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ABSTRACT

The purpose of this paper is to study the effect of presence of fluid within and around a poroelastic circular cylindrical
shell of infinite extent on axialy symmetric vibrations. The frequency equation each for a pervious and an impervious
surface is obtained employing Biot's theory. Radial vibrations and axialy symmetric shear vibrations are uncoupled
when the wavenumber is vanished. The propagation of axially symmetric shear vibrations is independent of presence of
fluid within and around the poroelastic cylindrical shell while the radial vibrations are affected by the presence of fluid.
The freguencies of radial vibrations and axially symmetric shear vibrations are the cut-off frequencies for the coupled
motion of axially symmetric vibrations. The non-dimensional phase velocity as afunction of ratio of thickness to wave-
length is computed and presented graphically for two different types of poroelastic materials for thin poroelastic shell,
thick poroelastic shell and poroelastic solid cylinder.

Keywords: Biot's Theory; Axially Symmetric Vibrations; Radial Vibrations; Poroelastic Cylindrical Shell; Pervious

Surface; Impervious Surface; Phase Velocity; Cut-Off Frequency

1. Introduction

Gazis [1] discussed the propagation of free harmonic
waves along a hollow elastic circular cylinder of infinite
extent and presented numerical results. Bjorno and Ram
Kumar [2] presented theoretical and experimental results
of propagation of axially symmetric waves in submerged
elastic rods. Chandra et al. [3] studied the axially sym-
metric vibrations of cylindrical shells immersed in an
acoustic medium. Employing Biot's [4] theory, Tajuddin
and Sarma [5] studied the torsional vibrations of poroe-
lastic cylinders. Wisse et al. [6,7] presented the experi-
mental results of guided wave modes in porous cylinders
and extended the classical theory of wave propagétion in
elastic cylinders to poroelastic mandrel modes. Chao et
al. [8] studied the shock-induced borehole waves in po-
rous formations. Vashishth and Poonam Khurana[9] pre-
sented the solutions of elastic wave propagation along a
cylindrical borehole in an anisotropic poroelastic solid
and derived frequency equations for empty and fluid-
filled boreholes. Farhang et al. [10] investigated the
wave propagation in transversely isotropic cylinders.
Tajuddin and Ahmed Shah [11,12] studied the circum-
ferential waves and torsiona vibrations of infinite hollow
poroelastic cylinders in presence of dissipation. Ahmed
Shah [13,14] studies the axially symmetric vibrations of
fluidfilled poroelastic circular cylindrical shells and
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spherical shells of various wall-thicknesses.

In the present anaysis, the axialy symmetric vibra-
tions of poroelastic circular cylindrical shells of infinite
extent immersed in an acoustic medium are investigated
employing Biot's [4] theory. Biot's model consists of an
elastic matrix permeated by a network of interconnected
spaces saturated with liquid. The frequency equation of
such vibrations is derived each for a pervious surface and
an impervious surface. Cut-off frequencies when the
wavenumber is zero are obtained both for pervious and
impervious surfaces. For zero wavenumber, the frequency
equations of axialy symmetric shear vibrations and ra-
dia vibrations are uncoupled. Axially symmetric shear
vibrations are independent of nature of surface as well as
presence of fluid within and around the poroelastic cy-
lindrical shell. The radial vibrations are dependent on
nature of surface and these are affected by the presence
of fluid within and around poroelastic cylindrical shell.
Nondimensional phase velocity for propagating modes is
computed in absence of dissipation for cylindrical shells
immersed in an acoustic medium each for a pervious and
an impervious surface. The cut-off frequency as a func-
tion of h/ry is determined. The results are presented
graphicaly for two types of poroelastic materials and
then discussed. By ignoring the liquid effects, and after
rearrangement of terms, results of purely elastic solid are
shown as a particular case considered by Chandra et al.
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[3], Bjorno and Ram Kumar [2]. The considered problem
is applicable to deep sea sound sources and transducers,
petrochemical industries, acoustic waveguides, ultrasonic
delay-lines and frequency control devices.

