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ABSTRACT 

A new two-parameter count distribution is derived starting with probabilistic arguments around the gamma function and 
the digamma function. This model is a generalization of the Poisson model with a noteworthy assortment of qualities. 
For example, the mean is the main model parameter; any possible non-trivial variance or zero probability can be at-
tained by changing the other model parameter; and all distributions are visually natural-shaped. Thus, exact modeling to 
any degree of over/under-dispersion or zero-inflation/deflation is possible. 
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1. Introduction and the Main Result 

In count data modeling the Poisson distribution is usually 
the first option, but real data can indicate a variety of 
discrepancies. These can be genuine features or secon-
dary consequences of e.g. censoring, clustering, approxi- 
mations or correlations. Specifically, the Poisson model 
has no dispersion flexibility because the mean determines 
the variance and the zero probability, σ2 = μ, p0 = e–μ, 
while the real data can display over or under- dispersion, 
σ2 ≠ μ, or zero-inflation or deflation, p0 ≠ e–μ [1]. Such 
situations are usually handled e.g. by randomizing the 
Poisson mean, by mixtures, by adding a new parameter, 
by reweighing the Poisson point probabilities, or via 
generalizing the exponential increments in the homoge-
neous Poisson process [2-5]. Our approach will be dif-
ferent.  

We recall an elementary fact. The mean-deviation pair 
(μ, σ) of a non-binary count variable (non-negative inte-
ger-valued random variable) always satisfies the inequal-
ity 

     12        ,            (1) 

where [μ] is the largest integer not exceeding μ. Thus, we 
will say that a count model (parameterized count variable) 
has full dispersion flexibility if every positive solution (μ, 
σ) of the inequality (1) is the mean-deviation pair for 
some parameter values.  

In [6] we called for a mathematically unified count 
model N(μ, β) with two independent parameters, µ > 0, β 
> 0, and the following properties:  

1) Comfortable parameterization: E(N(μ, β)) = μ, for 
all μ and β.  

2) Generalization of the Poisson model: For β = 1, 
  Pr ,1 !nN μ n e n   , n = 0, 1, ···. 
3) Full dispersion flexibility: If the numbers μ > 0 and 

σ > 0 satisfy inequality (1), then there is a β such that  
   2Var ,N  .  

The solution to be presented in this paper obeys the 
following cumulative probabilities: 
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where g(t, x) and G(t, x) are the one-parameter gamma 
probability and cumulative distribution functions, respec-
tively, with parameter x and variable t (Section 2). 

We begin with the derivation of fundamental inequali-
ties in Section 2. These inequalities lead to a cumulative 
distribution H(x, μ), where the parameter μ > 0 is the 
mean. Then the insertion of a new independent parameter 
β > 0 provides an extended cumulative distribution H(x/β, 
μ/β) and the related non-negative two-parameter random 
variable X(μ, β), where μ is still the mean. Now the pro-
claimed count model N(μ, β) is defined as a mean-pre- 
serving discretization of X(μ, β), and the above properties 
1), 2), 3) are proved. Thereafter the most immediate ap-
plications are given; namely, exact modeling of over/ 
under-dispersion or zero-inflation/deflation to any possi-
ble degree. In the last section, we propose motives for 
further research, and we compare N(μ, β) with well-es- 
tablished Poisson generalizations. 
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2. Derivation of Two Inequalities 

We start with notation: Gamma function Г(x) as Euler’s 
second integral, digamma function Ψ(x), some related 
functions and immediate interrelations; 
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There is a nice probabilistic perspective on the gamma 
function: If the random variable T has a gamma density 
g(t, x), then E(ln(T)) = Ψ(x) and Var(ln(T)) = dΨ(x)/dx 
[7]. In terms of our notation above, these simple observa-
tions can be written in the form 

.      (3) 

Additional work leads to a stronger result, 

  
  .    (4) 

Namely, integration by parts, the functional equations 
   1x x x      ,t g t x xg t x, , formula (3), 

and l’Hospital’s rule allow us to write  
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Next we derive two fundamental inequalities. For 

every fixed x > 0, the function a(t, x) has exactly one root 
xt e , and it is increasing there. This and (3, left side) 

imply   

 , 0, 0, 0.A t x t x  
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             (5) 

Now, taking into account (5) and (4, left side), we ob-
tain the first inequality 
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Further, for every fixed x > 0, the function b(t, x) has  

exactly two roots, 0
x xt e      , 1

x xt e  
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, and it  

is decreasing at t0 and increasing at t1. From this one can 
conclude that B(t, x) has, for every x > 0, a positive local 
maximum at t0 and, because of (3, right side), a negative 
local minimum at t1. Considering (4, right side) too, we 
finally arrive at the second inequality 
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3. A Mean-Preserving Discretization 

We will also need a certain discretization procedure: If X 
is a non-negative random variable with cumulative dis-
tribution F(x), the discretization of X is a count variable 
N with cumulative probabilities equal to the mean F(x) 
on the interval (n, n + 1), i.e. 

