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ABSTRACT 

Coupling equations used to calculate the chemical composition of substances by X-ray fluorescence analysis can be 
classified as empirical, theoretical or semi-empirical based on the method for determining the coefficients of the cali-
bration function. The advantages and disadvantages of each class of equations are discussed. Recommendations for the 
selecting the optimum conditions for determining empirical correction coefficients and their control during analysis are 
provided. 
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1. Introduction 

In the field of X-ray fluorescence analysis (XRF) calibra- 
tion functions that relate the concentration of the element 
to be determined to the intensity of its spectral line and 
chemical composition of the sample are generally re- 
ferred to as coupling equations. Currently, a number of 
coupling equations are used in practical applications. The 
form of these equations is often dependent on their deri- 
vation, selection of the main elemental characteristics 
(intensity Ij or concentration Cj) and details of the deter- 
mination of the correction coefficients [1,2].  

Calculation of the content Cj of element i involves a 
complex expression for the intensity of the X-ray fluo- 
rescence of the element. Some researchers previously 
derived such expressions [3-6] on the basis of the fun- 
damental laws of interaction of heterogeneous primary 
emission with the substance (for brevity we subsequently 
refer to this as “fundamental expression”), approximated 
by a multidimensional polynomial [7]: 
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where а0i, ai, aij and ajj are correction coefficients, Ii and 
Ij are the intensities of the spectral lines for elements i 
and j, respectively, and n is the number of elements on 
the sample. 

Depending on the method used to calculate the correc- 

tion coefficients, the coupling equations can be empirical, 
theoretical or semi-empirical [7]. 

The aim of the paper is to examine the various algo- 
rithms (coupling equations) for the X-ray fluorescence 
analysis of materials with variable physical and chemical 
properties. 

2. Empirical Coupling Equations 

2.1. Traditional Method 

Traditional methods for determining coupling equations 
include Equation (1) and modifications thereof. If the 
chemical composition of investigated samples varies 
only slightly, the calculation procedure can be limited to 
the first two terms of Equation (1). This approach is es- 
pecially feasible if the effect of j-type elements on the Ii 
is only due to the superposition of spectral lines. If the 
chemical composition of samples varies significantly, 
Equation (1) can be written in a non-linear form [8]: 
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Although Equation (2) is a special case of Equation (1), 
Lukas-Tooth and Price [8] obtained it from an expression 
of the fluorescence intensity excited by monochromatic 
radiation after representing the mass coefficient of weak- 
ening through the concentrations of j elements and by 
replacing Cj by Ij. In addition, the effect of sub-excitation 
was considered as a negative absorption. The coefficient 
а0i takes into account the background intensity near ana- *Corresponding author. 
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lytical line of i element averaged over the chemical 
composition for calibration reference samples. This is 
why quantitative results using Equation (2) are obtained 
without background correction. 

A different form of the equation was suggested by 
Lachance and Traill [9]: 
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where Ii and Ii0 are the intensities for element i in the 
investigated and reference samples, respectively, and Cj 
is the concentration of element j in a sample approxi- 
mated by: 

 0 0 ,j jx j jI I CC                (4) 

where Ij and Ij0 are the intensities for element j in the 
investigated sample and a reference sample with concen- 
tration Cj0. 

The values obtained for jC  from Equation (4) are 
then substituted into Equation (3) to calculate new values 
of jC for all of the elements. This process is repeated to 
derive jC  etc, unless the following condition is satis- 
fied: 

   1 ,m m
j jC C C   j               (5) 

where ΔCj is the assumed experimental error for the 
concentration of element j and Сj

(m), and Cj
(m–1) are the m 

and m – 1 approximations respectively, of the concentra- 
tions. 

It should be noted that if the concentration varies sig- 
nificantly, Equation (3) can yield divergent solutions, i.e. 
the value of a difference in Equation (5) does not ap- 
proach ΔCj, but increases. This situation can be pre- 
vented by normalization for each iteration step except the 
last one: 
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One advantage of Equations (1)-(3) is that they can be 
used in analyses of heterogeneous samples if the effect of 
micro absorption heterogeneity can be minimized by 
grinding the materials under selected optimal conditions 
[10]. Another advantage is the possibility of using the 
equations to determine chemical compositions if correc-
tion factors are only introduced for undesirable impu- 
rities [11]. In this case, the elemental composition for the 
main constituents is kept constant providing a so-called 
“containing medium”. This is a prime advantage for 
monitoring the chemical composition of raw materials 
and technological products at concentrating plants, where, 
as a rule, the composition of non-metallic components 
remains constant and only the content of ore components 
needs to be determined. 

The main disadvantage of these equations is that a 
large number of suitable reference samples are required. 

