Solving the Class Equation $x^{d}=\beta$ in an Alternating Group for Each $\beta \in C^{\alpha} \cap H_{n}^{c}$ and $n>1$

Shuker Mahmood ${ }^{1,2}$, Andrew Rajah ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Science, University of Basra, Basra, Iraq
${ }^{2}$ School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia
Email: shuker.alsalem@gmail.com, andy@cs.usm.my

Received March 6, 2012; revised April 1, 2012; accepted May 1, 2012

Abstract

The main purpose of this paper is to solve the class equation $x^{d}=\beta$ in an alternating group, (i.e. find the solutions set $X=\left\{x \in A_{n} \mid x^{d} \in A(\beta)\right\}$) and find the number of these solutions $|X|$ where β ranges over the conjugacy class $A(\beta)$ in A_{n} and d is a positive integer. In this paper we solve the class equation $x^{d}=\beta$ in A_{n} where $\beta \in H_{n}^{c} \cap C^{\alpha}$, for all $n>1 . H_{n}^{c}$ is the complement set of H_{n} where $H_{n}=\left\{C^{\alpha}\right.$ of $S_{n} \mid n>1$, with all parts α_{k} of α are different and odd $\}$. C^{α} is conjugacy class of S_{n} and form class C^{α} depends on the cycle type α of its elements If $\lambda \in C^{\alpha}$ and $\lambda \in H_{n} \cap C^{\alpha}$, then C^{α} splits into the two classes $C^{\alpha \pm}$ of A_{n}.

Keywords: Alternating Groups; Permutations; Conjugate Classes; Cycle Type; Frobenius Equation

1. Introduction

The Frobenius equation $x^{d}=\beta$ in finite groups was introduced by G. Frobenius and then was studied by many others such as ([1-4]). Where they dealt with some types of finite groups like finite cyclic groups, finite p groups, Wreath products of finite groups, etc. Choose any $\beta \in S_{n}$ and write it as $\gamma_{1} \gamma_{2} \cdots \gamma_{c(\beta)}$. With γ_{i} disjoint cycles of length α_{i} and $c(\beta)$ is the number of disjoint cycle factors including the 1 -cycle of β. Since disjoint cycles commute, we can assume that $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{c(\beta)}$. Therefore $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{c(\beta)}\right)$ is a partition of n and it is call cycle type of β. Let $C^{\alpha} \subset S_{n}$ be the set of all elements with cycle type α, then we can determine the conjugate class of $\beta \in S_{n}$ by using cycle type of β, since each pair of λ and β in S_{n} are conjugate if they have the same cycle type (see [5]). Therefore, the number of conjugacy classes of S_{n} is the number of partitions of n. However, this is not necessarily true in an alternating group. Let $\beta=(124)$ and $\lambda=(142)$ are two permutations in S_{4} we have they are belong to the same conjugate class $C^{\alpha}=[1,3]$ in S_{4} (i.e. $C^{\alpha}(\beta)=C^{\alpha}(\lambda)$) since

$$
\begin{aligned}
\alpha(\beta) & =\left(\alpha_{1}(\beta), \alpha_{2}(\beta)\right)=(1,3) \\
& =\left(\alpha_{1}(\lambda), \alpha_{2}(\lambda)\right)=\alpha(\lambda)
\end{aligned}
$$

that means they have the same cycle type but in fact λ and β are not conjugate in A_{4}, also let
$\beta=(123)(456)(789)$ and $\lambda=\left(\begin{array}{ll}5 & 7\end{array}\right)(169)(248)$ in S_{9} we have they are belong to the same conjugate class $C^{\alpha}=\left[3^{3}\right]$ in S_{4} since $\alpha(\beta)=(3,3,3)=\alpha(\lambda)$ but here they are conjugate in A_{9}. So from the first and second examples we consider it is not necessarily if two permutations have the same cycle type are conjugate in A_{n} therefore in this work we discuss in detail the conjugacy classes in an alternating group and we denote to conjugacy class of β in A_{n} by $A(\beta)$. Also we introduce some theorems to solve the class equation $x^{d}=\beta$ in A_{n} where $\beta \in H_{n}^{c} \cap C^{\alpha}$, for all $n>1$.

1.1. Definition [6]

A partition α is a sequence of nonnegative integers $\left(\alpha_{1}, \alpha_{2}, \cdots\right)$ with $\alpha_{1} \geq \alpha_{2} \geq \cdots$ and $\sum_{i=1}^{\infty} \alpha_{i}<\infty$. The length $l(\alpha)$ and the size $|\alpha|$ of α are defined as

$$
l(\alpha)=\max \left\{i \in N ; \alpha_{i} \neq 0\right\}
$$

and $|\alpha|=\sum_{i=1}^{\infty} \alpha_{i}$. We set $\alpha \vdash n=\{\alpha$ partition; $|\alpha|=n\}$ for $n \in N$. An element of $\alpha \vdash n$ is called a partition of n.

1.2. Remark [6]

We only write the non zero components of a partition. Choose any $\beta \in S_{n}$ and write it as $\gamma_{1} \gamma_{2} \cdots \gamma_{c(\beta)}$. With γ_{i} disjoint cycles of length α_{i} and $c(\beta)$ is the number of disjoint cycle factors including the 1-cycle of β. Since disjoint cycles commute, we can assume that $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{c(\beta)}$. Therefore $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{c(\beta)}\right)$ is a partition of n and each α_{i} is called part of α.

1.3. Definition [6]

We call the partition

$$
\alpha=\alpha(\beta)=\left(\alpha_{1}(\beta), \alpha_{2}(\beta), \cdots, \alpha_{c(\beta)}(\beta)\right)_{i}
$$

the cycle type of β.

1.4. Definition [6]

Let α be a partition of n. We define $C^{\alpha} \subset S_{n}$ to be the set of all elements with cycle type α.

