

Solving the Class Equation $x^d = \beta$ in an Alternating Group for Each $\beta \in C^{\alpha} \cap H_n^c$ and n > 1

Shuker Mahmood^{1,2}, Andrew Rajah²

¹Department of Mathematics, College of Science, University of Basra, Basra, Iraq ²School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia Email: shuker.alsalem@gmail.com, andy@cs.usm.my

Received March 6, 2012; revised April 1, 2012; accepted May 1, 2012

ABSTRACT

The main purpose of this paper is to solve the class equation $x^d = \beta$ in an alternating group, (*i.e.* find the solutions set $X = \{x \in A_n | x^d \in A(\beta)\}$) and find the number of these solutions |X| where β ranges over the conjugacy class $A(\beta)$ in A_n and d is a positive integer. In this paper we solve the class equation $x^d = \beta$ in A_n where $\beta \in H_n^c \cap C^\alpha$, for all n > 1. H_n^c is the complement set of H_n where $H_n = \{C^\alpha \text{ of } S_n | n > 1$, with all parts α_k of α are different and odd}. C^α is conjugacy class of S_n and form class C^α depends on the cycle type α of its elements If $\lambda \in C^\alpha$ and $\lambda \in H_n \cap C^\alpha$, then C^α splits into the two classes $C^{\alpha\pm}$ of A_n .

Keywords: Alternating Groups; Permutations; Conjugate Classes; Cycle Type; Frobenius Equation

1. Introduction

The Frobenius equation $x^d = \beta$ in finite groups was introduced by *G*. Frobenius and then was studied by many others such as ([1-4]). Where they dealt with some types of finite groups like finite cyclic groups, finite *p*groups, Wreath products of finite groups, etc. Choose any $\beta \in S_n$ and write it as $\gamma_1 \gamma_2 \cdots \gamma_{c(\beta)}$. With γ_i disjoint cycles of length α_i and $c(\beta)$ is the number of disjoint cycle factors including the 1-cycle of β . Since disjoint cycles commute, we can assume that

$$\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_{c(\beta)}$$
. Therefore $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_{c(\beta)})$ is

a partition of *n* and it is call cycle type of β . Let $C^{\alpha} \subset S_n$ be the set of all elements with cycle type α , then we can determine the conjugate class of $\beta \in S_n$ by using cycle type of β , since each pair of λ and β in S_n are conjugate if they have the same cycle type (see [5]). Therefore, the number of conjugacy classes of S_n is the number of partitions of *n*. However, this is not necessarily true in an alternating group. Let $\beta = (124)$ and $\lambda = (142)$ are two permutations in S_4 we have they are belong to the same conjugate class $C^{\alpha} = [1,3]$ in S_4 (*i.e.* $C^{\alpha}(\beta) = C^{\alpha}(\lambda)$) since

$$\alpha(\beta) = (\alpha_1(\beta), \alpha_2(\beta)) = (1,3)$$
$$= (\alpha_1(\lambda), \alpha_2(\lambda)) = \alpha(\lambda)$$

that means they have the same cycle type but in fact λ and β are not conjugate in A_4 , also let

and $\beta = (1 \ 2 \ 3)(4 \ 5 \ 6)(7 \ 8 \ 9)$ and $\lambda = (5 \ 3 \ 7)(1 \ 6 \ 9)(2 \ 4 \ 8)$ in S_9 we have they are belong to the same conjugate class $C^{\alpha} = \begin{bmatrix} 3^3 \end{bmatrix}$ in S_4 since $\alpha(\beta) = (3,3,3) = \alpha(\lambda)$ but here they are conjugate in A_9 . So from the first and second examples we consider it is not necessarily if two permutations have the same cycle type are conjugate in A_n therefore in this work we discuss in detail the conjugacy classes in an alternating group and we denote to conjugacy class of β in A_n by $A(\beta)$. Also we introduce some theorems to solve the class equation $x^d = \beta$ in A_n where $\beta \in H_n^c \cap C^{\alpha}$, for all n > 1.

1.1. Definition [6]

A partition α is a sequence of nonnegative integers $(\alpha_1, \alpha_2, \cdots)$ with $\alpha_1 \ge \alpha_2 \ge \cdots$ and $\sum_{i=1}^{\infty} \alpha_i < \infty$. The length $l(\alpha)$ and the size $|\alpha|$ of α are defined as

 $l(\alpha) = \max\{i \in N; \alpha_i \neq 0\}$

and $|\alpha| = \sum_{i=1}^{\infty} \alpha_i$. We set $\alpha \vdash n = \{\alpha \text{ partition}; |\alpha| = n\}$ for $n \in N$. An element of $\alpha \vdash n$ is called a partition of n.

1.2. Remark [6]

We only write the non zero components of a partition. Choose any $\beta \in S_n$ and write it as $\gamma_1 \gamma_2 \cdots \gamma_{c(\beta)}$. With γ_i disjoint cycles of length α_i and $c(\beta)$ is the number of disjoint cycle factors including the 1-cycle of β . Since disjoint cycles commute, we can assume that $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_{c(\beta)}$. Therefore $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_{c(\beta)})$ is a partition of *n* and each α_i is called part of α .

1.3. Definition [6]

We call the partition

$$\alpha = \alpha(\beta) = (\alpha_1(\beta), \alpha_2(\beta), \cdots, \alpha_{c(\beta)}(\beta))_i$$

the cycle type of β .

1.4. Definition [6]

Let α be a partition of *n*. We define $C^{\alpha} \subset S_n$ to be the set of all elements with cycle type α .

1.5. Definition [6]

Let $\beta \in S_n$ be given. We define $c_m = c_m^{(n)} = c_m^{(n)} (\beta)$ to be the number of cycles of length *m* of β .

