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ABSTRACT 

In the last years, digital image processing and analy-
sis are used for computer assisted evaluation of semen 
quality with therapeutic goals or to estimate its fertil-
ity by means of spermatozoid motility and morphol-
ogy. Sperm morphology is assessed routinely as part 
of standard laboratory analysis in the diagnosis of 
human male infertility. Nowadays assessments of 
sperm morphology are mostly done based on subjec-
tive criteria. In order to avoid subjectivity, numerous 
studies that incorporate image analysis techniques in 
the assessment of sperm morphology have been pro-
posed. The primary step of all these methods is seg-
mentation of sperm’s parts. In this paper, we have 
proposed a new method for segmentation of sperm’s 
Acrosome, Nucleus, Mid-piece and identification of 
sperm’s tail through some points which are placed on 
the sperm’s tail, accurately. These estimated points 
could be used to verify the morphological character-
istics of sperm’s tail such as length, shape and etc. At 
first, sperm’s Acrosome, Nucleus and Mid-piece are 
segmented through a method based on a Bayesian 
classifier which utilizes the entropy based expectation– 
maximization (EM) algorithm and Markov random 
field (MRF) model to obtain and upgrade the class 
conditional probability density function (CCPDF) 
and the apriori probability of each class. Then, a pixel 
at the end of sperm’s Mid-piece, is selected as an ini-
tial point. To find other pixels which are placed on 
the sperm’s tail, structural similarity index (SSIM) is 
used in an iterative scheme. In order to stop the algo-
rithm automatically at the end of sperm’s tail, local 
entropy is estimated and used as a feature to deter-
mine if a point is located on the sperm’s tail or not. 
To compare the performance of the proposed ap-
proach with those of previous approaches including 
manual segmentation, the Accuracy, Sensitivity and 
Specificity were calculated.  

Keywords: Sperm; Segmentation; Rotating Calipers; 
Bayesian Classification; Entropy Based EM Algorithm; 
Structural Similarity Index (SSIM); Entropy 

1. INTRODUCTION 

Infertility is a common clinical problem which causes 
considerable morbidity, including stress, depression and 
sexual dysfunction, in those couples affected [1]. The 
main cause of infertility is an anomaly of the sexual re-
productive system. High percentage of these problems 
are from the male and finding ways to resolve this will 
be helpful to the physicians for a better and faster cure 
for couples. To determine infertility, some physical char- 
acteristics of the seminal plasma (such as smell, viscosity, 
pH and aspect) and spermatozoon’s parameters (such as 
concentration mobility and morphology) are analyzed [2]. 
Visual assessments of sperm by experts or CASA 
(Computer Aided Sperm Analysis) systems are the clas-
sical ways to determine the potential fertility of men. 
Manual methods are subjective and have led to widely 
varying results due to numerous factors such as different 
staining procedures, experience of technicians and hu-
man errors. So, manual procedures are inexact, subjec-
tive, no repeatable and difficult to teach [3]. The disad-
vantage mentioned above makes difficult to interpret 
accurately the data and remarks the need of objective, 
precise, and repeatable techniques to study sperm. Due to 
the complexity of sperm quality estimation, computer-
ized techniques are essential tools. The majority of these 
computer methods have been developed to analyze hu-
man sperm morphology and have afterwards been 
adapted for other species [4]. The development of new 
methodologies is an ongoing research activity [5,6]. 
These researches have enriched the available knowledge 
on sperm cells [7] and furthermore, digital image analy-
sis had allowed to classify subpopulations [8] or to de-
scribe shape abnormalities [6]. Most of these approaches  
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use CASA systems [9,10] that deploy image processing 
techniques or propose new description and classification 
methods [11-14]. In this way, Sánchez et al. [4,15] pro-
posed a technique to compute the fraction of boar sper-
matozoid heads which present an intracellular density 
distribution pattern hypothesized as normal by veterinary 
experts. They extracted a model distribution from a 
training set of heads assumed as normal by veterinary 
experts. They defined a measure of deviation from the 
model intensity distribution and for each head image 
(normal and non-normal) they computed the deviation 
from the model. Finally, they chose an optimal value of a 
decision criterion for single cell classification. As the 
preprocessing step for segmentation of sperm’s head, 
they used morphological closing, holes in the contours of 
the heads were filled and the spermatozoid tails were 
removed. In the next segmentation stage, spermatozoid 
heads were separated from the background deploying 
Otsu’s method [16] to find a threshold that separates the 
heads from the background. Bieh et al. [17] applied 
Learning Vector Quantization (LVQ) in automated boar 
semen quality assessment. The classification of single 
boar sperm heads into healthy (normal) and non-normal 
ones was based on grey-scale microscopic images only. 
They used the same method proposed by Sánchez et al. 
[15] for segmentation of sperm’s head. Alegre et al. [18] 
utilizing learning vector quantization (LVQ), suggested 
an automatic method to classify single sperm cells as 
acrosomeintact (class 1) or acrosome-damaged (class 2) 
in an optical phase-contrast microscope. As the preproc-
essing step, Sperm head images were cropped manually 
from such a boar semen sample image. In each sperm 
head image they segmented automatically the sperm 
head by binarization using Otsu’s method [16] and ap-
plying several morphological operations (dilations and 
erosions). Nowshiravan et al. [19] introduced a multi 
steps algorithm for sperm segmentation in microscopic 
image. At first the operator clicked on one chosen sperm, 
their software defined a square that is bigger than the 
sperm, this square had both the tail object and the sepa-
ration threshold. And form this they obtained a Histo-
gram image, and imposed this on the threshold image 
and at the end all the objects were obtained with the 
same light surface. They used some image enhancement 
methods to improve their pictures, these steps removed 
sperm tail and middle part of it which was not clear ear-
lier, but show the head of it better than before. Nafisi et 
al. [20] proposed a segmentation algorithm based on a 
threshold level for finding sperms in low contrast images. 
First, an image enhancement algorithm was applied to 
remove extra particles from the image. Then, the fore-
ground particles (including sperms and round cells) were 
segmented form the background. Finally, based on cer-
tain features and criteria, sperms were separated from 