1.5. Definition [6]

Let $\beta \in S_{n}$ be given. We define $c_{m}=c_{m}^{(n)}=c_{m}^{(n)}(\beta)$ to be the number of cycles of length m of β.

1.6. Remarks

1) If $\beta \in C^{\alpha}$, then we write $C^{\alpha}=C^{\alpha}(\beta)$.
2) The relationship between partitions and c_{m} is as follows: if $\beta \in C^{\alpha}$ is given then $c_{m}^{(n)}(\beta)=\left|\left\{i: \alpha_{i}=m\right\}\right|$, (see [6])
3) The cardinality of each $C^{\alpha}=C^{\alpha}(\beta)$ can be found as follows: $\left|C^{\alpha}\right|=\frac{n!}{z_{\alpha(\beta)}}$ with $z_{\alpha(\beta)}=\prod_{r=1}^{n} r^{c_{r}}\left(c_{r}\right)!$ and $c_{r}=c_{r}^{(n)}(\beta)=\left|\left\{i: \alpha_{i}=r\right\}\right|$, (see [7]).
4) $C^{\alpha}(\beta)$ splits into two A_{n}-classes of equal order iff $n>1$, and the non-zero parts of $\alpha(\beta)$ are different and odd, in every other case $C^{\alpha}(\beta)$ does not split, (see [8]).

1.7. Lemma [9]

Let p prime number and $\left[a^{r}\right]$ a conjugate class of symmetric group. If p does not divide a, then the solutions of $x^{p} \in\left[a^{r}\right]$ are:

1) $\left[a^{r}\right]$, if $1 \leq r<p$
2) $\left[a^{r}\right],\left[(p a), a^{r-p}\right],\left[(p a)^{2}, a^{r-2 p}\right], \cdots,\left[(p a)^{m}, a^{r-m p}\right]$ if $m p \leq r<(m+1) p$

1.8. Lemma [9]

Let p and q be different prime numbers and $\left[a^{r}\right] \mathrm{a}$
conjugate class of symmetric group. If $p \mid a$ and q does not divide a, then the solutions of $x^{p q} \in\left[a^{r}\right]$ are:

1) $\left[(p a)^{i},(p q a)^{j}\right]$, where i and j are solutions of the equation $i+q j=\frac{r}{p}$ if $p \mid r$.
2) No solution if p does not divide r.

1.9. Lemma [9]

Let p and q be different prime numbers and $\left[a^{r}\right]$ a conjugate class in S_{n}. If p does not divide a and q does not divide a, then the solutions of $x^{p q} \in\left[a^{r}\right]$ are $\left[a^{i},(p a)^{i},(q a)^{k},(p q a)^{l}\right]$, where i, j, k and l are nonnegative integers and solutions of the equation $i+p j+q k$ $+p q l=r$.

2. Conjugacy Class $\boldsymbol{A}(\boldsymbol{\beta})$ of $\boldsymbol{A}_{\boldsymbol{n}}$ [10]

Let $\beta \in C^{\alpha}$, where β is a permutation in an alternating group. We define the $A(\beta)$ conjugacy class of β in A_{n} by:

$$
\begin{aligned}
A(\beta) & =\left\{\gamma \in A_{n} \mid \gamma=t \beta t^{-1} ; \text { for some } t \in A_{n}\right\} \\
& = \begin{cases}C^{\alpha}, & \text { if } \beta \notin H_{n} \\
C^{\alpha+} \text { or } C^{\alpha-}, & \text { if } \beta \in H_{n}\end{cases}
\end{aligned}
$$

where $H_{n}=\left\{C^{\alpha}\right.$ of $S_{n} \mid n>1$, with all parts α_{k} of α different and odd $\}$.

2.1. Remarks

1) $\beta \in H_{n} \Rightarrow \beta \in A_{n}$.
2) $\beta \in C^{\alpha} \cap H_{n}^{c} \cap A_{n} \Rightarrow A(\beta)=C^{\alpha}$, where H_{n}^{c} is complement of H_{n}.
3) $\beta \in C^{\alpha} \cap H_{n} \Rightarrow \beta \in A_{n}$ and C^{α} split into two classes $C^{\alpha \pm}$ of A_{n}.
4) If $\beta, \lambda \in C^{\alpha} \cap H_{n}$, and $\lambda \in C^{\alpha+}$, then

$$
A(\beta)= \begin{cases}C^{\alpha+} & \text { if } \beta \approx \lambda \\ C^{\alpha-} & O \cdot W\end{cases}
$$

5) If $n \in \theta=\{1,2,5,6,10,14\}$, then for each $\beta \in A_{n}$, β is conjugate to β^{-1} in $A_{n}\left(\beta \approx{\widetilde{A_{n}}}^{-1}\right)$.

2.2. Definition

Let $F_{n}=\left\{C^{\alpha}\right.$ of $S_{n} \mid$ the number of parts α_{k} of α with the property $\alpha_{k} \equiv 3(\bmod 4)$ is odd\}. Then, for each $\beta \in H_{n} \cap C^{\alpha} \cap F_{n}, C^{\alpha \pm}$ of A_{n} is defined by

$$
\begin{aligned}
& C^{\alpha+}=\left\{\lambda \in A_{n} \mid \lambda=\gamma \beta \gamma^{-1} ; \text { for some } \gamma \in A_{n}\right\}=A(\beta), \\
& C^{\alpha-}=\left\{\lambda \in A_{n} \mid \lambda=\gamma \beta^{-1} \gamma^{-1} ; \text { for some } \gamma \in A_{n}\right\}=A\left(\beta^{-1}\right) .
\end{aligned}
$$

2.3. Definition

Let $\overline{F_{n}}=\left\{C^{\alpha}\right.$ of $S_{n} \mid$ the number of parts α_{k} of α with the property $\alpha_{k} \equiv 3(\bmod 4)$ is even $\}$. Then, for each $\beta \in H_{n} \cap C^{\alpha} \cap \overline{F_{n}}, C^{\alpha \pm}$ of A_{n} is defined by
$C^{\alpha+}=\left\{\lambda \in A_{n} \mid \lambda=\gamma \beta \gamma^{-1} ;\right.$ for some $\left.\gamma \in A_{n}\right\}=A(\beta)$,
$C^{\alpha-}=\left\{\lambda \in A_{n} \mid \lambda=\gamma \beta^{-1} \gamma^{-1} ;\right.$ for some $\left.\gamma \in A_{n}\right\}=A\left(\beta^{\#}\right)$,
where $\beta^{\#}$ does not conjugate to β.