1.6. Remarks

1) If $\beta \in C^{\alpha}$, then we write $C^{\alpha} = C^{\alpha}(\beta)$.

2) The relationship between partitions and c_m is as follows: if $\beta \in C^{\alpha}$ is given then $c_m^{(n)}(\beta) = |\{i : \alpha_i = m\}|$, (see [6])

3) The cardinality of each $C^{\alpha} = C^{\alpha}(\beta)$ can be found as follows: $|C^{\alpha}| = \frac{n!}{z_{\alpha(\beta)}}$ with $z_{\alpha(\beta)} = \prod_{r=1}^{n} r^{c_r} (c_r)!$ and

 $c_r = c_r^{(n)}(\beta) = |\{i : \alpha_i = r\}|, (\text{see}[7]).$

4) $C^{\alpha}(\beta)$ splits into two A_n -classes of equal order iff n > 1, and the non-zero parts of $\alpha(\beta)$ are different and odd, in every other case $C^{\alpha}(\beta)$ does not split, (see [8]).

1.7. Lemma [9]

Let p prime number and $|a^r|$ a conjugate class of symmetric group. If p does not divide a, then the solutions of $x^p \in a^r$ are:

1)
$$\begin{bmatrix} a^r \end{bmatrix}$$
, if $1 \le r < p$
2) $\begin{bmatrix} a^r \end{bmatrix}$, $\begin{bmatrix} (pa), a^{r-p} \end{bmatrix}$, $\begin{bmatrix} (pa)^2, a^{r-2p} \end{bmatrix}$, \cdots , $\begin{bmatrix} (pa)^m, a^{r-mp} \end{bmatrix}$
if $mp \le r < (m+1)p$

1.8. Lemma [9]

Let p and q be different prime numbers and $|a^r|$ a

conjugate class of symmetric group. If p|a and q does not divide *a*, then the solutions of $x^{pq} \in [a^r]$ are:

1) $\left[\left(pa \right)^{i}, \left(pqa \right)^{j} \right]$, where *i* and *j* are solutions of the equation $i + qj = \frac{r}{n}$ if p | r.

2) No solution if p does not divide r.

1.9. Lemma [9]

Let p and q be different prime numbers and $|a^r|$ a conjugate class in S_n . If p does not divide a and q does not divide a, then the solutions of $x^{pq} \in [a^r]$ are $\left[a^{i},(pa)^{i},(qa)^{k},(pqa)^{l}\right]$, where *i*, *j*, *k* and *l* are nonnegative integers and solutions of the equation i + pj + qk+ pql = r.

2. Conjugacy Class $A(\beta)$ of A_n [10]

Let $\beta \in C^{\alpha}$, where β is a permutation in an alternating group. We define the $A(\beta)$ conjugacy class of β in A_n by:

$$A(\beta) = \left\{ \gamma \in A_n \middle| \gamma = t\beta t^{-1}; \text{ for some } t \in A_n \right\}$$
$$= \begin{cases} C^{\alpha}, & \text{if } \beta \notin H_n \\ C^{\alpha+} & \text{or } C^{\alpha-}, & \text{if } \beta \in H_n \end{cases}$$

where $H_n = \{ C^{\alpha} \text{ of } S_n | n > 1 \}$, with all parts α_k of α different and odd}.

2.1. Remarks

1) $\beta \in H_n \Rightarrow \beta \in A_n$. 2) $\beta \in C^{\alpha} \cap H_n^c \cap A_n \Rightarrow A(\beta) = C^{\alpha}$, where H_n^c is complement of H_n .

3) $\beta \in C^{\alpha} \cap H_n^n \Rightarrow \beta \in A_n$ and C^{α} split into two classes $C^{\alpha \pm}$ of A_n .

4) If β , $\lambda \in C^{\alpha} \cap H_n$, and $\lambda \in C^{\alpha+}$, then

$$A(\beta) = \begin{cases} C^{\alpha_{+}} & \text{if } \beta \approx \lambda \\ & A_{n} \\ C^{\alpha_{-}} & O \cdot W \end{cases}$$

5) If
$$n \in \theta = \{1, 2, 5, 6, 10, 14\}$$
, then for each $\beta \in A_n$,
 β is conjugate to β^{-1} in $A_n\left(\beta \underset{A_n}{\approx} \beta^{-1}\right)$.

2.2. Definition

Let $F_n = \{ C^{\alpha} \text{ of } S_n | \text{ the number of parts } \alpha_k \text{ of } \alpha$ with the property $\alpha_k \equiv 3 \pmod{4}$ is odd}. Then, for each $\beta \in H_n \cap C^{\alpha} \cap F_n$, $C^{\alpha \pm}$ of A_n is defined by

$$C^{\alpha+} = \left\{ \lambda \in A_n \, \middle| \, \lambda = \gamma \beta \gamma^{-1}; \text{ for some } \gamma \in A_n \right\} = A(\beta),$$

$$C^{\alpha-} = \left\{ \lambda \in A_n \, \middle| \, \lambda = \gamma \beta^{-1} \gamma^{-1}; \text{ for some } \gamma \in A_n \right\} = A(\beta^{-1}).$$

2.3. Definition

Let $\overline{F_n} = \{C^{\alpha} \text{ of } S_n | \text{the number of parts } \alpha_k \text{ of } \alpha$ with the property $\alpha_k \equiv 3 \pmod{4}$ is even}. Then, for each $\beta \in H_n \cap C^{\alpha} \cap \overline{F_n}$, $C^{\alpha \pm}$ of A_n is defined by $C^{\alpha +} = \{\lambda \in A_n | \lambda = \gamma \beta \gamma^{-1}; \text{ for some } \gamma \in A_n\} = A(\beta),$ $C^{\alpha -} = \{\lambda \in A_n | \lambda = \gamma \beta^{-1} \gamma^{-1}; \text{ for some } \gamma \in A_n\} = A(\beta^{\#}),$ where $\beta^{\#}$ does not conjugate to β .