other cells. Park et al. [21] proposed a method based on 
the Hough transform for the quantitative estimation of 
the morphological characteristics of the sperm. Images of 
the sperms were acquired into the digital format using 
the optical microscope, CCD camera, and flame grabber. 
For each sperm in the image, the region of interest for 
the segmentation of the sperm head was selected using 
the density difference between the sperm head and back-
ground. The boundary of the sperm head was approxi-
mated with an ellipse and was used for estimation of the 
morphological characteristics of the sperm. Carrillo et al. 
[22,23] introduced an approach called nth-fusion for 
segmentation of sperms Acrosome, Nucleus and Mid- 
piece in a computer aided tool for the objective analysis 
of human sperm morphology, commonly known as 
Automated Sperm Morphology Analyzer (ASMA). After 
enclosing individual sperms (head and mid-piece) using 
bounding boxes, they used nth-fusion method which was 
based on nth-level thresholding of an image followed by 
intersection with n special masks. In order to obtain the 
desired segmentation results, aprior objects morpho-
logical model, which was based on the information fu-
sion technique in a feature level was used. Abbiramy et 
al. [24] performed a method for segmenting objects in 
microscopic images into its constituent’s parts based on 
morphological operators and edge detections. 

In this paper we have proposed a fully automatic 
method for identification and discrimination of sperm’s 
Acrosome, Nucleus, Mid-piece and tail that requires no 
trai ing and atlas. The proposed method includes two 
major modules: 
 Segmentation of sperm’s Acrosome, Nucleus and Mid- 

piece; 
 Localized identification and discrimination of sperm’s 

tail.  
At first, an improved hybrid method [25] is used to 

remove noise from the sperm image (R component of 
RGB color image). Then, a simple threshold is applied to 
build a primary mask containing sperm’s Acrosome, 
Nucleus, Mid-piece, and also small objects in seminal 
plasma. The small objects have been eliminated and to 
build the final localized mask, the minimum area bound-
ing box of each individual region is computed through 
the Rotating Calipers method [26,27]. The detection rate 
and speed has been increased using the bounding boxes. 
Pixels inside the bounding boxes are considered as sam-
ples. Then, intensities of samples are modeled using a 
gaussian mixture model which consists of three kernels 
as Background, Nucleus, and a class of Acrosome and 
Midpiece. This step starts with only one kernel and uses 
an entropy based EM algorithm to estimate three kernels 
as three mentioned classes in an automatic manner which 
does not need initial values for parameter estimation. 
After estimation of the model, we would be able to clas-
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sify brain pixels by knowing apriori probabilities of the 
classes. The next step is obtaining these apriori prob-
abilities with no training and atlas. So, a MRF model and 
EM algorithm are applied to update and attain apriori 
probabilities and means and variances of each class. Fi-
nally, Samples in bounding boxes are classified using 
Bayesian classification [28,29]. 

After localized segmentation of sperm’s Acrosome, 
Nucleus and Mid-piece, the pixel at the distal point of 
sperm’s Mid-piece is considered as an initial point. The 
proposed method uses a structural similarity index [30] 
and Rényi entropy [31] in an iterative scheme to estimate 
sperm’s tail with some points which are placed on the 
sperm’s tail, accurately [32]. These estimated points can 
be used to analyze characteristics of sperm’s tail such as 
length, shape, and etc. In the next sections, details of the 
research procedure including segmentation and identifi-
cation of sperm’s Acrosome, Nucleus, Mid-piece and tail 
are explained. Early and encouraging experiments with 
these methods have been presented in [32]. 