3. Results for Even Permutations in $\boldsymbol{H}_{n}^{\boldsymbol{c}}$

3.1. Theorem

Let $A(\beta)$ be the conjugacy class of β in A_{n}. If p is a prime number and does not divide $a, \beta \in\left[a^{r}\right] \cap H_{n}^{c}$, where $\left[a^{r}\right]$ is a class of S_{n}, then the solutions of $x^{p} \in A(\beta)$ are

1) $\left[a^{r}\right]$ if $(1 \leq r<p)$ and (a is odd or $(a$ and $r)$ are even),
2) $\left[a^{r}\right],\left[(p a), a^{r-p}\right],\left[(p a)^{2}, a^{r-2 p}\right], \cdots,\left[(p a)^{m}, a^{r-m p}\right]$ if [(a and p) are odd) or (p is odd and (a and r) are even)] and $[m p \leq r<(m+1) p]$,
3) $\left[a^{r}\right],\left[(p a)^{2}, a^{r-2 p}\right],\left[(p a)^{4}, a^{r-4 p}\right], \cdots$,

$$
\left[(p a)^{m}, a^{r-m p}\right]
$$

if [$(a$ is odd and p is even) or (a, p and r are even)] and [$m p \leq r<(m+1) p$ and m is even],
4) $\left[a^{r}\right],\left[(p a)^{2}, a^{r-2 p}\right],\left[(p a)^{4}, a^{r-4 p}\right], \cdots$,

$$
\left[(p a)^{(m-1)}, a^{r-(m-1) p}\right]
$$

if [$(a$ is odd and p is even) or (a, p and r are even)] and [$m p \leq r<(m+1) p$ and m is odd],
5) $\left[(p a), a^{r-p}\right],\left[(p a)^{3}, a^{r-3 p}\right], \cdots,\left[(p a)^{m}, a^{r-m p}\right]$ if [$(a$ and $p)$ are even and r is odd] and $[m p \leq r<(m+1) p$ and m is odd],
6) $\left[(p a), a^{r-p}\right],\left[(p a)^{3}, a^{r-3 p}\right], \cdots,\left[(p a)^{(m-1)}, a^{r-(m-1) p}\right]$
if $[(a$ and $p)$ are even and r is odd $)$] and
[$m p \leq r<(m+1) p$ and m is even], or
7) Does not exist, if [$(a$ is even and (p and r) are odd].

Proof

Given that $\beta \in\left[a^{r}\right] \cap H_{n}^{c} \cap A_{n}, A(\beta)=\left[a^{r}\right]$, then by (1.7), the solutions of $x^{p} \in A(\beta)$ in S_{n} are
a) $\left[a^{r}\right]$, if $1 \leq r<p$, or $\left[a^{r}\right]$,
b) $\left[(p a), a^{r-p}\right],\left[(p a)^{2}, a^{r-2 p}\right], \cdots,\left[(p a)^{m}, a^{r-m p}\right]$ if $m p \leq r<(m+1) p$.

1) Assume $(1 \leq r<p)$ and (a is odd or (a and r) are even), then from a), $\left[a^{r}\right]$ is the solution set of $x^{p} \in A(\beta)$ in S_{n}. Let $\lambda \in\left[a^{r}\right]$. If a is odd and $\lambda=\gamma_{1} \gamma_{2} \cdots \gamma_{r}$, where $\left|\left\langle\gamma_{i}\right\rangle\right|=a$ (odd) for each $(1 \leq i \leq r)$, then γ_{i} is a product of an even number similar to T_{i} of transpositions for all $(1 \leq i \leq r)$. For any r (odd or even), λ is a product of $\left(T_{1}+T_{2}+\cdots+T_{r}\right)=$ (even) number of transpositions $\Rightarrow \lambda \in A_{n}$. If a and r are even and $\lambda=\gamma_{1} \gamma_{2} \cdots \gamma_{r}$, where $\left|\left\langle\gamma_{i}\right\rangle\right|=a$ (even) for each $(1 \leq i \leq r)$, then γ_{i} is a product of an odd number similar to T_{i} of transpositions for all $(1 \leq i \leq r) \Rightarrow \lambda$ is a product of
$\left(T_{1}+T_{2}+\cdots+T_{r}\right)=$ (even) number of transpositions \Rightarrow $\lambda \in A_{n}$, then the solution set of $x^{p} \in A(\beta)$ in A_{n} is $\left[a^{r}\right]$.
2) Assume [(a and p) are odd) or (p is odd and (a and r) are even)] and $m p \leq r<(m+1) p$, then from b),

$$
\left[a^{r}\right],\left[(p a), a^{r-p}\right],\left[(p a)^{2}, a^{r-2 p}\right], \cdots,\left[(p a)^{m}, a^{r-m p}\right]
$$