3. Results for Even Permutations in H_n^c

3.1. Theorem

Let $A(\beta)$ be the conjugacy class of β in A_n . If p is a prime number and does not divide $a, \beta \in [a^r] \cap H_n^c$, where $[a^r]$ is a class of S_n , then the solutions of $x^p \in A(\beta)$ are

1) $[a^r]$ if $(1 \le r < p)$ and (*a* is odd or (*a* and *r*) are even),

2) $[a^r], [(pa), a^{r-p}], [(pa)^2, a^{r-2p}], \dots, [(pa)^m, a^{r-mp}]$ if [((a and p) are odd) or (p is odd and (a and r) are even)]and $[mp \le r < (m+1)p]$.

3)
$$\left[a^{r}\right], \left[\left(pa\right)^{2}, a^{r-2p}\right], \left[\left(pa\right)^{4}, a^{r-4p}\right], \cdots, \left[\left(pa\right)^{m}, a^{r-mp}\right]\right]$$

if [(a is odd and p is even) or (a, p and r are even)] and $[mp \le r < (m+1)p]$ and m is even],

4)
$$\left[a^{r}\right],\left[\left(pa\right)^{2},a^{r-2p}\right],\left[\left(pa\right)^{4},a^{r-4p}\right],\cdots,$$

 $\left[\left(pa\right)^{(m-1)},a^{r-(m-1)p}\right]$

if [(a is odd and p is even) or (a, p and r are even)] and $[mp \le r < (m+1)p]$ and m is odd],

5)
$$\left[(pa), a^{r-p}\right], \left[(pa)^3, a^{r-3p}\right], \dots, \left[(pa)^m, a^{r-mp}\right]$$
 if

[(a and p) are even and r is odd] and [$mp \le r < (m+1)p$ and m is odd],

6)
$$\left[(pa), a^{r-p}\right], \left[(pa)^3, a^{r-3p}\right], \cdots, \left[(pa)^{(m-1)}, a^{r-(m-1)p}\right]$$

if [(a and p) are even and r is odd)] and $[mp \le r < (m+1)p \text{ and } m \text{ is even}], \text{ or }$

7) Does not exist, if [(*a* is even and (*p* and *r*) are odd]. **Proof**

Given that $\beta \in [a^r] \cap H_n^c \cap A_n$, $A(\beta) = [a^r]$, then by (1.7), the solutions of $x^p \in A(\beta)$ in S_n are

a)
$$\lfloor a^r \rfloor$$
, if $1 \le r < p$, or $\lfloor a^r \rfloor$,
b) $\lfloor (pa), a^{r-p} \rfloor, \lfloor (pa)^2, a^{r-2p} \rfloor, \dots, \lfloor (pa)^m, a^{r-mp} \rfloor$ if $mp \le r < (m+1)p$.

1) Assume $(1 \le r < p)$ and (*a* is odd or (*a* and *r*) are even), then from a), $\begin{bmatrix} a^r \end{bmatrix}$ is the solution set of $x^p \in A(\beta)$ in S_n . Let $\lambda \in \begin{bmatrix} a^r \end{bmatrix}$. If *a* is odd and $\lambda = \gamma_1 \gamma_2 \cdots \gamma_r$, where $|\langle \gamma_i \rangle| = a$ (odd) for each $(1 \le i \le r)$, then γ_i is a product of an even number similar to T_i of transpositions for all $(1 \le i \le r)$. For any *r* (odd or even), λ is a product of $(T_1 + T_2 + \cdots + T_r) =$ (even) number of transpositions $\Rightarrow \lambda \in A_n$. If *a* and *r* are even and $\lambda = \gamma_1 \gamma_2 \cdots \gamma_r$, where $|\langle \gamma_i \rangle| = a$ (even) for each $(1 \le i \le r)$, then γ_i is a product of an odd number similar to T_i of transpositions for all $(1 \le i \le r) \Rightarrow \lambda$ is a product of

 $(T_1 + T_2 + \dots + T_r) = (\text{even}) \text{ number of transpositions } \Rightarrow \lambda \in A_n$, then the solution set of $x^p \in A(\beta)$ in A_n is $[a^r]$.

2) Assume [(a and p) are odd) or (p is odd and (a and r) are even)] and $mp \le r < (m+1)p$, then from b),

$$\left[a^{r}\right],\left[\left(pa\right),a^{r-p}\right],\left[\left(pa\right)^{2},a^{r-2p}\right],\cdots,\left[\left(pa\right)^{m},a^{r-mp}\right]$$

are solutions of $x^{p} \in A(\beta)$ in S_{n} . Let $\lambda \in \lfloor a^{r} \rfloor \Rightarrow \lambda \in A_{n}$, considering that (*a* is odd or (*a* and *r*) are even) and for each $\lambda \in \lfloor (pa)^{k}, a^{r-kp} \rfloor$, $(1 \le k \le m)$. If *a* and *p* are odd, then $\lambda = \mu\gamma$, where $\gamma = \gamma_{1}\gamma_{2}\cdots\gamma_{r-kp}$ and $|\langle \gamma_{i} \rangle| = a(\text{odd}), \forall (1 \le i \le r - kp) \Rightarrow \gamma_{i}$ is a product of an even number of transpositions for all, $(1 \le i \le r - kp) \Rightarrow \gamma$ is a product of an even number of transpositions, and

$$\mu = \mu_1 \mu_2 \cdots \mu_k$$
, where $|\langle \mu_j \rangle| = ap$ (odd)

 $\forall (1 \le j \le k) \Rightarrow \mu_j$ is a product of an even number of transpositions for all and $(1 \le j \le k) \Rightarrow \mu$ is a product of an even number of transpositions $\Rightarrow \lambda \in A_n$. If (*p* is odd and (*a* and *r*) are even), then γ_i is a product of an odd number similar to L_i of transpositions,