2. MATERIALS AND METHODS 

2.1. Image Acquisition Technique 

Sample Images were acquired from modified Papanico-
laou stained sperm smears. Fresh Sperm samples were 
incubated for 30 to 60 minute in 37˚ Celsius. The Smear 
was then prepared after complete liquefaction and the 
slides were dried in the air before staining with modified 
Papanicolaou method. The images were captured by 
means of a 560 TV-line CCD camera mounted on the 
third eyepiece of a trinocular direct microscope (Proway 
BK5000) with a total magnification of 1000× using Plan 
Achromatic Infinity objective lenses and a resolution of 
576 × 764 pixels in RGB color space. 10 to 25 Images of 
different fields were captured from each slide. And to-
tally 100 slides were analyzed (each slide consists of 1 to 
5 sperms). 

2.2. Preprocessing 

To create a primary mask containing sperm’s Acrosome, 
Nucleus and Mid-piece, the Red component of RGB 
color image is used. The Red component contains most 
of the information associated with the darkest color, 
which domains the head. The images first had to be 
scaled. Therefore the range between zero intensity and 
maximum intensity, M, in the original 12-byte data (I) 
was scaled to a new intensity (Is) between 0 and 255 
(8-bit) which is obtained by Is = I/M × 255. 

2.2.1. Remove Noise from R Component 
To remove noise, an improved hybrid method [25] is 
applied to sperm image (R component of RGB color im-

age). This method consists of two stages. The first stage 
consists of a fourth order partial differential equation 
(PDE) and the second stage is a relaxed median filter, 
which processes the output of fourth order PDE. This 
model enjoys the benefit of both nonlinear fourth order 
PDE and relaxed median filter. By using a relaxed me-
dian filter we can preserve more image details than the 
standard median filter. This method preserves fine details, 
sharp corners and thin lines and curved structures to 
large extent. The L2-curvature gradient flow method of 
You et al. [33] is used in this model: 

 2 2 2u
c u u

t

      
          (1) 

where 2u  is the Laplacian of the image u. Since the 
Laplacian of an image at a pixel is zero if the image is 
planar in its neighborhood, the PDE attempt to remove 
noise and preserve edges by approximating an observed 
image with a piecewise planar image. The desirable dif-
fusion coefficient  .c  should be such that (1) diffuses 
more in smooth areas and less around less intensity tran-
sitions, so that small variations in image intensity such as 
noise and unwanted texture are smoothed and edges are 
preserved. Another objective for the selection of  .c  is 
to incur backward diffusion around intensity transitions 
so that edges are sharpened, and to assure forward diffu-
sion in smooth areas for noise removal. The Perona- 
Malik diffusivity function [34] is used in the implemen-
tation as below: 
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t  is the time step size and h is the space grid size. Re-
laxed median filter [35,36] is used in combination with 
Eq.1 to remove large spike noises. The proposed hybrid 
method by Rajan et al. [25] is defined as follows: 
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where RM is the relaxed median filter with lower bound 
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  and upper bound  . If  is the output of a 
relaxed median filter, then 
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where  is the median value of then samples     
,
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to be the window located at position i. The lower bound 
and upper bounds for relaxed median used in the ex-
periments are 3 and 5 respectively. By using a relaxed 
median filter we can preserve more image details than 
the standard median filter. This method preserves fine 
details, sharp corners and thin lines and curved structures 
to large extent. Then, a simple threshold is applied to 
build a primary mask,  ,g x y , which contains sperm’s 
Acrosome, Nucleus and Mid-piece, and also small ob-
jects in seminal plasma. The threshold value is calcul- 
ated according to thr     in which   and   are 
mean and standard deviation of the noise-removed image, 
 , f x y , respectively. The primary mask,  ,g x y  is 

defined as 
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The small objects have been eliminated and this mask, 
containing sperm’s Acrosome, Nucleus and Mid-piece is 
used to build the final mask at the next step. It is re-
minded that thr is not enough accurate to detect sperm’s 
Acrosome, Nucleus, Mid-piece areas in all sperm images 
(especially about the distal points of Mid-piece). So, 
 , g x y  has been only used as a primary mask to build 

the final mask containing all candidate pixels which may 
belong to the sperm’s head and Mid-piece.  

