 —0567 0.567

For element 2
&=
| reser coor 0867
ﬁ:= 0000 Oddl -0l
P -0867 =044l 1008
B

:
F

For element 3

g

:ﬂg Gl -4l 0000
Shob=|_p441l 1008 -0567

ﬁE 0.000 —0567 0.567

W (40)
125

By application of symmetry the 3by3 matrix in odd numbered elements are equal and similarly
for the

For element 4

gt

;';g BE6T 0000 —0567]

Bn || Q000 044l —Dadl| |t (41)
o | l-0E67 —0441 1008 llwe

Frie

For element 5

-7l
ool [oae1 -044 0000 |[*
. [|"0441 1008 —0567 | | 1 (42)
P X000 -0.567 0567 Jluwg
B
For element 6
8%
Fug
phs- ®E67 0000 —OEET)[%a
F _
(| 000 044l —Oddd | W0 (43)
2 L=0567 =044l 1008 JLus

gt
Fuig
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For element 7
£

By

P el

— =[—ﬂ.em

847 LOog

MLL

For element 8
o5F

ﬂ‘”ﬁ D567
gf— =| o000
_*"EL"_L — 0,567

@ﬁ;

For element 9
o5r

Bz | T 044
EE' =|-0441
EE_ 000

@ﬂl_

For element 10

L7l

A Y-
w 1
E—=[a.ﬂaﬂ
oxis| L-0.867
E"E'L'L

£
s
gae| [ 044l
pa (| =04l
spie| L0000
fuiza

For element 12

o

= | T LE67

gl _

7 t=| 000

E_xt; = ﬂuﬁﬁ?

faygs
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-ﬂli:l-":l-"i
1.008
-0 567

£.000
0.441
— 0l

-0.441
1o

—0.567

¢.000
0l
=4l

-ﬂl%'l
1.008
=0.567

0.000
0444

-4l

Q000 [ e
—LEET (| %a
D567
—QEET| [ “a
— 48] | |1
1008 1 L¥1p
Qo0Q [«
—0E57 || e
D.567 1Lz
—=LEST[ s
==kl | | Wz
1.00&
QL s
—=LEET || o
Q.67
=(LEET|[ s
Qb | | b
1,008 J M3
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(44)

(45)

(46)

(47)

(48)

(49)
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For element 13
5!.
Bug

AN
= =[—ﬂ.em
ox| Logoo
MLB

For element 14
ax
Hay
gata| [ @567
g | 000
ﬂ': —0.567
Hu oy

For element 15

&1

| [ el
=] =041
apie| Loooo
ety

For element 16
‘,;!.

P
% | T psez
E; Z[H.ﬂﬂﬂ
sz L-oser
MLB

For element 17

Ig_‘xl.f
fu
=]
= (= |- 0441
ape | L0000
B

For element 18

Byt

:;EE D567
5— =] 0000
syie| L-0567

Fuiy
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-ﬂli:l-":l-"i
1.008
-0 567

£.000
0.441
— 0l

-ﬂli:l-":l-"i
1.008
-0 567

.00
.44l
=044l

—Oetdl
1.008
—0.567

¢.000
0l
=4l

Q000 1| «a
=QLEGT || e
QLE6T B
—QEET| [ “n
—Dddl | | ¥
1008 1L
Q000 || e
=QLEGT | |V
QLE6T
—0S5F] [ s
— (el | | Wis
1.008 JL%W:6
(31X 1313; 10
—Q56T | |1
0567 1 Lr
=QLE6T
= e | | Wor
1.008
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(50)

(1)

(52)

(53)

(54)

(35)



Vol.9, No.5 Finite Elements in the Solution of Continuum Field Problems 440

For element 19

s P44l =0iddl 0000 |[Hi
=|=0d4l 1008 =0.567||%s (56)
2000 =-0.867 0567 Jlus

oo 0441 -0441

[EI.E&? 0.000 -—Q567
-0.567 —-0.441 1008

11
[:Eiaw (57)
My

4.4 Assembly of Elements Equations

All the partial equations are added with reference to the degree of freedom of elements so that
for
f=1, 2, 3, .n nodes, eighteen equations from eighteen nodal freedoms can be expressed as