 $\forall (1 \le i \le r - kp) . \text{ Moreover, } |\langle \mu_j \rangle| = ap \text{ (even), and } \\ \forall (1 \le j \le k) \Rightarrow \mu_j \text{ is a product of an odd number similar to } T_j \text{ of transpositions for all } (1 \le j \le k) . \text{ If } k \text{ is odd, then } \lambda \text{ is a product of } (L_1 + L_2 + \dots + L_{r-kp}) + (T_1 + T_2 + \dots + T_k) = (\text{odd}) + (\text{odd}) = (\text{even}) \text{ number of transpositions } \Rightarrow \lambda \in A_n . \text{ If } k \text{ is even, then } \lambda \text{ is a product of } (L_1 + L_2 + \dots + L_{r-kp}) + (T_1 + T_2 + \dots + T_k) = (\text{even}) + (\text{even}) = (\text{even}) \text{ number of transpositions } \Rightarrow \lambda \in A_n, \text{ then the solutions of } x^p \in A(\beta) \text{ in } A_n \text{ are }$

$$[a^r], [(pa), a^{r-p}], [(pa)^2, a^{r-2p}], \dots, [(pa)^m, a^{r-mp}].$$

3) and 4) Assume [(*a* is odd and *p* is even) or (*a*, *p*, and *r* are even)] and $(mp \le r < (m+1)p)$. Then, from b), $\begin{bmatrix} a^r \end{bmatrix}$, $\begin{bmatrix} (pa), a^{r-p} \end{bmatrix}$, and $\begin{bmatrix} (pa)^2, a^{r-2p} \end{bmatrix}$,..., $\begin{bmatrix} (pa)^m, a^{r-mp} \end{bmatrix}$ are solutions of $x^p \in A(\beta)$ in S_n . Let $\lambda \in \begin{bmatrix} a^r \end{bmatrix} \Rightarrow \lambda \in A_n$, [*a* is odd or (*a* and *r*) are even]. For each $\lambda \in \begin{bmatrix} (pa)^k, a^{r-kp} \end{bmatrix}$, $(1 \le k \le m)$ if (*a* is odd and *p* is even) $\Rightarrow \lambda = \mu\gamma$, where $\gamma = \gamma_1\gamma_2\cdots\gamma_{r-kp}$ and $|\langle \gamma_i \rangle| = a$ (odd), $\forall (1 \le i \le r - kp) \Rightarrow \gamma_i$ is a product of an even number similar to L_i of transpositions, $(1 \le i \le r - kp)$, and $\mu = \mu_1\mu_2\cdots\mu_k$, where $|\langle \mu_j \rangle| = ap$ (even),

 $\forall (1 \le j \le k) \Rightarrow \mu_j \text{ is a product of an odd number similar to } T_j \text{ of transpositions for all } (1 \le j \le k). \text{ If } k \text{ is odd, then } \lambda \text{ is a product of } (L_1 + L_2 + \dots + L_{r-kp}) + (T_1 + T_2 + \dots + T_k) = (\text{even}) + (\text{odd}) = (\text{odd}) \text{ number of transpositions } \Rightarrow \lambda \notin A_n \text{ . If } k \text{ is even, then } \lambda \text{ is a product of } (L_1 + L_2 + \dots + L_{r-kp}) + (T_1 + T_2 + \dots + T_k) = (\text{even}) + (\text{even}) = (\text{even}) \text{ number of transpositions } \Rightarrow \lambda \in A_n \text{ . If } (a, p, \text{ and } r \text{ are even}), \text{ then } \lambda = \mu\gamma \text{ , where } \gamma = \gamma_1 \gamma_2 \cdots \gamma_{r-kp} \text{ and } |\langle \gamma_i \rangle| = a \text{ (even)},$

 $\forall (1 \le i \le r - kp) \Longrightarrow \gamma_i \text{ is a product of an odd number}$ similar to L_i of transpositions, $(1 \le i \le r - kp)$ and $\mu = \mu_1 \mu_2 \cdots \mu_k$, where $|\langle \mu_j \rangle| = ap$ (even),

 $\forall (1 \le j \le k) \Rightarrow \mu_j \text{ is a product of an odd number similar to } T_j \text{ of transpositions for all } (1 \le j \le k). \text{ If } k \text{ is odd, then } \lambda \text{ is a product of } (L_1 + L_2 + \dots + L_{r-kp}) + (T_1 + T_2 + \dots + T_k) = (\text{even}) + (\text{odd}) = (\text{odd}) \text{ number of transpositions } \Rightarrow \lambda \notin A_n. \text{ If } k \text{ is even, then } \lambda \text{ is a product of } (L_1 + L_2 + \dots + L_{r-kp}) + (T_1 + T_2 + \dots + T_k) = (\text{even}) + (\text{even}) = (\text{even}) \text{ number of transpositions} \Rightarrow \lambda \in A_n, \text{ then the solutions of } x^p \in A(\beta) \text{ in } A_n \text{ are } [a^r], [(pa)^2, a^{r-2p}], [(pa)^4, a^{r-4p}], \dots, [(pa)^m, a^{r-mp}],$

(if m is even) and

$$\begin{bmatrix} a^r \end{bmatrix}, \begin{bmatrix} (pa)^2, a^{r-2p} \end{bmatrix}, \begin{bmatrix} (pa)^4, a^{r-4p} \end{bmatrix}, \cdots, \begin{bmatrix} (pa)^{(m-1)}, a^{r-(m-1)p} \end{bmatrix}$$

(if m is odd).