2.2.2. Finding the Best-Fitted Rectangle for Each  
Region 

To build the final mask, the minimum area bounding box 
of each individual region is computed through the Rotat-
ing Calipers method [26,27]. This method is capable of 
computing the minimum area enclosing rectangle in lin-
ear time. To apply Rotating Calipers method, the two 
dimensional convex hull of all visible points (for each 
region) is computed using the monotone chain algorithm 
[37]. This algorithm is linear with respect to the number 
of input points O(n), assuming that input points are sorted 
by increasing x and increasing y coordinates. The mini-
mum rectangle enclosing a convex polygon P has at least  

one side collinear to one edge of P [26], using this prop- 
erty, a brute-force approach would be to construct an en- 
closing rectangle for each edge of P. This has a complex- 
ity of O(n2) since we have to find minima and maxima 
for each edge separately. The rotating calipers algorithm 
rotates two sets of parallel lines (calipers) around the 
polygon and incrementally updates the extreme values, 
thus requiring only linear time to find the optimal boun- 
ding rectangle. Figure 1 [38] illustrates one step of this 
algorithm: The support lines are rotated (clock-wise) un- 
til a line coincides with an edge of P. If the area of the 
new bounding rectangle is less than the stored minimum 
area rectangle, this bounding rectangle becomes the new 
minimum. This procedure is repeated until the accumu- 
lated rotation angle is greater than 90 degrees.  

Figure 2 shows the obtained results for each step  
 

 

Figure 1. Rotating calipers. 
 

 

(a) (b)

(c) (d)

(e) (f)  

Figure 1. Result of applying an improved hybrid method and 
Rotating Calipers algorithm to a typical sperm image: (a) The 
original R component of RGB color image; (b) Noise removed 
image; (c) Selected objects after applying threshold; (d) Pri-
mary mask without small objects; (e) Final mask which is cre-
ated using Rotating Calipers method; (f) Sperm image overlaid 
on its bounding boxes. 
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when the proposed method is applied to a typical sperm 
image. The proposed method for creating a mask con-
taining sperm’s Acrosome, Nucleus and Mid-piece is 
summarized as below  
 Selection of the R component of RGB color image. 
 Removing noise from R component using an im-

proved hybrid method. 
 Building a primary mask containing sperm’s Acro-

some, Nucleus, Mid-piece, and also small objects in 
seminal plasma, by applying a simple threshold to the 
noise removed image. 

 Elimination of small objects.  
 Finding the best-fitted rectangle for each region using 

rotating calipers. 

2.3. Problem Formulation 

Support that X is a n-dimensional random variable and 
comes from a Gaussian mixture model of M > 1 compo-
nents. Then the probability density function of the Gaus-
sian mixture model can be repressed as the following: 

   1
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where T denotes the transpose operation, m  is the 
mean vector and m  is the covariance matrix which is 
assumed positive definite. Here we encapsulate these 
parameters into a parameter vector, writing the parame-  



ters of each component as , to get   ,m m m   
m 1 2 1 2Θ π ,π , ,π , , , ,m     . Eq.11 can be rewritten as 
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If we knew the component from which x came, then it 
would be simple to determine the parameters . Simi-
larly, if we knew the parameters , we could determine 
the component that would be most likely to have pro-
duced x. The difficulty is that we know neither. 

Θ
Θ

2.4. Bayesian Classification 

Bayesian Classification is a probabilistic technique of 
pattern recognition and is based on the principle of Bayes 
decision theory [39], given in Eq.14 below 
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where, x is a given feature vector, j  denotes a class, 
or state of nature,  jP   is the prior probability of 
class j ,  p x  is prior probability of the feature vec-  

tor x,    is aposteriori probability, which a fea-  p x j

ture vector should be classified as belonging to class j , 
 jP x  is the conditional probability that a feature 

vector occurs in a given class j . For the approach here, 
the feature x shall consist of one component, intensity of 
brain pixels. The quantity  is known as the evi-
dence, and serves only as a scale factor, such that the 
quantity in Eq.14 is indeed a true probability, with val-
ues between zero and one. So, the maximum a posteriori 
(MAP) estimate of Eq.14 is used as below 

 p x

     j jP x p x P j             (15) 

According to Bayesian theory [40], the feature vector 
x is classified to j  of which the aposteriori probabil-
ity given x is the largest between the classes.  

        maxj j i j jp x P p x P x j         (16) 

Bayes decision rule is optimal in the sense of minimi-
zation of the probability of error. It is quite obvious that 
such an Ideal Bayesian solution can be used only if dis-  

tributions  jp x  , and the apriori probabilitles  jp    

are known. In the context of classification of brain tissue, 
the probability models are not known, and therefore, 
must be approximated. The performance of the Bayesian 
classifier is directly related to how well these distribu-
tions can be modeled. 

2.5. Segmentation of Sperm’s Acrosome, Nucleus 
and Mid-Piece  

Sperm’s Acrosome, Nucleus and Mid-piece are seg-
mented using a fully automatic method which is based on 
entropy based EM algorithm and Markov random field 
model [29]. This method estimates a gaussian mixture 
model with three kernels as Background, Nucleus and a 
class of Acrosome and Mid-piece. To estimate this model, 
an automatic Entropy based EM algorithm [28] was used 
to find the best estimated Model. Then, Markov random 
field (MRF) model and EM algorithm were utilized to 
obtain and upgrade the class conditional probability den-
sity function and the apriori probability of each class. 
After estimation of Model parameters and apriori prob-
ability, samples in bounding boxes were classified using 
Bayesian classification. 