are solutions of $x^{p} \in A(\beta)$ in S_{n}. Let $\lambda \in\left[a^{r}\right] \Rightarrow \lambda \in A_{n}$, considering that (a is odd or (a and r) are even) and for each $\lambda \in\left[(p a)^{k}, a^{r-k p}\right],(1 \leq k \leq m)$. If a and p are odd, then $\lambda=\mu \gamma$, where $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{r-k p}$ and $\left|\left\langle\gamma_{i}\right\rangle\right|=a($ odd $), \quad \forall(1 \leq i \leq r-k p) \Rightarrow \gamma_{i}$ is a product of an even number of transpositions for all, $(1 \leq i \leq r-k p) \Rightarrow \gamma$ is a product of an even number of transpositions, and $\mu=\mu_{1} \mu_{2} \cdots \mu_{k}$, where $\left|\left\langle\mu_{j}\right\rangle\right|=a p \quad$ (odd),
$\forall(1 \leq j \leq k) \Rightarrow \mu_{j}$ is a product of an even number of transpositions for all and $(1 \leq j \leq k) \Rightarrow \mu$ is a product of an even number of transpositions $\Rightarrow \lambda \in A_{n}$. If (p is odd and (a and r) are even), then γ_{i} is a product of an odd number similar to L_{i} of transpositions,
$\forall(1 \leq i \leq r-k p)$. Moreover, $\left|\left\langle\mu_{j}\right\rangle\right|=a p$ (even), and $\forall(1 \leq j \leq k) \Rightarrow \mu_{j}$ is a product of an odd number similar to T_{j} of transpositions for all $(1 \leq j \leq k)$. If k is odd, then λ is a product of $\left(L_{1}+L_{2}+\cdots+L_{r-k p}\right)+$ $\left(T_{1}+T_{2}+\cdots+T_{k}\right)=($ odd $)+($ odd $)=($ even $)$ number of transpositions $\Rightarrow \lambda \in A_{n}$. If k is even, then λ is a product of $\left(L_{1}+L_{2}+\cdots+L_{r-k p}\right)+\left(T_{1}+T_{2}+\cdots+T_{k}\right)=$ (even) + (even) $=$ (even) number of transpositions $\Rightarrow \lambda \in A_{n}$, then the solutions of $x^{p} \in A(\beta)$ in A_{n} are

$$
\left[a^{r}\right],\left[(p a), a^{r-p}\right],\left[(p a)^{2}, a^{r-2 p}\right], \cdots,\left[(p a)^{m}, a^{r-m p}\right] .
$$

$3)$ and 4) Assume [(a is odd and p is even) or (a, p, and r are even)] and $(m p \leq r<(m+1) p)$. Then, from b$)$, $\left[a^{r}\right],\left[(p a), a^{r-p}\right]$, and $\left[(p a)^{2}, a^{r-2 p}\right], \cdots$, $\left[(p a)^{m}, a^{r-m p}\right]$ are solutions of $x^{p} \in A(\beta)$ in S_{n}. Let $\lambda \in\left[a^{r}\right] \Rightarrow \lambda \in A_{n},[a$ is odd or (a and r) are even]. For each $\lambda \in\left[(p a)^{k}, a^{r-k p}\right],(1 \leq k \leq m)$ if $(a$ is odd and p is even) $\Rightarrow \lambda=\mu \gamma$, where $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{r-k p}$ and $\left|\left\langle\gamma_{i}\right\rangle\right|=a$ (odd), $\forall(1 \leq i \leq r-k p) \Rightarrow \gamma_{i}$ is a product of an even number similar to L_{i} of transpositions, $(1 \leq i \leq r-k p)$, and $\mu=\mu_{1} \mu_{2} \cdots \mu_{k}$, where $\left|\left\langle\mu_{j}\right\rangle\right|=a p$ (even),
$\forall(1 \leq j \leq k) \Rightarrow \mu_{j}$ is a product of an odd number similar to T_{j} of transpositions for all $(1 \leq j \leq k)$. If k is odd, then λ is a product of $\left(L_{1}+L_{2}+\cdots+L_{r-k p}\right)+$ $\left(T_{1}+T_{2}+\ldots+T_{k}\right)=($ even $)+($ odd $)=($ odd $)$ number of transpositions $\Rightarrow \lambda \notin A_{n}$. If k is even, then λ is a product of $\left(L_{1}+L_{2}+\cdots+L_{r-k p}\right)+\left(T_{1}+T_{2}+\ldots+T_{k}\right)=$ (even) $+($ even $)=($ even $)$ number of transpositions \Rightarrow $\lambda \in A_{n}$. If (a, p, and r are even), then $\lambda=\mu \gamma$, where $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{r-k p}$ and $\left|\left\langle\gamma_{i}\right\rangle\right|=a$ (even),
$\forall(1 \leq i \leq r-k p) \Rightarrow \gamma_{i}$ is a product of an odd number similar to L_{i} of transpositions, $(1 \leq i \leq r-k p)$ and $\mu=\mu_{1} \mu_{2} \cdots \mu_{k}$, where $\left|\left\langle\mu_{j}\right\rangle\right|=a p$ (even),
$\forall(1 \leq j \leq k) \Rightarrow \mu_{j}$ is a product of an odd number similar to T_{j} of transpositions for all $(1 \leq j \leq k)$. If k is odd, then λ is a product of $\left(L_{1}+L_{2}+\cdots+L_{r-k p}\right)+$ $\left(T_{1}+T_{2}+\ldots+T_{k}\right)=($ even $)+($ odd $)=($ odd $)$ number of transpositions $\Rightarrow \lambda \notin A_{n}$. If k is even, then λ is a product of $\left(L_{1}+L_{2}+\cdots+L_{r-k p}\right)+\left(T_{1}+T_{2}+\ldots+T_{k}\right)=$ (even) + (even) $=$ (even) number of transpositions $\Rightarrow \lambda \in A_{n}$, then the solutions of $x^{p} \in A(\beta)$ in A_{n} are

$$
\left[a^{r}\right],\left[(p a)^{2}, a^{r-2 p}\right],\left[(p a)^{4}, a^{r-4 p}\right], \cdots,\left[(p a)^{m}, a^{r-m p}\right]
$$