For f=1

Sy gt 8
ﬁur__zﬁur_ Elu;_+51u;_-g

so that by addition of all contributions of node 1 to the functional minimization

fjf = 1008w, — 0ddlu; — 0.56Tus = 0 (58)

For f=2

N N
Eug,_zﬂua E"J§+E'J§+E"J=-=:[

so that by addition of all contributions of node 2 to the functional minimization

F“E- - = Quddilag -+ 2,016 — Oddlug — 1 134ug = 0 (59)

For f=3

o _ gt _mt B
Eu;__z'ﬂu;. Elu;+E'-u;_+E-u;_-g

so that by addition of all contributions of node 3 to the functional minimization

;TH= — 044l + 2.0 60, — 04dLu, — 1134w, = 0 (60)

Forf=4
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fn_pht gF B BF
E*J.‘._E.a'lq. ﬁ".".}'i-.&'-"}'b&'-"d--g

so that by addition of all contributions of node 4 to the functional minimization

ﬁf- m = Qddlug -+~ 20160 — 0ddlug — 1134, = @
-

Forf=5

Ex _pfE 85 G5 ORE
aui__zaus E’-u5+ﬁug+ aug'g

so that by addition of all contributions of node 5 to the functional minimization

ij = —0d4lug + 2.016ug — 044lug — 1134w, =0

Forf=6

x _ el A _
auﬁ‘zauﬁ Eu&_u

so that by addition of all contributions of node 6 to the functional minimization
K — 0 4ddug + 1.008u, — 0.56Fu,; = 0

fay

Forf=7
RN o o 7 w0
Fu — Cow FaT e T ™0

so that by addition of all contributions of node 7 to the functional minimization

2L — —0.567u; + 2.006w; — 0.682up — 0.56Tuyy = 0
Forf=8

fx _pfrt_ gt BF L BF B 6 g
&Jg_zﬂ'lg I?"Ji!.i-. ﬁ".]i!-f. I?"Ji!.f. &UF+EUF+&UE-€I

so that by addition of all contributions of node 8 to the functional minimization
X = —1.134a; — 201605 — 0BE2u; + 40321 — 0.BBIu, — 11340, = 0

I?‘l.lg

Forf=9
B o 0xF | Oxt | OxF 0 OxSF | gxsE
Fae— Coue Fan T e Fen T e T e T ™ U

so that by addition of all contributions of node 9 to the functional minimization

ij = —1.134uy — 0.882ug + 403245 — 0862w,y — 11344 =0

For f=10

E _ptxt _ B &0 o apf L eyl
fuagp - E.E"'J—_p ﬁ".]u-+ I?"Ju-'b I?"Ju-+ I?"Jr_;-+ Fugn =0

441

(61)

(62)

(63)

(64)

(65)

(66)
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so that by addition of all contributions of node 10 to the functional minimization

;‘x - — 11345y — 0882w, + 40320y, — 0882wy, — 1134w, = O
L]

Forf=11
A N NN - il i il - ‘il
Buagy FlE"Ja_v_ Sag, * ﬂ-u“_+ Ha, ;_+ Elur_;_+ El'.rr_;_-f' Hug, ¢

so that by addition of all contributions of nodel1 to the functional minimization

L = 1,1 Sdg — 0.882ugg + 60320 — 0682130 — 11340ty = 0

Forf=12
Ex® Bxs=
&Jig_;‘.ﬁ}aa til.'! ;+E'J 5+ﬁl'.l5 ﬂ
so that by addition of all contributions of node 12 to the functional minimization

F%E; m =05 6Tug — 0682wy + 2.0161g — 05ETup = O

Forf=13

Sx f ﬁ. 14 -
g - B'-" - B'J“.

so that by addition of all contributions of node 13 to the functional minimization
&g

o =L GTILy + 1006 g = Dekligy =0
o]
Forf=14
iy B _ 8x® | axt
Eua_,,, E.E'Jﬂ_‘. ﬂ".'h_;. + E"J_,q. ﬂ"J_A = ﬂ

so that by addition of all contributions of node 14 to the functional minimization