5) and 6) Assume [(a and p) are even and r is odd)] and $\left[\left(mp \le r < (m+1)p\right)\right]$. From b), \Rightarrow

$$\left[a^{r}\right],\left[\left(pa\right),a^{r-p}\right],\left[\left(pa\right)^{2},a^{r-2p}\right],\cdots,\left[\left(pa\right)^{m},a^{r-mp}\right],$$

are solutions of $x^p \in A(\beta)$ in S_n . Let

$$\lambda \in [a^r] \Rightarrow \lambda = \gamma_1 \gamma_2 \cdots \gamma_r \Rightarrow |\langle \gamma_i \rangle| = a \quad (\text{even}),$$

 $(1 \le i \le r) \Rightarrow \gamma_i$ is a product of an odd number similar to T_i of transpositions for all, $(1 \le i \le k) \Rightarrow \lambda$ is a prod-

uct of $(T_1 + T_2 + \dots + T_r) = (\text{odd})$ number of transposetions, also for each $\lambda \in \left[(pa)^k, a^{r-kp} \right]$, where

 $\begin{array}{l} (1 \leq k \leq m) \Longrightarrow \lambda = \gamma \beta \Longrightarrow \beta = \beta_1 \beta_2 \cdots \beta_{r-kp}, \text{ where } \left| \left\langle \beta_i \right\rangle \right| = a \\ (\text{even}), \quad (1 \leq i \leq r - kp) \quad \text{and} \quad \gamma = \gamma_1 \gamma_2 \cdots \gamma_k \text{ , where} \\ \left| \left\langle \gamma_j \right\rangle \right| = pa \quad (\text{even}) \quad (1 \leq j \leq k) \Longrightarrow \beta_i, \text{ is product of an odd number similar to } L_i \quad \text{of transpositions for each} \\ (1 \leq i \leq r - kp), \text{ and } \gamma_j \quad \text{is product of an odd number similar to } T_j \quad \text{of transpositions for each} \quad (1 \leq j \leq k) . \text{ If } \\ k \text{ is odd, then } \lambda \quad \text{is a product of } (L_1 + L_2 + \cdots + L_{r-kp}) \\ + \quad (T_1 + T_2 + \cdots + T_k) = (\text{odd}) + (\text{odd}) = (\text{even}) \text{ number of transpositions} \quad \Longrightarrow \lambda \in A_n . \text{ If } k \text{ is even, then } \lambda \text{ is a product of } (L_1 + L_2 + \cdots + T_k) = (\text{odd}) + (\text{even}) = (\text{odd}) \text{ number of transpositions} \implies \lambda \notin A_n. \text{ Then, if } [(a \text{ and } p) \text{ are even and } r \text{ is odd}] \text{ and} \\ (mp \leq r < (m+1)p), \text{ then the solutions of } x^p \in A(\beta) \\ \text{in } A_n \text{ are} \end{array}$

$$\left[(pa),a^{r-p}\right],\left[(pa)^3,a^{r-3p}\right],\cdots,\left[(pa)^m,a^{r-mp}\right],$$

(if m is odd), or

$$\left[\left(pa\right),a^{r-p}\right],\left[\left(pa\right)^{3},a^{r-3p}\right],\cdots,\left[\left(pa\right)^{(m-1)},a^{r-(m-1)p}\right],$$

(if *m* is even).

7) Assume (*a* is even and (*p* and *r*) are odd). For each $\lambda \in [a^r]$ or $\lambda \in [(pa)^k, a^{r-kp}]$, $(1 \le k \le m) \Longrightarrow \lambda \notin A_n$, then there is no solution of $x^p \in A(\beta)$ in A_n .

3.2. Remarks

Let p and q be different prime numbers and $\lfloor a^r \rfloor$ a conjugate class of symmetric group. If $p \mid a$, $p \mid r$ and q does not divide a we defined collection of sets of conjugate classes of S_n as following:

1)
$$W = \left\{ \left[\left(pa \right)^{i}, \left(pqa \right)^{j} \right] \middle| i \text{ and } j \text{ are non-negative} \right\}$$

and solutions of the equation $i + qj = \frac{r}{n}$.

- 2) $W_1 = \{ \pi \in W | i + j \text{ is even} \}.$
- 3) $W_2 = \{\pi \in W | (i \text{ and } j \text{ are even})$ or $(i \text{ is odd and } j \text{ is even}) \}.$
- 4) $W_3 = \{ \pi \in W | i + j \text{ is odd} \}.$

5)
$$W_4 = \{\pi \in W | (i \text{ and } j \text{ are odd})$$

or $(i \text{ is even and } j \text{ is odd}) \}$.

*We note that $W = W_1 \cup W_3$ & $W = W_2 \cup W_4$ ** $W_1 \cap W_2 = \{ \pi \in W | i \text{ and } j \text{ are even} \},$

$$W_2 \cap W_4 = \phi, \quad W_1 \cap W_3 = \phi.$$
$$W_1 \cap W_4 = \left\{ \pi \in W | (i \text{ and } j \text{ are odd}) \right\},$$

 $W_2 \cap W_3 = \{ \pi \in W \mid i \text{ is odd and } j \text{ is even} \}.$

 $W_3 \cap W_4 = \{\pi \in W \mid i \text{ is even and } j \text{ is odd}\}.$

3.3. Remarks

1) If a, p and q are odd, then for each $\mu \in \pi$, where $\pi \in W$ we have μ is even.

2) If a is even, then for each $\mu \in \pi$, where $\pi \in W$ we have $(\mu \text{ is even if } \pi \in W_1)$ and $(\mu \text{ is odd if } \pi \in W_3)$.

3) If p is even, then for each $\mu \in \pi$, where $\pi \in W$ we have $(\mu \text{ is even if } \pi \in W_1)$ and $(\mu \text{ is odd if } \pi \in W_3)$.