(if m is even) and

$$
\begin{aligned}
& {\left[a^{r}\right],\left[(p a)^{2}, a^{r-2 p}\right],\left[(p a)^{4}, a^{r-4 p}\right], \cdots,} \\
& {\left[(p a)^{(m-1)}, a^{r-(m-1) p}\right]}
\end{aligned}
$$

(if m is odd).
5) and 6) Assume [(a and p) are even and r is odd)] and $[(m p \leq r<(m+1) p)]$. From b) \Rightarrow

$$
\left[a^{r}\right],\left[(p a), a^{r-p}\right],\left[(p a)^{2}, a^{r-2 p}\right], \cdots,\left[(p a)^{m}, a^{r-m p}\right],
$$

are solutions of $x^{p} \in A(\beta)$ in S_{n}. Let

$$
\lambda \in\left[a^{r}\right] \Rightarrow \lambda=\gamma_{1} \gamma_{2} \cdots \gamma_{r} \Rightarrow\left|\left\langle\gamma_{i}\right\rangle\right|=a \quad \text { (even) }
$$

$(1 \leq i \leq r) \Rightarrow \gamma_{i}$ is a product of an odd number similar to T_{i} of transpositions for all, $(1 \leq i \leq k) \Rightarrow \lambda$ is a prod-
uct of $\left(T_{1}+T_{2}+\cdots+T_{r}\right)=($ odd $)$ number of transposetions, also for each $\lambda \in\left[(p a)^{k}, a^{r-k p}\right]$, where
$(1 \leq k \leq m) \Rightarrow \lambda=\gamma \beta \Rightarrow \beta=\beta_{1} \beta_{2} \cdots \beta_{r-k p}$, where $\left|\left\langle\beta_{i}\right\rangle\right|=a$ (even), $(1 \leq i \leq r-k p)$ and $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{k}$, where $\left|\left\langle\gamma_{j}\right\rangle\right|=p a$ (even) $(1 \leq j \leq k) \Rightarrow \beta_{i}$, is product of an odd number similar to L_{i} of transpositions for each $(1 \leq i \leq r-k p)$, and γ_{j} is product of an odd number similar to T_{j} of transpositions for each $(1 \leq j \leq k)$. If k is odd, then λ is a product of $\left(L_{1}+L_{2}+\cdots+L_{r-k p}\right)$ $+\left(T_{1}+T_{2}+\cdots+T_{k}\right)=($ odd $)+($ odd $)=($ even $)$ number of transpositions $\Rightarrow \lambda \in A_{n}$. If k is even, then λ is a product of $\left(L_{1}+L_{2}+\cdots+L_{r-k p}\right)+\left(T_{1}+T_{2}+\cdots+T_{k}\right)=$ (odd) + (even) $=$ (odd) number of transpositions \Rightarrow $\lambda \notin A_{n}$. Then, if [(a and p) are even and r is odd)] and $(m p \leq r<(m+1) p)$, then the solutions of $x^{p} \in A(\beta)$ in A_{n} are

$$
\left[(p a), a^{r-p}\right],\left[(p a)^{3}, a^{r-3 p}\right], \cdots,\left[(p a)^{m}, a^{r-m p}\right]
$$

(if m is odd), or

$$
\left[(p a), a^{r-p}\right],\left[(p a)^{3}, a^{r-3 p}\right], \cdots,\left[(p a)^{(m-1)}, a^{r-(m-1) p}\right]
$$

(if m is even).
7) Assume (a is even and (p and r) are odd). For each $\lambda \in\left[a^{r}\right]$ or $\lambda \in\left[(p a)^{k}, a^{r-k p}\right],(1 \leq k \leq m) \Rightarrow \lambda \notin A_{n}$, then there is no solution of $x^{p} \in A(\beta)$ in A_{n}.

3.2. Remarks

Let p and q be different prime numbers and $\left[a^{r}\right]$ a conjugate class of symmetric group. If $p|a, p| r$ and q does not divide a we defined collection of sets of conjugate classes of S_{n} as following:

1) $W=\left\{\left[(p a)^{i},(p q a)^{j}\right] \mid i\right.$ and j are non-negative and solutions of the equation $\left.i+q j=\frac{r}{p}\right\}$.
2) $W_{1}=\{\pi \in W \mid i+j$ is even $\}$.
3) $W_{2}=\{\pi \in W \mid(i$ and j are even $)$
or (i is odd and j is even $)\}$.
4) $W_{3}=\{\pi \in W \mid i+j$ is odd $\}$.
5) $W_{4}=\{\pi \in W \mid(i$ and j are odd $)$
or $(i$ is even and j is odd $)\}$.
*We note that $W=W_{1} \cup W_{3} \quad \& \quad W=W_{2} \cup W_{4}$
** $W_{1} \cap W_{2}=\{\pi \in W \mid i$ and j are even $\}$,

$$
\begin{aligned}
& W_{2} \cap W_{4}=\phi, W_{1} \cap W_{3}=\phi . \\
& W_{1} \cap W_{4}=\{\pi \in W \mid(i \text { and } j \text { are odd })\}, \\
& W_{2} \cap W_{3}=\{\pi \in W \mid i \text { is odd and } j \text { is even }\} . \\
& W_{3} \cap W_{4}=\{\pi \in W \mid i \text { is even and } j \text { is odd }\} .
\end{aligned}
$$

3.3. Remarks

1) If a, p and q are odd, then for each $\mu \in \pi$, where $\pi \in W$ we have μ is even.
2) If a is even, then for each $\mu \in \pi$, where $\pi \in W$ we have (μ is even if $\pi \in W_{1}$) and (μ is odd if $\pi \in W_{3}$).
3) If p is even, then for each $\mu \in \pi$, where $\pi \in W$ we have (μ is even if $\pi \in W_{1}$) and (μ is odd if $\pi \in W_{3}$).
4) If q is even and a, p are odd, then for each $\mu \in \pi$, where $\pi \in W$ we have (μ is even if $\pi \in W_{2}$) and (μ is odd if $\pi \in W_{4}$).