ﬂ—if: = —1,13485 = 0441ty + 20060, — 0ddltgg m 0

For f=15
L S R
E'*Jri. 5".1-5 E'l.r,.-i-ﬂul n—+3'-1'-_».- ¢
so that by addition of all contributions of node 15 to the functional minimization

f = =1,13400p = U441t + 20161y = Uddlitye = U
a8

Forf— 16

if El. b ' ﬁl.&.-&_
E"Jﬂg— E.B'Ji. fu, ?+E"J 5.+E-u-_&_ﬂ

so that by addition of all contributions of node 16 to the functional minimization

E_ff = —1.13484yp — Oddlaggg + 2,060 — 0ddlugy = 0
A

442

(67)

(68)

(69)

(70)

(71)

(72)

(73)
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For f=17
&F oE 1
T T & _ 8x &x fx -0

au"-?- WLF_E--E.-E
so that by addition of all contributions of nodel7 to the functional minimization
L = 1134y — Uity + 201607 — Uddltgg = U (74)

-

For f=18

% ol ol
fuage E.E"'J*s E"Jr.:e+ E"-l'r.#- v

so that by addition of all contributions of node 18 to the functional minimization
X = 05 67y g — Ddddag - + 1008 =0 (75)

gy

4.5 Boundary Conditions and Solutions of FEM

The above system formed by (58-75) is expressed in FEM matrix format as

[ Cae] = [£] (76)
Where

[£] = the vector of the coefficient matrix called the stiffness matrix in FEM terminology
[«c] = the column vector regarded as the nodal degree of freedom (DOF)
[f] = external influence column vector

Having established the boundary values of a field function and also the stiffness of the field, the
model representing the field response can be solved uniquely.

4.6 Statement of the Field Problem

In this study the major objective is to set up FEM that solves continuum functions. To
demonstrate the application of this model, thermal field region is solved. The model of (76) is
then solved applying the specified boundary conditions of Figure 2:

4.7 Boundary Condition of Hot and Cold Surfaces

This may represent the case of a hot fluid in a hollow pipe with outside cold fluid or the case of
shell pipe or the case of insulated heat transfer surfaces.



Vol.9, No.5 Finite Elements in the Solution of Continuum Field Problems
20°C for ambient outside surfaces of a pipe represented
by its circumference
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50°C for interior hot surfaces of a pipe
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Figure 3. Schematic Representation of hot and ambient surfaces.

By employing (58-75) as

=567y + 30161k — (L883ug — 0.56Tuys w 0

—1.134u; — 3.016ug — 0BT U= + 053U — 0.6FIuy — 113445, m O
—1.134u; — 0.66dug + 4082 up — 086w g — 113400 m O
—1.134ug, — 0.86duwp -+ 4082wy g — 0BFduy, — 113400, m 0
—1.134ug — 0.86dwyy + 408215y, — 0BTy g — 115340 m O
=567 ug — 0.882uyy + 2.016445 — 0.56Twg = 0

and using the boundary conditions as:

For
iy Ty L Ty e WGy -HH-RQ,HL-HQ-HE-H,’-HE- 'HE,.-EE[,
the system formed by equation (77-82) reduces to

40164 — 0.BBdu, m 3969

— 088> + 4083wz — 0.EBIus m 1E0LE
— 088w + 4083 uws — 0BEduy, = 79,38
=080 dup + &lidigy — 0BGIW, = TRIE
—088duy g -+ 4035, — 0BG N1 m T93E
=088y, -+ 2.0005; = 39,69

and in matrix form

444

(77)
(78)
(79)

(80)
(81)

(82)

(83)
(84)
(85)
(86)
(87)
(88)
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2016 -0882 0000 0000 Q00D Q000 U 39.69
-0.862 <4052 -0.682 0000 Q000 Q000 ||we| [180.18
000 -—-0882 4032 -0.682 0000 Q000 || We|_ |7838
eo0e Q000 -0BB2 4082 -0EE2 Q000 ||%o 19,58
Qo0 Qo0 QOO -0BE2 4082 —-0BED||Wa 71938
o0 Q000 Qoo 0000  -0eE2 2016 4N 8.6