      (8) 

We shortly quote the basic properties from [6]: The 
mean and the variance of N exist (are finite) if and only if 
the mean and the variance of X exist, and in that case 

   E E ,N X                 (9) 

        Var Var Var min E ,1 4 .X N X X  

 

 (10) 

4. A Generalization of the Poisson Model 

In our construction of a new generalization of the Pois-
son model, the following one-parameter function will be 
the central ingredient:  
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Recalling (5) and the notation A(t, x) = ∂G(t, x)/∂x 
from Section 2, we derive  

. 
 

       (12) 

In (12) we first changed the integration order (as the 
integrand is positive) and then employed the limits 

   0,0 : lim , 1,xG t G t x
          (13a)  

   , : lim , 0xG t G t x .           (13b) 
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 ,H x

The limits (13) follow from Chebyshev’s inequality 
and the simple fact that the parameter x of the one-pa- 
rameter gamma density g(t, x) equals the mean and the 
variance. 

By employing the inequalities (6) and (7), we have 0 < 
H(x, μ) < 1 and ∂H(x, μ)/∂x > 0. Hence, H(x, μ) is a cu-
mulative probability distribution with mean μ (12) and 
zero probability 0x 0, : limH  

 . We proceed 
by adding an independent parameter β > 0, so defining a 
two-parameter cumulative distribution, 
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Now, let X(μ, β) be the non-negative random variable 
determined by F(x, μ, β), and let N(μ, β) be the discreti-
zation of X(μ, β), according to Section 3. We form an 
integral function of (14) and get the cumulative prob-
abilities of N(μ, β) using (8): 
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proving Property 1). Next, we fix β = 1 in (16) and em-
ploy the identities G(t, x) – G(t, x + 1) = g(t, x + 1) and 
G(t, 0) = 1 (13a). Now Pr{N(μ, 1) ≤ n} = 1 – G(μ, n + 1), 
so the point probabilities are Pr{N(μ, 1) = n} = G(μ, n) – 
G(μ, n + 1) = !ne n



, n = 0, 1, ···. This means that the 
sub-model N(μ, 1) is the Poisson model, so Property 2) 
holds true (see case β = 1 in Figure 1).  

5. Full Dispersion Flexibility 

Property 3), Section 1, remains to be proved. Given any 
positive pair (μ, σ) satisfying     2 1      

  

, 
we have to prove that there is a β > 0 such that Var(N(μ, 
β)) = σ2. Figure 2 is an illustration. 

First, one obtains an upper bound for the variance of 
X(μ, β) by employing Properties 1) and 2), (10, left side) 
and routines: 

The pair X(μ, β) and N(μ, β) is illustrated in Figure 1. 
Proof of Properties 1) and 2), Section 1. By consider-

ing (9, 12, 14) one can see that the mean does not change 
during the process from H(x, μ) to N(μ, β): 
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Then (18) and (10, right side) imply Var(N(μ, β)) < ∞. 
After noting that Var(N(μ, β)) is a continuous function of 
β (for fixed μ) and recalling inequality (1), it is enough to 
prove the following limits: 
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Figure 1. Cumulative distributions of X(μ, β) and N(μ, β), for μ = 3.2 and β = 1, 0.6, 4, 0.1. 
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Figure 2. The variance Var(N(μ, β)) as a function of β, for μ = 3.2 and μ = 0.7. Poisson point (β = 1, σ2 = μ); lower bound 
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Proof of (19). From (18) it follows that Var(X(μ, β)) 

tends to zero as β→0. This means that X(μ, β) approaches 
the constant µ (in distribution). This again means that the 
discretization N(μ, β) approaches μ if this is an integer, 
and otherwise a binary count variable with the values [μ] 
and [μ]+1; see [6]. In both cases the limit of Var(N(μ, β)) 
obeys (19).  

Proof of (20). Definition (11) and partial integration 
yield the identity 
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The first term on the right side vanishes when M→∞, 
since MG(t, M) ≤ tM/Г(M). Now by changing the integra-
tion order in the latter term, one obtains  
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where  

    1 ds xL s g s x x e s x x
       0 0

: , d .  

Then, by using (21) and part of (18), and changing in-
tegration variable, z = βt, one arrives at  
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Further, the inequality s x s   

  ln ,s C D s 

, s > 0, x 
> 0, yields a lower bound for L(s): 
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This means that L(s) tends to ∞ as s→0, and so the av-
erage of L in the interval (0, z/β) approaches ∞ as β→∞ 
(22). Thereby, E(X(μ, β)2) grows to ∞, so (17) and (10, 
left side) complete the proof of (20).   