2.2. Determination of Optimum Conditions for 
Calibration of Empirical Coupling 
Equations 

Reference samples are required during the calibration of 
empirical equations. These are control samples analyzed 
by another method such as chemical testing. The number 
of reference samples (N) required to derive the correction 
coefficients depends on the number of factors and we 
provide the following recommendations [12,13]. 

1) The magnitude of the variation in concentration of 
determined and interfering components in the reference 
samples must be not less than that in the test samples. 

2) A non-uniform distribution of reference samples in 
terms of the range of concentrations does not decrease 
the correctness of the analytical results when the analyte 
concentrations in the test are distributed unevenly. Thus 
if one equation is used to analyze several products with 
unevenly tests according to the range of concentrations, it 
is not expedient to create new reference samples by mix- 
ing the test materials for different products. 

3) The correlation between the components of sample 
compositions of controlled object, characterized by the 
correlation coefficient rxy, does not affect the systematic 
error of XRF results and even reduces the number of 
terms in the coupling equation, provided that the coeffi- 
cient rxy does not change over time. If this condition is 
not met, then the variations in rxy require the recalibration 
of the equation included samples with a new rxy value in 
the number of reference samples. If the correlation be- 
tween the components often changes over time, the equa- 
tion is better calibrated using the reference samples for 
the composition of which the rxy value is negligible. 

4) N depends on the number of coefficients (l) in the 
equations, the accuracy required (variation coefficients 
Vext) and errors in the chemical analysis (Vch.) of the ref-
erence samples. These factors are linked by the following 
relations: if Vch.  Vext, N = l + 2; if Vch  Vext, N  2l; 
and if Vch > Vext, N > 5l. 



The case N  7l is not suitable, since the overall ex- 
perimental error (Vch) for XRF does not change with the 
increases in N. 

It should be noted that systematic error in the chemical 
analysis results (under- or overestimation of the reference 
sample results for a constant ΔCj) automatically affects 
the XRF results (i.e., they will be under- or overestimated 
to the value ΔCj). Thus, by increasing N it is possible to 
decrease the influence of a random error in the chemical 
analysis of reference samples on the accuracy of XRF 
results. 

Taking measured values for the intensities of analytical 
lines and known concentrations Cj, the coupling equation 
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is constructed for each reference sample. The set of equa- 
tions obtained is solved by the least-squares method to 
identify the coefficients in Equation (1) or Equation (2). 
For Equation (3) Cj, obtained to Equation (4), should be 
used instead of Ij. 

If the concentration of target elements varies signifi- 
cantly in the reference samples, the modified least- 
squares method should be used taking  = 1/Ii or  = 1/Ci 
as a normalization factor instead of the traditional  = 1. 
This approach assigns a large statistical weight to sam- 
ples with low concentrations of target elements, which 
increases the measurement accuracy in cases with low 
concentrations. However, it also reduces the accuracy in 
cases with high concentrations [2,13,14]. Thus, it is bet- 
ter to use two sets of coefficients calculated using the 
least-squares method  = 1/Ci and  = 1 to estimate low 
and high concentrations, respectively.  

2.3. Control of Stability for Calibrated Coupling 
Equations 

In view of the large number of reference samples needed 
for calibration of coupling equations, the analysis is not 
so impressive. The correction coefficients appear to be 
variables reflecting variations in experimental conditions. 
Thus, a regular control procedure is required. It should 
also be stressed that calculation of aij coefficients using 
the least-squares method does not consider the real 
physical effects. Variations in the intensity of analytical 
lines within random experimental error significantly af- 
fect the coefficients. In some cases, this could lead even 
to a change in sign for the coefficients. Despite this effect, 
the concentration of a target element estimated using 
different coefficients might be the same (within random 
error). Checking of the stability of the correction coeffi- 
cients is thus an essential part of experimental analysis. 
Checking is carried out using reference samples, with the 
frequency determined by the accuracy required. The 
lower is Vext, the more frequent checks should be.  

Registration of all the reference samples makes the 
calibration procedure rather complicated. To facilitate 
this procedure, the following steps are proposed. First, 
the intensity of the analytical lines is measured for all the 
reference samples with calculation of the correction co- 
efficients aij (i.e. calibration of the coupling equation). 
Then, using measured Ij, values and the calibrated equa- 
tion, new conditional concentrations Сcond are derived for 
the set of reference samples [15]. The use of Сcond makes 
it possible to reduce the number (k) of samples and thus 
control the stability of the equation coefficients. If the 
reproducibility for measurement of the intensity Ij 
(equipment error Veq) is significantly less than Vext, k = l 
+ 2. If this condition is not satisfied (i.e., Veq is only 
slightly less than Vext), k = 2l. Note that the number k 
must include models with extreme contents of j elements.  