(89)

(89) is solved by LU-decomposition to obtain
e m 47 G082, up m 6L2TTE, ug m 41,7483, wyp m 36, 55796, wyy m BE.3769, 14y, m 35,1642

For
Wy = lyg =ty =ty = gy = g = 30, (g w i w1 g w i mg; m 50,
the system formed by equation (77-82) reduces to

a0l —0882 Q000 0000 Q000 000 s 458,56
-0.862 4052 -08B2 0000 Q000 Q0O0 || ue| (19122
0000 -0882 4032 0882 Q000 Q000 || We|_ | 8072 (90)
eUee  Qo00 -0BBd 4002 -00E2 0000 ||%ao 20,74
o0 Q000 Q0o -0882 4032 —0.883||Wa 20,73
o0 Q000 Qoo 0000  -0eE2 2016 4N 4856

and
iy m 52,8089, 165 m 6227747, 1p m 46.74525, typ w 41.558796 16g, m 40.3T687 241 m 40,1648

For
g = g = e T Ui = My = Uge = 40, iy m g m g m iy m g m s m 50,
the system formed by equation (77-82) reduces to

aUle -0882 0000 0000 Q000 Q000 s £1.085
-0.062 4052 -00E2 Q000 000 Q000 || Wa 202,86
Q00 -0882 4032 0882 Q000 Q000 || We|_ |103.08 1)
oo Q000 -0eB2 4082 -0QEE2 0000 ||Yap| |102.08
o000 QOO0 QOO -0661 <032 —0861)|Wa| (102.08
o0 Q000 Qoo 0000  -0eE2 2016 4N g1.038

and
W= m 57 BOBET, g wm ThdT 74T g m SLTLEIE, 1y w 46,557 96, 35y = 4537687 6o w 45, 165466

For
Wy = Wq = g = My =iy = Mgz = 50, Wy = g = Ug = Wy = Hg = us = 50,
the system formed by equation (77-82) reduces to
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2016 =-0f&2 QO000 Q000 Q000 QOO0 us 567
-ee2 4052 -0BE2 Q000 Q000 Q0QQ )| Wa| (3142
eQ0e -0882 4032 0882 Q000 Q000 || We|_ |1154 (92)
0000 Q00 -EPE2 4082 -0BE2 Q000 ||%o| (1154
e.o00 Q000 QOO0 -00662 4032 —0BE2||Wa| (1134
0000 Q00 Q000 0000 -OBEZ 2016 4Ng 6.7
and

Wy m G2, 60889, up m TRITT4T us w BGT4EIE, wyp m B1.EET96, 1wy m BQ37GET 1y w BQ.LG4EE

For
Wy = Ug = g = My =iy = Ugp = 00, Hy = Hg = Hg = Wy = Hg = s = B0,
the system formed by equation (77-82) reduces to

2016 =-0BE2 Q000 000 G0 Q000 ke §2.57
-0.BE2 4082 -00BEZ Q000 OO0 G0 || W 225.54
0000 -QEB2 <4052 -0682 0000 000 || We | _ (1247 (93)
oo oo -kEE2 4082 2-0FE2 0000 || 1247
oo oo 000 -=-0FE2 4081 2 —0BED||Ww 1247
0000 Q000 Q000 0000 -0pEd 2016 48 6d.37
and

iy m 67 BOEEY, wp wm B427 74T, ug w 6174020, wyp w 56,5076, 1y, w B5.37667, 1y m ED.16466

5. ANALYSIS OF FEM RESULTS

Table 4. Predicted Interior Temperayures Given Boundary Conditions.

Ti(°C) | Ta(°C) | us(°C) us(°C) uy(°C) u10(°C) u1(°C) u2(°C)
50 20 47.8089 64.2775 41.7453 36.55796 | 35.3769 35.1649
50 30 52.8089 69.27747 | 46.74525 | 41.55796 | 40.37687 | 40.16488
50 40 57.80887 | 74.27747 | 51.74525 | 46.55796 | 45.37687 | 45.16488
50 50 62.80889 | 79.27747 | 56.74525 | 51.55796 | 50.37687 | 50.16488
50 60 67.80889 | 84.27747 | 61.74525 | 56.5576 55.37687 | 55.16488

5.1 Regression Modelling of FEM Result

The correctness of FEM result is established by using multiple linear regression analysis
approach with assumed boundary conditions as dependent variable and FEM predicted interior
values of the function as independent variables. This analysis approach enabled the estimation of
error associated with FEM and establishment of a design friendly model for the prediction of the
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maximum temperature within the region which was experienced in node8 where the temperature
peaked to 84.27747°C. In design practice this point is critical.