6. Computing and Applications 

When working with N(μ, β), the following numbers are 
useful:  
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The latter faster version follows from partial integra-
tion and the identities G(t, x) – G(t, x + 1) = g(t, x + 1), 
G(t, 0) = 1 (13a). Note also that most mathematical soft-
ware offers fast computation of G(t, x). Employing (23) 
in (16), basic formulas can be written in the following 
form: 
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We consider exact modeling of count variables. (For 
numerical examples, see Table 1). 

Application 1. Generally, a non-binary count variable 
with desired mean μ and variance σ2 exists if and only if  

     21 .                (27) 

In that case N(μ, β) always provides a solution. Indeed, 
because of full dispersion flexibility, Property 3), there     
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Table 1. Under/over-dispersion and zero-deflation/inflation. 

Phenomenon General range Numerical example Solution 

Under-dispersion (μ – [μ])(1 – μ + [μ]) < σ2 < μ μ = 3.2 σ2 = 2.4 β = 0.7253 

Poisson σ2 = μ (equi-dispersion) μ = 3.2 σ2 = 3.2 β = 1 

Over-dispersion μ < σ2 < ∞ μ = 3.2 σ2 = 4.5 β = 1.4644 

Zero-deflation max{0,1 – μ}< p0 < e–μ μ = 3.2 p0 = 0.01 β = 0.5622 

Poisson p0 = e–μ μ = 3.2 p0 = 0.04076... β = 1 

Zero-inflation e–μ < p0 < 1 μ = 3.2 p0 = 0.15 β = 2.2949 

 
is a β > 0 such that Var(N(μ, β)) = σ2 (26).  

Application 2. Likewise, a non-binary count variable 
with desired mean μ and zero probability p0 exists if and 
only if  

  0max 0,  1 1.p  

  Pr , 0)N   

ˆ

          (28) 

Again N(μ, β) provides a solution. Arguments like 
those in Section 5 would show that there is a β > 0 such 
that = p0 (24, n = 0).  

Application 3. Suppose there is a real non-censored 
random sample available of the unknown non-binary 
count variable to be modeled. Let   be the sample 
mean, 2̂  the standard variance and 0  the zero frac-
tion. It is easy to prove that these UMVU estimates also 
meet (27, 28). Thus, there is a β1 that satisfies 

p̂

2̂  and a 
β2 that satisfies 0  (both exactly), but of course, usu-
ally 1 2

p̂
 

 ˆ ,N
. Importance weighing provides a compro-

mise β and an approximate solution  



. 

7. Further Research and Discussion  

Additional work is needed to enlarge the applicability of 
N(μ, β). The computational behavior of the central for-
mulas 23-26 should be further explored, and tools for 
stochastic simulation and statistical inference should be 
developed. We put forward two concrete problems. 

Problem 1. Numerical experimentation indicates that 
the numbers Kn (23, n ≥ 1) increase with β (K0 = μ). If 
this is true, all moments (25, k ≥ 2) increase with β, so 
the iteration of β in the applications in Section 6 can be 
made faster.  

Problem 2. Find an algorithm for generation of ran-
dom variates from N(μ, β). The alias method [8] can of 
course be used for truncated versions, but a tailor-made 
method would be welcome. Actually, a generation meth- 
od for X(μ, β) would be enough since, according to [6], 
this can immediately be transformed to the discretization 
N(μ, β). 

Finally, we return to the main qualities of N(μ, β). As 
mentioned, the finite mean-deviation pair (μ, σ) of any 
non-binary count variable satisfies inequality (1), i.e. σ2 > 

    1      . Conversely, if (μ, σ) is a positive 

solution of (1), then it is the mean-deviation pair of a 
non-binary count variable; and as we have shown, there 
is always an N(μ, β) with this mean-deviation pair. Since 
the mean is an original model parameter of N(μ, β), only 
β needs to be solved from the equation Var(N(μ, β)) = σ2. 
We have called this feature “full dispersion flexibility”, 
because it enables exact modeling for the first two mo-
ments, or for mean and zero probability. 

Full dispersion flexibility seems to be very rare even 
among well-established Poisson generalizations. The 
generalization of Consul and Jain [2], the negative bino-
mial [3], the COM-Poisson distribution [4] and many 
others have severe shortcomings in dispersion flexibility, 
and also partly bad-shaped distribution functions. A posi-
tive exception is the General Poisson Law [5]. However, 
here the mean is not a model parameter, so, if a certain 
pair (μ, σ) is wanted, the original parameters must be 
solved simultaneously from two equations, which both 
include laborious infinite series’. 

Also note that the invariants (4) and (5), the inequali-
ties (6) and (7), and the distribution (11) comprise, as 
such, a contribution to probabilistic treatment of the 
gamma function. 
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