3. Theoretical Coupling Equations 

3.1. Method of Fundamental Parameters 

The method of fundamental parameters (FP) is based on 
the analyte content calculated using the fundamental ex- 
pression for the fluorescence intensity. It is generally 
recognized that this method was proposed by Criss and 
Birks [16,17], but it was first introduced by Paramonov 
[18]. Later, the method was applied by V. Afonin and 
Gunicheva [19,20] for the analysis of silicate in rocks 
and by G.Pavlinsky and Vladimirova [21] for the analy- 
sis of steel samples. The advantage of the FP method is 
that only one reference sample is required. As pointed 
out by Criss [17], only samples of pure materials (con- 
sisting of atoms of the target elements) are used for cali- 
bration. Thus, the FP method of is sometimes called 
“standardless”, although it is difficult to agree with this, 
since “clean elements” are actually used as reference 
samples. In the FP method the intensities of analytical 
lines of all components j in the reference and control 
samples are measured to derive the concentration of 
samples using Equation (4). The concentrations obtained 
are then normalized by Equation (6) and serve as a first 
approximation of the Cj concentrations for components in 
the samples. Thus, the composition determined is treated 
as the composition of a reference sample used for analy- 
sis of a control sample according to Equation (4). The 
intensity of Ij0 is estimated using an iterative approach. 
First, 0

т
jI  is calculated according to Equation (4) and 

then concentration jC  is evaluated using Equation (5). 
Normalization by Equation (6) then yields a corrected 
value for the concentration that is used to estimate 0

t
jI  

again according to Equation (1) and the process is re- 
peated unless Equation (6) is satisfied. Thus, the iterative 
procedure matches the chemical composition of the ref- 
erence sample to that of the control sample in a stepwise 
manner using the theoretical value 0

t
jI  as the denomi- 

nator and the experimental value Ijх as the numerator in 
Equation (4).  

The FP method has never been very popular for XRF 
because of the complicated calculation technique. More-
over, when high accuracy is required (<1%), the FP 
method, as a rule, is complemented by additional correc-
tion with the use of real samples of composition close to 
the test samples [22].  

3.2. Method for Theoretical Corrections 

Using the theoretical correction method high-speed com- 
putation is only necessary in the development stage of 
the procedure. This method was proposed by Shiraiwa 
and Fujino [23]. Using the intensity Ij measured for the 
analytical line of element j it yields the corrected value: 
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where ΔCj is the difference in Cj between the control and 
reference samples and aij are theoretical correction coef-
ficients obtained as follows: 

    0 2j j
ij i i j i ia I I C I I    0          (8) 

where 0
iI  and j

iI  are the intensities of the analytical 
lines for element i calculated by fundamental expression 
for reference and hypothetical samples, respectively. The 
latter are produced on the basis of reference samples but 
with adjusted Cj (the concentration of the dominant ele-
ment in this sample is reduced by ΔCj). Equation (8) has 
a real physical meaning. The coefficients aij reflect the 
relative change in intensity of the analytical line for ele-
ment i if the concentration of element j in the sample 
changes by 1%. 

Hypothetical samples are produced for n – 1 compo-
nents of a sample. The intensity of the analytical lines for 
all j elements are corrected in accordance with Equation 
(7) to take into account the interference effect for all 
elements. Then Equation (4) is applied to calculate the 
concentration of target elements (Ij0 and Cj0 in a reference 
sample). If the concentration of j elements varies signifi-
cantly, analysis is carried out using a calibration curve 
obtained for theoretical intensities Ij

t estimated via the 
fundamental expression for hypothetical samples. These 
samples are produced on the basis of reference samples 
that differ in Сj compared to control samples within a 
certain margin. Concentrations are calculated using an 
iterative procedure. 

To summarize, theoretical corrections require the de-
velopment of an appropriate analytical methodology with 
correction coefficients and a calibration curve based on a 
reference sample prior to experiments. The correction 
coefficients obviously depend on the chemical composi-
tion of the reference sample. For example, the effect of 
Fe on the intensity of the NiKα-line is characterized by 
the correction coefficient, which was estimated to be 
aNiFe = –3.70 and aNiFe = –2.56 for regular and manganese 
bronze, respectively [24]. Therefore, it is desirable that 
the chemical composition of the reference sample is 
close to that of the control sample to decrease the influ-
ence of this dependence on the correctness of XRF re-
sults. 

The dependence of aij on the chemical composition 
generally leads to more complicated coupling equations. 
For example, Gunicheva et al. [25] proposed the follow- 
ing formalism: 

0 1ij i ijk ka a a C a C                  (9) 

where as that of Tertian is as follows [26]: 
*

0ij ijk ka a a C                 (10) 
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where Cm = 1 – Ci and Ck is the concentration in the third 
control sample of element k. The values of the aijk coeffi-
cients characterize the effect of the third k components 
on aij and their calculation is based on ternary and binary 
hypothetical compositions. 