Table 9. Data for Regression Model of FEM result.

u7(°C)

U.g(OC)

ng(OC)

ulo(OC)

185 1(0C)

ulz(OC)

T(°C)

47.8089

64.2775

41.7453

36.55796

35.3769

35.1649

20

52.8089

69.27747

46.74525

41.55796

40.37687

40.16488

30

57.80887

74.27747

51.74525

46.55796

45.37687

45.16488

40

62.80889

79.27747

56.74525

51.55796

50.37687

50.16488

50

67.80889

84.27747

61.74525

56.5576

55.37687

55.16488

60

The function of six variables for multiple linear regression can be expressed as

T = [y =+ By Ur -+ Bz tia + Bale + Balyg -+ Bty + Bslie 94)

So that by following regression method assuming the linear equation of the form
v [y -+ Byxg + Paxg - Baxg + Bang + Baxg + Beis @ 95)
following least squares approach that minimizes the sum of squares of residuals

the normal equation that evaluates the coefficients of (94) are established.
By expressing the sum of squares of residuals as

2y w Elailyy = CBo -+ Buxy -+ Baxgy -+ Baxay + Baxe + Baay + Beiey)] (96)

By minimizing sum of squares of residuals with respect to the coefficients(estimators), of (96)
and equating to zero,

E—E; = BE (=D [y, — (By + By + B + BuXa + Baay + Boen + Boer)] = € 97)
:_;i= B (=20 [y — (B + Buxyy + Baxap + BaxXay + Baday + Boxe + Bexe)] =0 (98)
£ox _ p (Dol — (0 + By + Basas + Damas + Bynas + B + Bere)] = 0 9)
oo = Bk y(—~2mulyi— (Bo + Buus + Boa + Boas + By + Bodgs + Beker)] = 0 (100)
% = a2 [y — (Bo + Buxy -+ Ba¥as + Ba¥ay + Baxa + Bexay + Bexg)] = 0 (101)
= = T (2l — (B + By + Boas + Boay + Baer + Bees + Bexer)] = 0 (102)
:_;:, = Bieal— @)% [y — (Mo + By + Hadias + Baxay + Bedla + Baiia + Bela)] = U (103)
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The 7by7 system of equations for solving for the coefficients are expressed from the preceding

seven equations as

DIy m fign + B Zxg + B Eag -+ fg g + B DBxg + Ba I + B T (104)
D ym fp T + B Dx® + By D + By Dayng + By Doy + R lapug + B Imns  (105)
Zagy= fo Ix + fy Dounig + Bo Boig® + Ba Doignig + Ba Digntq + Fe Evigaig + B Tgne  (106)
Zigr= B Zag + B e+ Br Dagda + B Exa® + By Daka + le Edadp + B Dxans  (107)
Zagym BB + B e + B Brgs + fa Briaie + B Enef + B Exaxa + B Dagxs (108)
Zagym By Dag + By Doog + Ba Dogate + B Baza + B Dxgma + B Dog? + B Dens (109)
Dy m fip Das + By Do + By Dagnis + Ba Bxants + BaDxgtis + fa D + B Dns?  (110)
This system of equations is reduced in matrix form as
[«1(E]=(H] (111)
So that (111) becomes
r & 2690445 BTL.5674 256.7263 433.7691 226,584 2308244 7%
2690445 1695933652 2171949268 152066796 137072746 133659337 1361B7032||M
3713874 217194926 2TEE5.7194 19467.5377 417540.9622 171023993 17420.0856||4:
2587263 192066796 194675377 27835.719%<4 122957274 119900824 1221908275
282.7691 187072746 1754009828 122957174 110881440 1081829588 11021.677€|| 5
226,6844 133659387 171023993 119900324 106132953 105453038 10749.0906||5:
L230.8244 136167082 1742000556 122190827 11021.6776 107480906 109750621416,
r alg
12061, ????
18558 4082
= | 106450581 (112)
OF11.586
QE7E 3T
- Q7B 9T G -
The solution of (112) by LU-decomposition gave
[#5] r =BT.08668 1
A 416156
[ =1.248048
fa|=| —0.000001
Ba - (g5594,
[ =L082068
G E=0.00084547-
So that (95) can be expressed as
Twm 516155 — 124800, — 0.000001x; — 00858,
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—0.0620%g — (L0008x; — ET.086T (113)