3.4. Theorem

Let $A(\beta)$ be a conjugacy class of β in A_{n}, and $\beta \in\left[a^{r}\right] \cap H_{n}^{c}$, where $\left[a^{r}\right]$ is a class of S_{n}. If p and q are different two prime numbers and $p \mid a$ and q does not divide a, then the solutions of $x^{p q} \in A(\beta)$ in A_{n} are:

1) W if $p \mid r$ and (a, p and q are odd).
2) W_{1} if $p \mid r$ and (a or p is even).
3) W_{2} if $p r$ and (q is even \& (a and p) are odd).
4) Not exist if p does not divide r.
5) Not exist if $p \mid r,(a$ or p is even $)$ and $W=W_{3}$.
6) Not exist if $p \mid r,(q$ is even $\&(a$ and $p)$ are odd $)$ and $W=W_{4}$.

Proof:
Since $\beta \in\left[a^{r}\right] \cap H_{n}^{c} \cap A_{n}, A(\beta)=\left[a^{r}\right]$ and by (1.8) we have that the solution of $x^{p q} \in A(\beta)$ in S_{n} is:
a) W if $p \mid r$.
b) Not exist if p does not divide r.

1) Assume $p \mid r$ and (a, p and q are odd). Then from a) we have W is the solution set of $x^{p q} \in A(\beta)$ in S_{n}. Let $\mu \in \pi$ for each $\pi \in W$, we have μ is even permutation Then the solution set in A_{n} is W.
2) Assume $p \mid r$ and (a or p is even). Then from a) we have W is the solution set of $x^{p q} \in A(\beta)$ in S_{n}. Let $\mu \in \pi$ for each $\pi \in W$, we have (μ is even permutation, if $\pi \in W_{1}$) and (μ is odd permutation, if $\pi \in W_{3}$). Then the solution set in A_{n} is W_{1}.
3) Assume $p \mid r$ and (q is even $\&(a$ and $p)$ are odd). Then from a) we have W is the solution set of $x^{p q} \in A(\beta)$ in S_{n}. Let $\mu \in \pi$ for each $\pi \in W$, we
have (μ is even permutation, if $\pi \in W_{2}$) and (μ is odd permutation, if $\pi \in W_{4}$). Then the solution set in A_{n} is W_{2}.
4) Assume p does not divide r. Then from b) we have no solution of $x^{p q} \in A(\beta)$ in $S_{n} \Rightarrow$ no solution of $x^{p q} \in A(\beta)$ in A_{n}.
$5)$ and 6$)$ it is clear if $p \mid r,(a$ or p is even $)$ and $W=W_{3}$, then $W_{1}=\phi$ and there exists no solution in A_{n}, also if $p \mid r,(q$ is even $\&(a$ and $p)$ are odd $)$ and $W=W_{4}$, then $W_{2}=\phi$ and there exists no solution in A_{n}.

3.5. Remarks

Let p and q be two different prime numbers and $\left[a^{r}\right]$ a conjugate class of symmetric group S_{n}, p does not divide a and q does not divide a we defined a collection of sets of conjugate classes of S_{n} as following:
$D=\left\{\left[a^{i},(p a)^{j},(q a)^{k},(p q a)^{l}\right] \mid i, j, k\right.$ and l
are non-negative integers and satisfying the
equation $i+j p+k q+l p q=r\}$.
$D_{1}=\{\pi \in D \mid i, j, k$ and l are all even or all odd $\}$.
$D_{2}=\{\pi \in D \mid i+j$ is even, $k+i$ is odd and $l+j$ is odd $\}$.
$D_{3}=\{\pi \in D \mid i$ is odd, j is even and $k+l$ is odd $\}$.
$D_{4}=\{\pi \in D \mid i$ is even, j is odd and $k+l$ is odd $\}$.
$D_{5}=\{\pi \in D \mid j+l$ is even $\}$.
$D_{6}=\{\pi \in D \mid k+l$ is even $\}$.
$Q_{1}=\{\pi \in D \mid(i$ and j are even $)$ and $(k+l$ is odd $)\}$.
$Q_{2}=\{\pi \in D \mid(i$ is even and j is odd $)$ and $(k+l$ is even $)\}$.
$Q_{3}=\{\pi \in D \mid(i$ is odd and j is even $)$ and $(k+l$ is even $)\}$.
$Q_{4}=\{\pi \in D \mid(i$ and j are odd $) \operatorname{and}(k+l$ is odd $)\}$.
$Q_{5}=\{\pi \in D \mid j+l$ is odd $\}$.
$Q_{6}=\{\pi \in D \mid k+l$ is odd $\}$.
We can denote D as the following:

- $D=D_{1} \cup D_{2} \cup D_{3} \cup D_{4} \cup Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}$.
- $D=D_{5} \cup Q_{5}$.
- $D=D_{6} \cup Q_{6}$.

3.6. Remarks

1) If a, p and q are odd, then for each $\mu \in \pi$, where
$\pi \in D, \mu$ is even.
2) If a is even, then for each $\mu \in \pi, \mu$ is even if $\pi \in D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$ and μ is odd if $\pi \in Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}$.
3) If p is even and (a and q) are odd, then for each $\mu \in \pi, \mu$ is even if $\pi \in D_{5}$ and μ is odd if $\pi \in Q_{5}$.
4) If q is even and (a and p) are odd, then for each $\mu \in \pi, \mu$ is even if $\pi \in D_{6}$ and μ is odd if $\pi \in Q_{6}$.