Based on the explanations mentioned above, the block 
diagram of our method for segmentation of sperm’s 
Acrosome, Nucleus and Mid-piece is shown in Figure 3,  
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class). These two areas are grouped into two separated 
classes (i.e., Acrosome and Mid-piece) using their posi-
tions respect to the Nucleus and bounding box corners. 
At first, the distance between each corner of bounding 
box and center of Nucleus is computed. Then, the corner 
whose value is less than others is considered as origin. 
Acrosome is the region whose distance from origin is 
less than Mid-piece (other region). 

2.6. Simulation Results: Segmentation of 
Sperm’s Acrosome, Nucleus and Mid-Piece 

Figure 4 shows the results of the proposed algorithm for 
a typical sperm image, including estimated distribution 
obtained through the Entropy based EM algorithm and 
MRF model overlaid on distribution of the samples (in-
side the bounding boxes). In Figure 5, results of apply-
ing the proposed algorithm to other sperm images have 
been shown. 

2.7. Identification of Sperm’s Tail 

After localized segmentation of sperm’s Acrosome, Nu-
cleus and Mid-piece, the pixel at the distal point of 
sperm’s Mid-piece is considered as an initial point. The 
method [32] uses a structural similarity index [30] and 
Rényi entropy [31] in an iterative scheme to estimate 
sperm’s tail with some points which are placed on the 
sperm’s tail, accurately. These estimated points can be 
used to analyze characteristics of sperm’s tail such as 
length, shape, and etc. 

Figure 3. Block diagram of the proposed approach for fully au- 
tomatic segmentation of sperm’s Acrosome, Nucleus and Mid- 
piece. 
 
and is summarized below 

1) Smoothing the R component of RGB color image 
using a Gaussian filter.  

2) Selection of pixels inside the bounding boxes as 
input samples.  

Let X be a digital image of size (M × N) which con-
sists of a sperm, and A be a pixel on the sperm’s tail 
which is considered as an initial point (point A). Figure 
6(a) shows a typical sperm image, a section of sperm’s 
tail is zoomed in and shown in Figure 6(b). Suppose the 
bright green pixel is point A, to find the next pixel which 
is on the sperm’s tail and has the highest structural simi-
larity index (SSIM) with respect to point A, we have 
used two widows (w1: p × p) and w2: k × k, k < p).  

3) Estimation of input samples distribution using En-
tropy based EM algorithm and Markov Random Field 
Model [29] with three kernels as Background, Nucleus 
and a class of Acrosome and Mid-piece. 

4) Bayesian classification of the input image (only 
pixels inside the bounding boxes) using the obtained 
Gaussian Mixture Model.  

5) Postprocessing: Acrosome and Mid-piece are clas-
sified into the same class (i.e., two separated areas in one  
 

(b)(a) (c)
0
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0.015

0.02

0.025

0.03

0.035
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Data velues  

Figure 4. Result of applying the proposed algorithm to a typical sperm image: (a) Bounding boxes containing sperm’s Acrosome, 
Nucleus and Mid-piece; (b) Result of fully automatic segmentation; (c) Distribution of the samples (red), overlaid on its final estima-
tion (blue). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article). 
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(b)

(a)

(c)

(f)

(g)

(e)

(d) (h)  

Figure 5. Result of applying the proposed method to three 
sperm images: (a)-(d) Bounding boxes in the original RGB co- 
lor images; (e)-(h) Results of fully automatic segmentation. 
(For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article). 
 

w1 is centered at point A and is applied to limit A’s 
neighborhood. Figure 6(b) shows w1 in pink. w2 is a 
sliding window which moves over the boundaries of w1 
and computes the local structural similarity (SSIM) index 
for each pixel with respect to point A. Figure 6(c) shows 
pixels which are placed on the boundaries of w1 in deep 
pink, also different positions of the sliding window (w2) 
which moves over the boundaries of w1 is shown in blue. 
So, the SSIM index is calculated within the sliding win-
dow (w2) for all pixels which are placed on the bounda-
ries of w1 to find the pixel with the highest SSIM index. 
SSIM index for all pixels are calculated and scaled 
([0,255]), these values are shown in Figure 6(d). The 
pixel (Point B) which has the highest SSIM index and 
pixel A are shown in Figure 6(e). If we do the same al-
gorithm for new selected pixel (B), it is possible to select 
previous pixel (A) as a new pixel. So, before running the 
new iteration for the new selected pixel, a neighborhood 

of previous pixel is changed to a different value (say 
zero). This process is done through another window (w3: 
l × l, k < l < p). Figure 6(f) shows this process. 