5.2 Analysis of Model
The predicted values of the environmental boundary conditions with (113) are as in Colum 8 of

Table 10.

Table 10. Prediction with model.

uy

ug

Ug

Uio

ur

uy

Tp

47.8089

64.2775

41.7453

36.55796

35.3769

35.1649

20

20.00316

52.8089

69.27747

46.74525

41.55796

40.37687

40.16488

30

30.00405

57.80887

74.27747

51.74525

46.55796

45.37687

45.16488

40

40.00479

62.80889

79.27747

56.74525

51.55796

50.37687

50.16488

50

50.006

67.80889

84.27747

61.74525

56.5576

55.37687

55.16488

60

60.00659

Table 11. Computations for Error analysis.

Tiav = 40 = average of values on column one of this table
(Ti -
T; T, Tiav)’ (T; -Tp)
20 | 20.0032 400 | 9.9856E-06
30 | 30.0041 100 | 1.6402E-05
40 | 40.0048 0 | 2.2944E-05
50 50.006 100 | 1.608E-05
60 | 60.0066 400 | 4.3428E-05
sum 200 | 200.0246 1000 | 0.00012884

5.3 Computations for Fitness of Regression Model

. . . 2.
The coefficient of determination, r” is expressed as

pé m 20 (114)

while the Standard Error of Regression, S,; is expressed as
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So that by (113 ) and (114) and Tablel1

100 — @, 0001 0eet

ré m

1000

5, = I{EI.EIEIEI‘J.EIEE‘&= UUUG

T 5—f1+ 1)

6. 3-D PRESENTATION OF RESULTS

Table 12. Interior Temperature Distribution at Varyuig Ambient Condition.

= (180080

n 20°C 30°C 40°C 50°C 60°C
1 50 50 50 50 50

2 50 50 50 50 50

3 50 50 50 50 50

4 50 50 50 50 50

5 50 50 50 50 50

6 50 50 50 50 50

7 47.8089 | 52.8089 | 57.80887 | 62.80889 | 67.80889
8 64.2775 | 69.27747 | 74.27747 | 79.27747 | 84.27747
9 41.7453 | 46.74525 | 45.37687 | 56.74525 | 61.74525
10 36.55796 | 41.55796 | 45.16488 | 51.55796 | 56.5576
11 35.3769 | 40.37687 | 35.3768 | 50.37687 | 55.37687
12 35.169 40.16488 | 35.1649 | 50.16488 | 55.16488
13 20 30 40 50 60

14 20 30 40 50 60

15 20 30 40 50 60

16 20 30 40 50 60

17 20 30 40 50 60

18 20 30 40 50 60

(115)
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Figure 4

. Line plot to depiction of temperature at nodal points using Table 12.
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Figure 6. 3-D surface plot of temperature at nodal points using Table 10.
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Figure 7. Contour plot of temperature at nodal points using Table 10.
7. DISCUSSION OF RESULTS.

This study however assumed the values of the ambient boundry and source temperatures of the
region. The finite element model was used to evaluate the interior temperatures at fixed source
temperature of 50°C on the assumption of ambient temperatures of 20°C, 30°C, 40°C, 50°C and
60°C. The finite element results were further used as experimental data in order to establish a
predictive model to evaluate the error of FEM and as a model to serve whenever a design for
similar abstraction is contemplated. Table10 was used to establish a regression model after a
scatter plot that showed that the ambient temperature, T is linearly dependent on the temperature
of the interior nodes. This is also confirmed by the goodness of fit described by the correlation
coefficient of R and coefficient of determination R*. The standard error of regression is also
estimated through error analysis as 0.006.