3.7. Theorem

Let $A(\beta)$ be the conjugacy class of β in A_{n}, and $\beta \in\left[a^{r}\right] \cap H_{n}^{c}$, where $\left[a^{r}\right]$ is a class of S_{n}, p and q are different two prime numbers. If p does not divide a and q does not divide a, then the solution of $x^{p q} \in A(\beta)$ in A_{n} is

1) D, if a, p and q are odd,
2) Γ, where $\Gamma=D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$, if a is even,
3) D_{5}, if a and q are odd, and p is even,
4) D_{6}, if a and p are odd, and q is even,
5) does not exist, if a iseven, and

$$
D=Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}
$$

6) does not exist, if p is even, a and q are odd, and $D=Q_{5}$, or
7) does not exist, if q is even, a and p are odd, and $D=Q_{6}$.
Proof
Considering that $\beta \in\left[a^{r}\right] \cap H_{n}^{c} \cap A_{n}, \quad A(\beta)=\left[a^{r}\right]$, then by $(2.2 .11), D$ is the solution set of $x^{p q} \in A(\beta)$ in S_{n}.
8) Assume a, p and q are odd. Let $\mu \in \pi$ for each $\pi \in D \Rightarrow \mu$ is even $\Rightarrow \mu \in A_{n}$. Then the solution set in A_{n} is D if a, p and q are odd.
9) Assume a is even. Let $\mu \in \pi$ for each $\pi \in D \Rightarrow \mu$ is even $\Rightarrow \mu \in A_{n}$. Then the solution set in A_{n} is Γ, if a is even.
10) Assume a and q are odd, and p is even. Let $\mu \in \pi$ for each $\pi \in D \Rightarrow \mu$ is even $\Rightarrow \mu \in A_{n}$. Then the solution set in A_{n} is D_{5}, if a and q are odd, and p is even.
11) Assume a and p are odd, and q is even. Let $\mu \in \pi$ for each $\pi \in D \Rightarrow \mu$ is even $\Rightarrow \mu \in A_{n}$. Then the solution set in A_{n} is D_{6}, if a and p are odd, and q is even.
12) Assume a is even and $D=Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4} \Rightarrow$ $\Gamma=\phi$. Then there is no solution in A_{n}.
13) and 7) Assume a and q are odd, p is even, and $D=Q_{5} \Rightarrow D_{5}=\phi$. Then there is no solution in A_{n}, also if a and p are odd, q is even, and $D=Q_{6} \Rightarrow D_{6}=\phi$. Then there is no solution in A_{n}.

3.8. The Number of the Solutions

Assume $\left\{\left\{\lambda_{t}\right\}_{t=1}^{T},\left\{\gamma_{j}\right\}_{j=1}^{k}, \beta\right\}$ are even permutations where
β and $\lambda_{t} \in H_{n}^{c}$ and $\gamma_{j} \in H_{n}$ for all $1 \leq t \leq T$ and $1 \leq j$ $\leq k$. Then we can find the number of the solutions of class equation $x^{d}=\beta$ in A_{n}, where d is a positive integer number as follow:

1) If $\left\{C^{\alpha}\left(\lambda_{t}\right)\right\}_{t=1}^{T} \cup\left\{C^{\alpha+}\left(\gamma_{j}\right), C^{\alpha-}\left(\gamma_{j}\right)\right\}_{j=1}^{k}$ are the solutions, then the number of solutions set is

$$
\sum_{t=1}^{T} \frac{n!}{z_{\alpha\left(\lambda_{t}\right)}}+\sum_{j=1}^{k} \frac{n!}{z_{\alpha\left(\gamma_{j}\right)}}
$$

2) If $\left\{C^{\alpha}\left(\lambda_{t}\right)\right\}_{t=1}^{T}$ are the solutions, then the number of solutions set is

$$
\sum_{t=1}^{T} \frac{n!}{z_{\alpha\left(\lambda_{t}\right)}}
$$

3) If $\left\{C^{\alpha+}\left(\gamma_{j}\right), C^{\alpha-}\left(\gamma_{j}\right)\right\}_{j=1}^{k}$ are the solutions, then the number of solutions set is

$$
\sum_{j=1}^{k} \frac{n!}{z_{\alpha\left(\gamma_{j}\right)}}
$$

3.9. Example

Find the solutions of $x^{p} \in A(\beta)$ in A_{n}, and the number of the solutions.

1) If $p=3$ and $\beta=(12)(34)\left(\begin{array}{ll}5 & 6\end{array}\right)(78)$ in A_{8}.
2) If $p=2$ and $\beta=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)$ in A_{6}.

Solution:

1) Since $\beta \in\left[2^{4}\right] \cap H_{8}^{c}, a=2, r=4, p$ does not divide $a, \quad p m \leq r<(1+m) p$ where, $m=1$.

So a and r are even, and p is odd. Then by (3.1) the solutions of $x^{3} \in A(\beta)$ in A_{8} are $\left[2^{4}\right]$ and $[2,6]$, so the number of solutions is $\frac{(8)!}{2^{4}(4!)}+\frac{(8)!}{2 \times 6}=3465$ permutations.
2) Since $\beta \in\left[3^{2}\right] \cap H_{6}^{c}, a=3, r=2, p$ does not divide $a, \quad p m \leq r<(1+m) p$ where, $m=1$.

Also, since a is odd and p is even. Then by (3.1) the solution set of $x^{2} \in A(\beta)$ in A_{6} is $\left[3^{2}\right]$. So the number of solutions is $\frac{6!}{3^{2} \times 2}=40$ permutations.