2. Governing Equations

The equations of motion of a homogeneous, isotropic
poroelastic solid (Biot, [4]) in presence of dissipation b
are

2

NVZu+(A+N)Ve+QV e= %(pllu +p,U)
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+h(u-u), @
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QVe+RVe= E(plzu +ppU)- ba(u -U),

where V?isthe Laplacian, u(u,v,w) and
U(U,V,W) are displacements of solid and liquid re-
spectively, e and e are the dilatations of solid and liquid,;
A, N, Q, Rareall poroelastic constants and p; (i, j = 1, 2)
are the mass coefficients following Biot [4]. The poroe-
lastic constants A, N corresponds to familiar Lame’ con-
stants in purely elastic solid. The coefficient N represents
the shear modulus of the solid. The coefficient R is a
measure of the pressure required on the liquid to force a
certain amount of the liquid into the aggregate while total
volume remains constant. The coefficient Q represents
the coupling between the volume change of the solid to
that of liquid.

The equation of motion for a homogeneous, isotropic,
inviscid elastic fluid is
100

(VARG
where @ is displacement potential function and V; is the
velocity of sound in the fluid. The displacement of fluid
is Uy =(u, v, W ).

The stresses o;; and the liquid pressure s of the poroe-
lastic solid given by Biot [4] are

o; = 2Ng; +(Ae+Qe)5”, (i,j=2,2,3),

VD 2

©)
s=Qe+Reg,
where g is the well-known Kronecker delta function.
The fluid pressure P; is given by
oD
R =-n o 4

In Equation (4), o isthe density of the fluid.
The subscript “if” or “of” associated with a quantity

represents that the quantity is related to inner or outer
fluid. For example, Vj is the velocity of sound in the
inner fluid and Py is the outer fluid pressure.

3. Solution of the Problem

Let (r, 6, z) bethe cylindrical polar coordinates. Consider
a homogeneous, isotropic, infinite poroelastic cylindrical
shell immersed in an inviscid elastic fluid. Let the inner
and outer radii of the poroelastic cylindrical shell be r;
and r, respectively so that the thickness of shell ish [=(r;
—ry) > 0]. The axis of the poroelastic shell isin the direc-
tion of z-axis. The fluid column within the poroelastic
cylindrical shell extends from zero to infinity in axial
direction and zero to r; in the radial direction. The outer
fluid extends from r, to infinity in radial direction and
zero to infinity in axial direction. Then for axially sym-
metric vibrations, the displacement of solid

U=(u,0,w) that can readily be evaluated from field
Equation (1) is (as shown in the bottom of this page).

In Equation (5), w is the frequency of wave, k is
wavenumber, Cy, C,, Cs, C4, A and B are constants, Jy(x),
Y o(x) are Bessel functions of first and second kind each
of order zero, Ji(x), Yi(X) are Bessel functions of first
and second kind each or order one. Here i is complex
unity or i® = -1 and

2 2 2

w w w
alzzvz_kzy azzzvz_kz’ a??:vz—kz, (6)

1 2 3

where V; (i = 1, 2) are dilatational wave velocities of first
and second kind respectively, V3 is shear wave velocity.

The displacement of inner fluid column u;; = (Ui, O, wif)
for axially symmetric vibrationsis

kz+awt)

Ui :Aifaif‘Jl(aifr)ei( » Vg =0, @)
W = A ik (1)€Y,
where A;s is constant and
2
2 O 2
a? =" —k?. 8
if Vlfz ( )

with the help of displacement potential function, the
pressure of the inner fluid column is given by

R (a r)ei(kzmt) , when |kvif | <o (9)

Similarly, the displacement and the outer fluid pres-
sure are given by equations

kz+at)

uof = Aof aof Hi(Ll) (aof r)el(

W = Ay ikHY (a r)e™ ),

~u={Ciyd, (@) +CoyY, (ar) + Coarydy (ar) + Coa, Yy (1) + A, (aar ) + BIKY, (or ) €44,