The graphics of Figures 4, 6, Sand 7show clearly that a potential flow exists and that the values
of function at node 8 is highest and increases as the boundary values increases.

The multiple linear regression fit of this study shows that the FEM approach is appropriate in the
solution of functions of Laplace model as the error of the study is only 0.006 and the coefficient
of determination is only 0.99999 while the correlation coefficient is 99.99%, showing that the
variability of the results is due to linear relationship of the boundary temperatures with the
source temperature.

The predictions of this study also show that the material of this region is not expected to be of
temperature above 84.27747 °C and points at first location of failure when temperature is a
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critical design parameter. The quantity of heat attained by the material of this study can be
quantified by the predictions of this study when appropriate relations are applied.

8. CONCLUSSIONS

The procedure of this study presented the basis for insulation design for solid, hollow or shell
pipes in fluid transport design in oil and gas transport system. The finite element method
evaluated the temperature distribution of the region to serve as a guide to quantify heat to the
environment from the transit fluid. This study also presents an approximate procedure for
processing polar systems as rectangular systems by using the circumference of the circular
section as one dimensional independent variable and the difference between the inner and outer
radius (thickness) as the second independent variable.

Above all the multiple linear regression fit of predictions of this study shows that the FEM
approach is appropriate in the solution of functions of Laplace model as the error of the study is
only 0.006 and the coefficient of determination is only 0.99999 while the correlation coefficient
is 0.99999(99.99%), showing that the boundary temperature is linearly related to the interior or
the source temperature.

The predictions of this study also show that the material of this region is not expected to be of
temperature above 84.27747°C and that the quantity of heat attained by the material of this study
can be quantified when appropriate relations are applied.

REFERENCES

[1] Sundaram,V., Balasubramanian, R., Lakshminarayanan,K.A.,(2003) Engineering
Mathematics ,Vol.3,VIKAS Publishing House LTD, New Delhi, p173.

[2] Holman, J. P, (1981) Heat and mass Transfer, McGraw-Hill Inc.Book Company, p72.

[3] Cook,R.D., Malkus, D.S. and Plesha,M.E.(1989) Concepts and Applications of Finite
Element Analysis, 3 rd ed, John Wiley & Sons, New York in Astley, R.J., (1992), Finite
Elements in Solids and Structures, Chapman and Hall Publishers, UK, p77.

[4] Bathe, K.J., and Wilson, E.L. (1976) Numerical Methods in Finite Element Analysis,
Prentice Hall, Englewood Cliffs.

[5] Hughes, T.J.R. (1987) The Finite Element Method : Linear Static and Dynamic Finite
Element Analysis, Prentice hall, Englewood Cliffs, .

[6] Enetanya A. N. and Thueze C. C., (2009) Finite Difference Approach for Optimum
Compressive Strengths of GRP Composites, NSE TECHNICAL
TRANSACTIONS,July.September, 2009,Vol.44 No3,p 40-55

[7] Astley, R.J., (1992), Finite Elements in Solids and Structures, Chapman and Hall

Publishers,UK, p77.



Vol.9, No.5 Finite Elements in the Solution of Continuum Field Problems 454

[8] Zienkiewicz,0.C., and Cheung, Y.K,(1967) The Finite Element in Structural and
Continuum Mechanics, McGraw-Hill publishing Coy Ltd, London, p148

[9] Amazigo, J.C and Rubenfield, L.A (1980) Advanced Calculus and its application to the
Engineering and Physical Sciences, John Wiley and sons Publishing, New York, p130.

[10] Berg P. N (1962 ) Calculus of variations, in Handbook of Engineering Mechanics, chapter
16, ed. W. Flugge, Graw-Hill.

[11] Thueze, C. C,Umenwaliri,S.Nand Dara,J.E (2009) Finite Element Approach to Solution of
Multidimensional Field Functions, African Research Review: An International Multi-
Disciplinary Journal, Vol.3(5),0ctober,2009, Ethiopia,p437-457.