4) If q is even and a, p are odd, then for each $\mu \in \pi$, where $\pi \in W$ we have $(\mu \text{ is even if } \pi \in W_2)$ and $(\mu \text{ is odd if } \pi \in W_4)$.

3.4. Theorem

Let $A(\beta)$ be a conjugacy class of β in A_n , and $\beta \in [a^r] \cap H_n^c$, where $[a^r]$ is a class of S_n . If p and q are different two prime numbers and p|a and q does not divide a, then the solutions of $x^{pq} \in A(\beta)$ in A_n are:

1) W if p|r and (a, p and q are odd).

2) W_1 if p | r and (a or p is even).

3) W_2 if $p \mid r$ and (q is even & (a and p) are odd).

4) Not exist if *p* does not divide *r*.

5) Not exist if p | r, (*a* or *p* is even) and $W = W_3$.

6) Not exist if p|r, (q is even & (a and p) are odd)and $W = W_4$.

Proof:

Since $\beta \in [a^r] \cap H_n^c \cap A_n$, $A(\beta) = [a^r]$ and by (1.8)

we have that the solution of $x^{pq} \in A(\beta)$ in S_n is:

a) W if p | r.

b) Not exist if *p* does not divide *r*.

1) Assume p|r and (a, p and q are odd). Then from a) we have W is the solution set of $x^{pq} \in A(\beta)$ in S_n . Let $\mu \in \pi$ for each $\pi \in W$, we have μ is even permutation. Then the solution set in A_n is W.

2) Assume p|r and (*a* or *p* is even). Then from a) we have *W* is the solution set of $x^{pq} \in A(\beta)$ in S_n . Let $\mu \in \pi$ for each $\pi \in W$, we have (μ is even permutation, if $\pi \in W_1$) and (μ is odd permutation, if $\pi \in W_3$). Then the solution set in A_n is W_1 .

3) Assume p|r and (q is even & (a and p) are odd). Then from a) we have W is the solution set of $x^{pq} \in A(\beta)$ in S_n . Let $\mu \in \pi$ for each $\pi \in W$, we have $(\mu \text{ is even permutation, if } \pi \in W_2)$ and $(\mu \text{ is odd permutation, if } \pi \in W_4)$. Then the solution set in A_n is W_2 .

4) Assume p does not divide r. Then from b) we have no solution of $x^{pq} \in A(\beta)$ in $S_n \Rightarrow$ no solution of $x^{pq} \in A(\beta)$ in A_n .

5) and 6) it is clear if p|r, (*a* or *p* is even) and $W = W_3$, then $W_1 = \phi$ and there exists no solution in A_n , also if p|r, (*q* is even & (*a* and *p*) are odd) and $W = W_4$, then $W_2 = \phi$ and there exists no solution in A_n .

3.5. Remarks

Let *p* and *q* be two different prime numbers and $\lfloor a^r \rfloor$ a conjugate class of symmetric group S_n , *p* does not divide *a* and *q* does not divide *a* we defined a collection of sets of conjugate classes of S_n as following:

$$D = \left\{ \left[a^{i}, \left(pa \right)^{j}, \left(qa \right)^{k}, \left(pqa \right)^{l} \right] \middle| i, j, k \text{ and } l \right\}$$

are non-negative integers and satisfying the

equation
$$i + jp + kq + lpq = r$$
.

 $D_1 = \{ \pi \in D | i, j, k \text{ and } l \text{ are all even or all odd} \}.$

 $D_2 = \left\{ \pi \in D | i + j \text{ is even, } k + i \text{ is odd and } l + j \text{ is odd} \right\}.$

 $D_3 = \{\pi \in D | i \text{ is odd}, j \text{ is even and } k+l \text{ is odd}\}.$

 $D_4 = \{\pi \in D | i \text{ is even, } j \text{ is odd and } k+l \text{ is odd} \}.$

$$D_5 = \left\{ \pi \in D \middle| j + l \text{ is even} \right\}$$

$$D_6 = \left\{ \pi \in D \, \middle| \, k + l \text{ is even} \right\}.$$

 $Q_1 = \{\pi \in D | (i \text{ and } j \text{ are even}) \text{ and } (k+l \text{ is odd}) \}.$

 $Q_2 = \{\pi \in D | (i \text{ is even and } j \text{ is odd}) \text{ and } (k+l \text{ is even}) \}.$

 $Q_3 = \{ \pi \in D | (i \text{ is odd and } j \text{ is even}) \text{ and } (k+l \text{ is even}) \}.$

 $Q_4 = \{\pi \in D | (i \text{ and } j \text{ are odd}) \text{ and } (k+l \text{ is odd}) \}.$

$$Q_5 = \left\{ \pi \in D \middle| j + l \text{ is odd} \right\}$$

$$Q_6 = \left\{ \pi \in D \, | \, k + l \text{ is odd} \right\}$$

We can denote *D* as the following:

- $D = D_1 \cup D_2 \cup D_3 \cup D_4 \cup Q_1 \cup Q_2 \cup Q_3 \cup Q_4$.
- $D = D_5 \bigcup Q_5$.
- $D = D_6 \bigcup Q_6$.

3.6. Remarks

1) If a, p and q are odd, then for each $\mu \in \pi$, where

 $\pi \in D$, μ is even.

2) If *a* is even, then for each $\mu \in \pi$, μ is even if $\pi \in D_1 \cup D_2 \cup D_3 \cup D_4$ and μ is odd if $\pi \in O_1 \cup O_2 \cup O_3 \cup O_4$.

3) If p is even and (a and q) are odd, then for each μ∈π, μ is even if π∈D₅ and μ is odd if π∈Q₅.
4) If q is even and (a and p) are odd, then for each

 $\mu \in \pi$, μ is even if $\pi \in D_6$ and μ is odd if $\pi \in Q_6$.