3.10. Remark

If $C^{\alpha}(\lambda)$ conjugate class of λ in S_{n} belong to the solution set of class equation $x^{d}=\beta$ in A_{n} and $\lambda \in H_{n}$, then we denote to this set $C^{\alpha}(\lambda)$ by $C^{\alpha}(\lambda)^{ \pm}$or

$$
\left\{C^{\alpha}(\lambda)^{+}, C^{\alpha}(\lambda)^{-}\right\}
$$

3.11. Example

Find the solution of

$$
x^{35} \in A((125)(643)(81015)(71411)(13912))
$$

in A_{15} and the number of the solutions.

Solution:

Let $p=7$ and $q=5$, since

$$
\begin{aligned}
\beta & =\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
6 & 4
\end{array}\right)(81015)(71411)(13912) \\
& \in\left[3^{5}\right] \cap H_{15}^{c} .
\end{aligned}
$$

Then by (3.7) the solutions of

$$
x^{35} \in A((125)(643)(81015)(71411)(13912))
$$

in A_{15} are $\left[3^{5}\right],[15]^{+}$and $[15]^{-}$. So the number of the solutions set is $\frac{(15)!}{3^{5}(5)!}+\frac{(15)!}{15}=87223136000$ permutations.

4. Concluding Remarks

By the Cayley's theorem: Every finite group G is isomorphic to a subgroup of the symmetric group S_{n}, for some $n \geq 1$. Then we can discuss these propositions. Let $x^{d}=g$ be class equation in finite group G and assume that $f: G \cong A_{n}$, for some $n>1$ and $f(g) \in H_{n}^{c} \cap C^{\alpha}$. The first question we are concerned with is: What is the possible value of d provided that there is no solution for $x^{d}=g$ in G ? The second question we are concerned with is: what is the possible value of d provided that there is a solution for $x^{d}=g$ in G ? And then we can find the solution and the number of the solution for $x^{d}=g$ in G by using Cayley's theorem and our theorems in this paper. In another direction, let G be a finite group, and $\pi_{i}(G)=\{g \in G \mid i$ the least positive integer number satisfy $\left.g^{i}=1\right\}$. If $\left|\pi_{i}(G)\right|=k_{i}$, then we write $\pi_{i}(G)=\left\{g_{i 1}, g_{i 2}, \cdots, g_{i k_{i}}\right\}$ and $\Pi=\left\{\pi_{i}(G)\right\}_{i \geq 1}$. For each $g \in G$ and $g_{i j} \in \pi_{i}(G)$ we have $\left(g g_{i j} g^{-1}\right)=1$. By the Cayley's theorem we can suppose that $\left(f: G \cong S_{n}\right)$ or $\left(f: G \cong A_{n}\right)$. Also the questions can be summarized as follows:

1) Is $\Pi=\left\{\pi_{i}(G)\right\}_{i \geq 1}$ collection set of conjugacy classes of G ?
2) Is there some $i \geq 1$, such that $f^{-1}\left(C^{\alpha}\right)=\pi_{i}(G)$ for each C^{α} of A_{n}, where $\left(f: G \cong A_{n}\right)$?
3) Is there some $i \geq 1$, such that $f^{-1}\left(C^{\alpha}\right)=\pi_{i}(G)$ for each C^{α} of S_{n}, where $\left(f: G \cong S_{n}\right)$?
4) If $G \cong S_{n}$ and $p(n)$ is the number of partitions of n, is $|\Pi|=p(n)$?
5) If $G \cong A_{n}$ and A_{n} has m ambivalent conjugacy classes. It is true that is also necessarily G has m ambivalent conjugacy classes?

Finally we will discuss if there is any relation between $F_{n}, \overline{F_{n}}$ and H_{n} in S_{n} and what is the possible value of d provided that there is a solution for $x^{d}=g$ in G where $f(g) \in H_{n} \cap C^{\alpha}$ and for some n to be:

1) $n \in \theta$.
2) $n \notin \theta$.

REFERENCES

[1] H. Ishihara, H. Ochiai, Y. Takegahara and T. Yoshida, "p-Divisibility of the Number of Solutions of $x^{p}=1$ in a Symmetric Group," Annals of Combinatorics, Vol. 5, No. 2, 2001, pp. 197-210. doi:10.1007/PL00001300
[2] N. Chigira, "The Solutions of $x^{d}=1$ in Finite Groups," Journal of Algebra, Vol. 180, No. 3, 1996, pp. 653-661. doi:10.1006/jabr. 1996.0086
[3] R. Brauer, "On a Theorem of Frobenius," American Mathematical Monthly, Vol. 76, No. 1, 1969, pp. 12-15. doi:10.2307/2316779
[4] Y. G. Berkovich, "On the Number of Elements of Given Order in Finite p-Group," Israel Journal of Mathematics, Vol. 73, No. 1, 1991, pp. 107-112. doi:10.1007/BF02773429
[5] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, "Representation Theory of the Symmetric Groups," Cambridge University Press, New York, 2010.
[6] D. Zeindler, "Permutation Matrices and the Moments of Their Characteristic Polynomial," Electronic Journal of Probability, Vol. 15, No. 34, 2010, pp. 1092-1118.
[7] J. J. Rotman, "An Introduction to the Theory of Groups," 4th Edition, Springer-Verlag, New York, 1995.
[8] G. D. James and A. Kerber, "The Representation Theory of the Symmetric Group," Addison-Wesley Publishing, Boston, 1984.
[9] S. A. Taban, "Equations in Symmetric Groups," Ph.D. Thesis, University of Basra, Basra, 2007.
[10] S. Mahmood and A. Rajah, "Solving the Class Equation $x^{d}=\beta$ in an Alternating Group for each $\beta \in H_{n} \cap C^{\alpha}$ and $n \notin \theta$," Journal of the Association of Arab Universities for Basic and Applied Sciences, Vol. 10, No. 1, 2011, pp. 42-50. doi:10.1016/j.jaubas.2011.06.006