This algorithm is implemented in an iterative scheme, 
and for every new selected pixel, local entropy is com-
puted to detect if we have reached the end of the tail or 
not. 

In this way, for every new selected pixel, the local en 
tropy is estimated. To estimate the local entropy for 
every new selected pixel, a window with odd size (w4, h 
× h) is centered at that pixel, then for every pixel which 
is placed inside the window, only Red and Green com-
ponents are extracted as a two dimensional feature. The 
local entropy is estimated by estimation of the entropy of 
these samples. Figure 7 shows variations of the local  
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Figure 6. Use of SSIM index to find pixels with the most simi-
larity: (a) A typical sperm image (Red component of RGB 
color image); (b) The initial pixel (bright green) and w1 (deep 
pink); (c) w2, sliding window (blue), which computes SSIM for 
each pixels over the boundaries of w1 and the initial pixel; (d) 
SSIM values over the boundaries of w1; (e) The new selected 
pixel with the highest SSIM index (deep pink) and the initial 
pixel (bright green); (f) A neighborhood of the initial pixel is 
set to zero. (For interpretation of the references to color in this 
igure, the reader is referred to the web version of this article).  f 
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Figure 7. Result of applying the proposed algorithm to the sperm’s image: (a) Estimated points, as the result of proposed method; (b) 
Variations of the local entropy for estimated points on the sperm’s tail; (c) The mean value of local entropies, for every five selected 
pixels. 
 
entropy on the sperm’s tail. As it is seen, by reaching the 
end of sperm’s tail, the local entropy decreases. So, by 
finding a fitted threshold we would be able to stop the 
algorithm at the end of sperm’s tail, automatically. We 
have experimentally observed that a two dimensional 
feature which contains Red and Green components, gives 
more strict threshold in comparison with other features. 

For a fitted threshold, if the estimated value is greater 
than the threshold, it means that the selected pixel is 
placed on the sperm’s tail. In other words, the local en-
tropy is considered as a criterion which shows that if we 
are on the sperm’s tail or not. Finding such a threshold 
for all sperms is a challenging task. To tackle this prob-
lem, the localized thresholding is used. For every five 
new selected pixels, the local entropy is computed. Then, 
the mean value of local entropies is considered to com-
pare with a threshold which is called window-threshold. 
The window-threshold is a fitted threshold for all sperms, 
and is used to find out if we are close to the distal points 
of sperm’s tail or not. So, for every five new selected 
pixels, local entropies are computed and mean value is 
compared with the window-threshold, if it is greater than 
the window-threshold, it means that we are not close to 
the distal points of sperm’s tail and the algorithm must 
be continued to find five new estimated points in the next 
five iterations. Otherwise, if the mean value is less than 
window-threshold, we are close to the distal points and 
the algorithm must be continued by individual thresh-
olding for every new selected pixel to stop the algorithm 
in the next five iterations which will be the last ones. 
Means that from this moment onwards, the algorithm 
will find at most five new estimated points, in next itera-
tions. Because, by checking the window-threshold, we 
have found out that we are close to the distal points of 
sperm’s tail. For individual thrsholding, the minimum 
local entropy (MLE) of five previous selected pixels is 
used for thresholding as below 

threshold MLE             (17) 

  has been experimentally set to 0.9 for the best result. 
The algorithm for detection of sperm’s tail includes 

two major modules: 

 Selecting an initial pixel (A) which is placed at the 
end of mid-piece, and finding the pixel (B) with the 
highest SSIM index respect to that. To compute and 
compare the structural similarity (SSIM) index, only 
the Red component of the RGB color image is con-
sidered as a separate image and is used to perform 
this module. 

 Verifying if the selected pixel (B) is on the sperm’s 
tail or not, this procedure is based on the local en-
tropy estimation. To evaluate the local entropy, only 
the Red and Green components of RGB color image 
are used as a two dimensional feature. 

The steps of proposed method are described in detail 
as below: 

1) Setting pixels on the sperm’s head and mid-piece to 
a different value (say zero). 

2) Smoothing the input image using an average filter. 
3) Selecting the distal point of sperm’s Mid-piece as 

the initial point, pixel (A), and setting the Counter to one. 
4) Centering the window w1 at pixel A. 
5) Moving a sliding window (w2) over w1’s boundaries 

and compute SSIM index, locally, through Eq.12, for 
each pixel over the boundaries of w1 and pixel A. 

6) Finding the pixel with the largest amount of SSIM 
Index (B). 

7) Estimation of the local Entropy at pixel B. 
8) Setting pixels around the new selected pixel (B) to a 

different value (say zero), through the window w3. 
9) Replacing the initial pixel (A) with the new selected 

pixel (B). 
10) Checking the Counter: if the Counter is equal to 

five, go to the next step, otherwise increase the Counter 
by one and go to the Step 4. 