3.7. Theorem

Let $A(\beta)$ be the conjugacy class of β in A_n , and $\beta \in [a^r] \cap H_n^c$, where $[a^r]$ is a class of S_n , p and q are different two prime numbers. If p does not divide a and q does not divide a, then the solution of $x^{pq} \in A(\beta)$ in A_n is

1) D, if a, p and q are odd,

2) Γ , where $\Gamma = D_1 \cup D_2 \cup D_3 \cup D_4$, if *a* is even,

3) D_5 , if a and q are odd, and p is even,

4) D_6 , if a and p are odd, and q is even,

5) does not exist, if *a* is even, and

$$D = Q_1 \cup Q_2 \cup Q_3 \cup Q_4,$$

6) does not exist, if p is even, a and q are odd, and $D = Q_5$, or

7) does not exist, if q is even, a and p are odd, and $D = Q_6$.

Proof

Considering that $\beta \in [a^r] \cap H_n^c \cap A_n$, $A(\beta) = [a^r]$, then by (2.2.11), *D* is the solution set of $x^{pq} \in A(\beta)$ in S_n .

1) Assume *a*, *p* and *q* are odd. Let $\mu \in \pi$ for each $\pi \in D \Rightarrow \mu$ is even $\Rightarrow \mu \in A_n$. Then the solution set in A_n is *D* if *a*, *p* and *q* are odd.

2) Assume *a* is even. Let $\mu \in \pi$ for each $\pi \in D \Rightarrow \mu$ is even $\Rightarrow \mu \in A_n$. Then the solution set in A_n is Γ , if *a* is even.

3) Assume *a* and *q* are odd, and *p* is even. Let $\mu \in \pi$ for each $\pi \in D \Rightarrow \mu$ is even $\Rightarrow \mu \in A_n$. Then the solution set in A_n is D_5 , if *a* and *q* are odd, and *p* is even.

4) Assume *a* and *p* are odd, and *q* is even. Let $\mu \in \pi$ for each $\pi \in D \Rightarrow \mu$ is even $\Rightarrow \mu \in A_n$. Then the solution set in A_n is D_6 , if *a* and *p* are odd, and *q* is even.

5) Assume *a* is even and $D = Q_1 \cup Q_2 \cup Q_3 \cup Q_4 \Rightarrow \Gamma = \phi$. Then there is no solution in A_n .

6) and 7) Assume *a* and *q* are odd, *p* is even, and $D = Q_5 \Rightarrow D_5 = \phi$. Then there is no solution in A_n , also if *a* and *p* are odd, *q* is even, and $D = Q_6 \Rightarrow D_6 = \phi$. Then there is no solution in A_n .

3.8. The Number of the Solutions

Assume $\left\{\left\{\lambda_{t}\right\}_{t=1}^{T},\left\{\gamma_{j}\right\}_{j=1}^{k},\beta\right\}$ are even permutations where

Copyright © 2012 SciRes.

 β and $\lambda_i \in H_n^c$ and $\gamma_j \in H_n$ for all $1 \le t \le T$ and $1 \le j \le k$. Then we can find the number of the solutions of class equation $x^d = \beta$ in A_n , where *d* is a positive integer number as follow:

1) If $\left\{C^{\alpha}\left(\lambda_{t}\right)\right\}_{t=1}^{T} \cup \left\{C^{\alpha+}\left(\gamma_{j}\right), C^{\alpha-}\left(\gamma_{j}\right)\right\}_{j=1}^{k}$ are the solutions, then the number of solutions set is

$$\sum_{t=1}^{T} \frac{n!}{z_{\alpha(\lambda_t)}} + \sum_{j=1}^{k} \frac{n!}{z_{\alpha(\gamma_j)}},$$

2) If $\{C^{\alpha}(\lambda_{t})\}_{t=1}^{T}$ are the solutions, then the number of solutions set is

$$\sum_{t=1}^T \frac{n!}{z_{\alpha(\lambda_t)}},$$

3) If $\{C^{\alpha+}(\gamma_j), C^{\alpha-}(\gamma_j)\}_{j=1}^k$ are the solutions, then the number of solutions set is

$$\sum_{j=1}^k \frac{n!}{z_{\alpha(\gamma_j)}}$$

3.9. Example

Find the solutions of $x^{p} \in A(\beta)$ in A_{n} , and the number of the solutions.

1) If p = 3 and $\beta = (1 \ 2)(3 \ 4)(5 \ 6)(7 \ 8)$ in A_8 .

2) If p = 2 and $\beta = (1 \ 2 \ 3)(4 \ 5 \ 6)$ in A_6 .

Solution:

1) Since $\beta \in [2^4] \cap H_8^c$, a = 2, r = 4, p does not divide $a, pm \le r < (1+m)p$ where, m = 1.

So *a* and *r* are even, and *p* is odd. Then by (3.1) the solutions of $x^3 \in A(\beta)$ in A_8 are $\begin{bmatrix} 2^4 \end{bmatrix}$ and $\begin{bmatrix} 2,6 \end{bmatrix}$, so the number of solutions is $\frac{(8)!}{2^4(4!)} + \frac{(8)!}{2 \times 6} = 3465$ per-

mutations.

2) Since $\beta \in [3^2] \cap H_6^c$, a = 3, r = 2, p does not divide a, $pm \le r < (1+m)p$ where, m = 1.

Also, since *a* is odd and *p* is even. Then by (3.1) the solution set of $x^2 \in A(\beta)$ in A_6 is $\begin{bmatrix} 3^2 \end{bmatrix}$. So the number of solutions is $\frac{6!}{3^2 \times 2} = 40$ permutations.