4. Semi Empirical Coupling Equations 

In this method one part of the coefficients is obtained 
theoretically and the other one is determined empirically. 
There were several such methods applied for XRF 
[27-30], although one is favored the method of De Jongh 
[30]. In this method, the coefficients aij are determined 
theoretically by Equation (8), and the calibration curve is 
derived by analysis of reference samples of known ele-
mental composition that are close to control samples. 

To explain the physical meaning of the calculation 
procedure in the De Jongh method, consider the follow-
ing case. The intensities of analytical lines j elements (Ij0) 
measured for a reference sample are corrected using 
Equation (7) to take into account interference effects. 
Corrected corr

0jI  values are then used to derive the cali-
bration curve for determining the concentration of target 
elements in the control sample, with appropriate correc-
tion using Equation (7). 

In this method it is more convenient to use concentra-
tions ( *

jC ) that subsequently corrected for the interfer-
ence effect. The method is carried out as follows. For 
each reference sample, the normalized concentration of 
an i-type element ( ) is calculated as: *

iC

 * 0 * 01i i ij jC C a C            (12) 

where  and 0
iC 0

jC  are the concentrations of elements i 
and j in the reference sample.  is the weighted cor-
rection coefficient calculated according to: 

*
ija

 * 1ij ij ij ja a a C  0

2
i

           (13) 

where aij is the correction coefficient for element i. 
It is worth noting that there is no unique formalism for 

estimation of correction coefficients. Sometimes, Equa-
tions (9) and (10), (11) can be applied, as previously re-
ported in the literature [25,26]. 

The next step is to determine a calibration curve de-
rived from intensities Ii for real reference samples and 
properly calculated concentrations . Generally the 
calibration curve obeys the following law: 

*
iC

* ,i iC a bI dI                (14) 

where a, b and d are constants obtained by the least 
squares method and Ii is the intensity of the analytical 
line for element i observed for a reference sample. 

In experimental analysis, the measurement if intensi- 
ties Ij of analytical lines is provided for all components in 
a control sample and the target concentrations Cj

* are ,     (11) 
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obtained using Equation (14), which are then normalized 
according to Equation (6). This gives a value for the 
concentrations in the first iteration. Then, using a known 
elemental composition, correction coefficients  are 
calculated and concentrations 

*
ija

jC  are obtained for the 
second iteration using the following equation:  

* *1i i ij jC C a C  



            (15) 

The iteration procedure is repeated unless Equation (6) 
is satisfied. Concentrations Ci are calculated using Equa- 
tion (15), and the correction coefficients are obtained 
according to Equations (9)-(11). 

Computer code Quant AS includes the algorithm [31] 
to determine correction coefficients for the chemical 
composition according to: 

 1 2 3 1ij ij ij j ij ja a a C a C            (16) 

where a1ij, a2ij and a3ij are obtained using fundamental 
expression for ternary and binary hypothetical samples. 

Further developments of the correction methodology 
were reported by Broll [32] and Rousseau [33,34], who 
used an algorithm to theoretically calculate the coeffi- 
cients aij from the known composition of a control sam- 
ple. The method is close to the FP method, although rela- 
tive concentrations are derived using an equation similar 
to Equation (14). 

In conclusion, it is important to mention that theoreti- 
cal and semi-empirical methods for coupling equations 
use idealized models for X-ray fluorescence from homo- 
geneous samples. This idealization, although being con- 
tinuously improved [4,6], has definite limitations in that 
real samples are inhomogeneous. A significant increase 
in accuracy was observed when moving from theoretical 
corrections [23] to a semi-empirical approach [30], for 
which the calibration curve was obtained using empirical 
intensities Ii, or, as suggested by Molchanova et al. [35], 
the empirical intensities e

iI  can be transformed to theo- 
retical intensities t

iI : 

 2

0 1 2
1

n
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i i i

j
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e
ij jI a a I a I a I
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where a0, a1, a2, aij are calculated by the least-squares 
method for real reference samples. 

Note that it is of primary importance to link the theo- 
retical and experimental results in this step, since the 
theoretical approach is not as important in improving the 
accuracy of the correction coefficients, which are ob- 
tained from the ratio of intensities (Ii

j and Ii
0) measured 

for samples of similar chemical composition. 

5. Conclusion 

The analysis of coupling equations was performed fo- 

cusing their applicability to determination of correction 
coefficients. Based on this, recommendations on the op-
timum conditions for the X-ray fluorescence analysis for 
materials with variable physical and chemical properties 
were given. 
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