11) Checking the localized thresholding: compute the 
mean value of the local entropies of the last five selected 
pixels. If it is greater than the window-threshold, set the 
Counter to one and go to the Step 4, otherwise find the 
minimum local entropy (MLE) of the last five selected 
pixels and go to the next step. 

12) Repeating Steps 4-9 to find the new estimated 
pixel. 
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13) Comparing the local entropy of the new selected 
pixel with the threshold (Eq.17). If it is greater than the 
threshold, go to the step 12 to find a new pixel on the 
sperm’s tail, otherwise stop the algorithm. 

2.8. Simulation Results: Identification and  
Discrimination of Sperm’s Tail 

The results of the proposed method, for different sperms 
are shown in Figure 8. Figures 8(a)-(d) show the origi-
nal sperm images. The proposed method is applied to 
sperm images, and the estimated points are shown in 
Figures 8(e)-(h). As it is seen, the estimated points are 
exactly located on the sperm’s tail. Figures 8(i)-(l) show 
how the estimated local entropy changes with the posi-
tion of estimated points on the sperm’s tail. The last 
points in each tail have the lowest value of local entropy 
in comparison with the other points, these values are less 
than the threshold, and the algorithm was stopped be-
cause of these points. 

3. EVALUATION 

The algorithms were tested with a 100 slides database 
with multiple spermatozoa (including 283 sperms). The 
first stage tested was the “detection and extraction of 
individual spermatozoon” with the entire image database. 
In this research, criteria Accuracy (Ac), Sensitivity (Se) 
and Specificity (Sp) are used for evaluation. 

TN TP

TN TP FP FNcA



  

           (18) 

TP

TP FNeS 


               (19) 

TN

TN FPpS 


               (20) 

In these equations, TP is the number of true positive, 
FP is the number of false, TN is the number of true nega-
tive, and FN is the number of false negative. The evalua-
tion is summarized in Table 1. 

Also the, Accuracy of sperm’s head, Acrosome, Nu-
cleus and Mid-piece are computed 94.3%, 92.4%, 95.1% 
and 90.2%, respectively. For all sperms in database, 
sperm’s tail length is computed manually and compared 
with the estimated value through the estimated points. 
Success rate [32] is defined below 

Estimated Length
Success Rate

Computed Length
         (21) 

and computed for all sperms. The overall Success Rate 
of this approach is 97.6%. 

4. DISCUSSION 

In this paper a new approach, for fully automatic identi-
fication and discrimination of sperm’s Acrosome, Nu-
cleus, Mid-piece and tail in microscopic images of 
stained human semen smear that requires no training and 
atlas, is proposed. The proposed method includes two 
major modules. At first, to increase the detection rate and 
speed, a localized mask containing sperm’s Acrosome, 
Nucleus and Mid-piece is built through the minimum 
area bounding boxes. This procedure is done using an 
improved hybrid method and the Rotating Calipers algo-
rithm. Pixels inside the bounding boxes are considered as 
samples. Distribution function of samples is estimated by  
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Figure 8. Result of applying the proposed algorithm to different sperms images: (a)-(d) Original sperm images; (e)-(h) Estimated 
points, as the result of the proposed method; (i)-(l) Use of local entropy changes as a measure for identification of end of tails. 
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Table 1. Evaluation results for detection and extraction of indi-
vidual spermatozoon. 

Total Spermatozoa 283 

Detected Spermatozoa (TP) 276 

Not detected Spermatozoa (FN) 7 

Total Artifacts 127 

True Negative or Non Detected Artifacts (TN) 121 

Detected Artifacts as Spermatozoa (FP) 6 

Accuracy (Ac) 96.829% 

Sensitivity (Sc) 97.522% 

Specificity (Sp) 95.275% 

 
a mixture of a large number of normal terms by AMM. 
Then, the mixture terms are categorized into three classes, 
as the CCPDFs and the apriori probabilities of the 
classes. In the next steps, apriori probabilities of the 
classes as well as parameters of the classes (i.e., means 
and variances) are attained and updated, utilizing MRF 
model and AMM, respectively, and without any need for 
training samples. After segmentation of sperm’s Acro-
some, Nucleus and Mid-piece, the distal point of mid- 
piece is considered as an initial point. Knowing that a 
pixel is located on the sperm’s tail (such as the distal 
point of mid-piece), to find a new pixel on the sperm’s 
tail, SSIM index is computed and checked, locally. To 
automatically stop the algorithm at the end of sperm’s 
tail, local entropy is selected and estimated as a feature. 
These estimated points could be used to verify the mor-
phological characteristics of sperm’s tail such as length, 
shape and etc. The accuracy of proposed method depends 
on the parameters of Structural Similarity (SSIM) index 
(i.e., α, β and γ) which adjust the relative importance of 
the Luminance, contrast and Structure comparison com-
ponents. Figure 9(a) shows a typical sperm image, a 
section of sperm’s tail is zoomed in and shown in Figure 
9(b). The boundary of sperm’s tail is segmented, manu-
ally, and is shown in black. Also, a pixel on the sperm’s 
tail is selected as an initial point and shown in deep pink 
(point A). Figure 9(c) shows pixels which have been 
selected to find the pixel with the highest SSIM index 
respect to point A (according to the proposed method). 
To understand the relative importance of comparison 
components, SSIM index is computed individually for 
each comparison component and is shown in Figures 
9(d)-(f): 
 SSIM index based on Luminance comparison com-

ponent (α = 1, β = 0 and γ = 0). 
 SSIM index based on contrast comparison component 