3.10. Remark

If $C^{\alpha}(\lambda)$ conjugate class of λ in S_n belong to the solution set of class equation $x^d = \beta$ in A_n and $\lambda \in H_n$, then we denote to this set $C^{\alpha}(\lambda)$ by $C^{\alpha}(\lambda)^{\pm}$ or

 $\left\{C^{\alpha}\left(\lambda\right)^{+},C^{\alpha}\left(\lambda\right)^{-}\right\}.$

3.11. Example

Find the solution of

$$x^{35} \in A((1\ 2\ 5\)(6\ 4\ 3)(8\ 10\ 15)(7\ 14\ 11)(13\ 9\ 12)))$$

in A_{15} and the number of the solutions. Solution:

Let p = 7 and q = 5, since

$$\beta = (1 \ 2 \ 5)(6 \ 4 \ 3)(8 \ 10 \ 15)(7 \ 14 \ 11)(13 \ 9 \ 12)$$

$$\in \left[3^{5}\right] \cap H_{15}^{c}.$$

Then by (3.7) the solutions of

$$x^{35} \in A((1\ 2\ 5)(6\ 4\ 3)(8\ 10\ 15)(7\ 14\ 11)(13\ 9\ 12))$$

in A_{15} are $\begin{bmatrix} 3^5 \end{bmatrix}$, $\begin{bmatrix} 15 \end{bmatrix}^+$ and $\begin{bmatrix} 15 \end{bmatrix}^-$. So the number of the solutions set is $\frac{(15)!}{3^5(5)!} + \frac{(15)!}{15} = 87223136000$ permuta-

tions.

4. Concluding Remarks

By the Cayley's theorem: Every finite group G is isomorphic to a subgroup of the symmetric group S_n , for some $n \ge 1$. Then we can discuss these propositions. Let $x^{d} = g$ be class equation in finite group G and assume that $f: G \cong A_n$, for some n > 1 and $f(g) \in H_n^c \cap C^{\alpha}$. The first question we are concerned with is: What is the possible value of d provided that there is no solution for $x^{d} = g$ in G? The second question we are concerned with is: what is the possible value of d provided that there is a solution for $x^d = g$ in G? And then we can find the solution and the number of the solution for $x^{d} = g$ in G by using Cayley's theorem and our theorems in this paper. In another direction, let G be a finite group, and $\pi_i(G) = \{g \in G | i \text{ the least positive integer}\}$ number satisfy $g^{i} = 1$. If $|\pi_{i}(G)| = k_{i}$, then we write $\pi_i(G) = \{g_{i1}, g_{i2}, \dots, g_{ik_i}\}$ and $\prod = \{\pi_i(G)\}_{i>1}$. For each $g \in G$ and $g_{ij} \in \pi_i(G)$ we have $(gg_{ij}g^{-1}) = 1$. By the Cayley's theorem we can suppose that $(f : G \cong S_n)$ or $(f:G \cong A_n)$. Also the questions can be summarized as follows:

1) Is $\prod = \{\pi_i(G)\}_{i\geq 1}$ collection set of conjugacy classes of G?

2) Is there some $i \ge 1$, such that $f^{-1}(C^{\alpha}) = \pi_i(G)$ for each C^{α} of A_n , where $(f:G \cong A_n)$? 3) Is there some $i \ge 1$, such that $f^{-1}(C^{\alpha}) = \pi_i(G)$

for each C^{α} of S_n , where $(f:G \cong S_n)$? 4) If $G \cong S_n$ and p(n) is the number of partitions

of *n*, is $|\Pi| = p(n)$?

5) If $G \cong A_n$ and A_n has *m* ambivalent conjugacy classes. It is true that is also necessarily G has m ambivalent conjugacy classes?

Finally we will discuss if there is any relation between F_n , $\overline{F_n}$ and H_n in S_n and what is the possible value of d provided that there is a solution for $x^d = g$ in G where $f(g) \in H_n \cap C^{\alpha}$ and for some *n* to be: 1) $n \in \theta$.

2) $n \notin \theta$.

REFERENCES

- [1] H. Ishihara, H. Ochiai, Y. Takegahara and T. Yoshida, "p-Divisibility of the Number of Solutions of $x^p = 1$ in a Symmetric Group," Annals of Combinatorics, Vol. 5, No. 2, 2001, pp. 197-210. doi:10.1007/PL00001300
- [2] N. Chigira, "The Solutions of $x^d = 1$ in Finite Groups," Journal of Algebra, Vol. 180, No. 3, 1996, pp. 653-661. doi:10.1006/jabr.1996.0086
- R. Brauer, "On a Theorem of Frobenius," American Ma-[3] thematical Monthly, Vol. 76, No. 1, 1969, pp. 12-15. doi:10.2307/2316779
- [4] Y. G. Berkovich, "On the Number of Elements of Given Order in Finite p-Group," Israel Journal of Mathematics, Vol. 73, No. 1, 1991, pp. 107-112. doi:10.1007/BF02773429
- T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, "Rep-[5] resentation Theory of the Symmetric Groups," Cambridge University Press, New York, 2010.
- D. Zeindler, "Permutation Matrices and the Moments of Their Characteristic Polynomial," Electronic Journal of Probability, Vol. 15, No. 34, 2010, pp. 1092-1118.
- [7] J. J. Rotman, "An Introduction to the Theory of Groups," 4th Edition, Springer-Verlag, New York, 1995.
- G. D. James and A. Kerber, "The Representation Theory [8] of the Symmetric Group," Addison-Wesley Publishing, Boston, 1984.
- S. A. Taban, "Equations in Symmetric Groups," Ph.D. [9] Thesis, University of Basra, Basra, 2007.
- [10] S. Mahmood and A. Rajah, "Solving the Class Equation $x^d = \beta$ in an Alternating Group for each $\beta \in H_n \cap C^{\alpha}$ and $n \notin \theta$," Journal of the Association of Arab Universities for Basic and Applied Sciences, Vol. 10, No. 1, 2011, pp. 42-50. doi:10.1016/j.jaubas.2011.06.006