(α = 0, β = 1 and γ = 0). 
 SSIM index based on Structure comparison compo-

nent (α = 0, β = 0 and γ = 1). 

(a) (b)

(c) (d) (e)

(f) (g) (h)

Point A

Point APoint A

Point A

Point A

Point A

Point A

 
Figure 9. Relative importance of comparison components: (a) 
A typical sperm image; (b) A section of sperm’s tail containing 
it’s manual segmentation is zoomed in, and a pixel on the 
sperm’s tail is selected as an initial point (deep pink, point A); 
(c) Point A and it’s limited neighborhood (according to the 
proposed method); (d) SSIM values based on Luminance com-
parison component (α = 1, β = 0 and γ = 0); (e) SSIM values 
based on contrast comparison component (α = 0, β = 1 and γ = 
0); (f) SSIM values based on Structure comparison component 
(α = 0, β = 0 and γ = 1); (g) SSIM values with α = 0.1, β = 0.5 
and γ = 0.9, the new selected pixel with the highest SSIM index 
is shown in blue; (h) Manual segmentation of sperm’s tail, 
initial pixel (point A) and the new selected pixel. (For interpre-
tation of the references to color in this figure, the reader is re-
ferred to the web version of this article). 
 

As it is seen, pixels which are placed on the sperm’s 
tail have higher Luminance comparison components in 
comparison with others. Also, in addition to pixels which 
are placed on the sperm’s tail, there are some other pixels 
over the boundary which have higher values for contrast 
and Structure comparison components. So, Luminance 
comparison component has the most relative importance. 

As mentioned before, structural similarity index satis-
fies the Boundedness condition (SSIM < 1), that’s way α, 
β and γ have been experimentally set to 0.1, 0.5 and 0.9 
for the best result. 

One of the important advantages of the proposed 
method is the ability to detect sperm’s tail in the low- 
contrast sections. Also, the execution time of imple-
mented algorithm is too low. Our proposed approach is 
evaluated via Accuracy, Sensitivity, Specificity and Suc- 
cess Rate in a data set of microscopic images of stained 
human semen smear. 

Some other methods have been developed to analyze 
human sperm morphology, the primary steps of all these  
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Table 2. Accuracy (Ac) values for the proposed method and 
Carrillo et al. [22]. 

Segmentation Carrillo et al. [22] Proposed method 

Head 89.5% 94.3% 

Acrosome 88.9% 92.4% 

Nucleus 88.9% 95.1% 

Mid-piece 85.0% 90.2% 

 
methods is sperm segmentation and discrimination. Sán- 
chez et al. [4,15] and Nowshiravan et al. [19] proposed 
methods based on morphological operators and thresh- 
olding to segment sperm’s head, Because the Acrosome 
and the Mid-piece have similar characteristics (intensity 
level, texture) the segmentation with traditional tech-
niques (thresholding, region growing) does not give good 
results [19,20]. To tackle this problem, Carrillo et al. [22, 
23] presented an approach called nth-fusion for segmen-
tation of sperm’s Acrosome, Nucleus and Mid-piece in a 
computer aided tool for the objective analysis of human 
sperm morphology, commonly known as Automated 
Sperm Morphology Analyzer (ASMA). After enclosing 
individual sperms (head and Mid-piece) using bounding 
boxes, they used nth-fusion method which was based on 
nth-level thresholding of an image followed by intersec-
tion with n special masks. In order to obtain the desired 
segmentation results, aprior objects morphological model, 
which was based on the information fusion technique in 
a feature level was used. For each segmented sperm in 
image, they had to run the algorithm to detect sperm’s 
parts. It is reminded that Carrillo et al. [22] used manual 
segmentation for evaluation of their methods. We, too, 
used manual segmentation for evaluation. They used 
similar methods of evaluation. Therefore comparison of 
our method with this method is reasonable. This com-
parison is done in Table 2. As it is seen in Table 2, the 
proposed method in this paper improves the accuracy of 
segmentations. The drawback of the proposed method 
for detection and discrimination of sperm’s tail is that 
objects which are placed on the sperm’s tail, affect the 
performance of the proposed method. So, In future in-
vestigations we intend to use various geometric features 
to increase accuracy values. 
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