®)

w ={Cjikd; (ar) + C,ik Y, (o7 + Caikdy (@,r ) + CikYq (a,r) + Acydy (aar) + Bay Yo (aqr)} €,
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P =Ay® pofH(o)(a r)ei(kzmt)a (10)

where Ay is constant, HY is Hankel function of first
kind and order n and

2
2

of V2
For imaginary values of o, that is, when the phase

a (1)

O, +5+ Py =[CMy; (1) +C,My, (1) + CsMyq (1) + C,My, (1) + AMyg (1) + BMyg (1) + A My, (1

o, = [CIM21(r)+CZM22(r)+C3M23(r)+C4M24(r)+AM25(r)+ BM 4 (1

s:[ClMsl(r)+C2M32(r)+C3M33(r)+C4M34(

0s
o [ClN31(r)+ C,Ng, (1) +C5Ngg (1) + C Ny, (r

— Uy :[ClM4l(r)+CZM42(r)+C3M43(r)+C4M44(r)+AM45(r)+ BM g (r)+A;M (r

velocity { wlk} is less than V4 the Hankel function of
first kind H' (a,r) isreplaced by the modified Bessel
function of second kind Ko ar).

Substituting the displacement function u and w from
Equation (5), fluid pressures from Equations (9) and (10),
into Equation (3) together with Equation (7), the relevant
displacement, liquid pressure and stresses are

):| ei(kz+wt) , (12)

)] ei(kz+(ut) , (13)

r)] ei(kz+mt) , (14)

):| ei(kz+a)t) , (15)

):| ei(kz+¢ut) , (16)

0, +5+ Py =[ CMg, (1) + C,Mg, (1) + C;Moy (1) + CuMg, (1) + AMgg (1) + BM g (1) + Ay Mg (1) J€"Y - (17)

U=Uy =[ C; Mg (1) +C,Mg, (1) +CMg5 (1) +C,Mg, (1) +AMgg (1) + BMse(r)+AOfMsB(r)]ei("““"), (18)

where Cy, C,, C;, Cu, A, B, Air, Ay are all constants and
the coefficients M;;(r), Nj(r) are

My (1) ={[(Q+R)& ~(A+Q)|K*

+[(Q+R)5f—(P+Q)]af}JO(alr)+¥Jl(alr),
My, (r)= {[(Q+R)52 (A+Q)]K*
Q+R)&2—(P+Q)Jaf|Y (alr)+2l\:a1Y1(a1r),
)=

(
[(
My (1 {[(Q+R)52 (A+Q)K?
[(
(r

+

+ (P+Q

Q+R)52 - )] } NCA; )+¥Jl(azr),
My, (r)= {[(Q+R)52 (A+

Q)J¥*

2N052

+[(Q+R)5; -(P+Q) e } Y, (ar),

My (1) =—2ikNa,J, (asr)-i-@\]l(asr) ,

My () = ~2ikNa,Y, (a r)+@v( .

My, (r)= @*pyd b () Mls(r):O'

M, (r)==-2ikNeyJ, (ayf), M, (r)=-2ikNa,Y, (eyr),
M, (r)=-2ikNe,d (azr) M,, (r)=-2ikNa,Y, (a,r) ,
M s (r) = N(K* =3 ) J; (ezsr),

My (r) = N(k*=a3) Y, (asr), My (r)=0,
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My (r)=0, My (r)=(R67 -Q)(af +k*)Jy(aur),
Mg (1) =(RS7 =Q)(ef +K?) Yo (e4r),
Mgs(r) =(RS3 —Q)(a7 +K*) Iy (ar),
My, (1) =(R&; —Q)(af +Kk*) Yo (ar), Mg =0,
Mg =0, My; =0, Myp=0, M, (r)=-ad(ar),
My, (1) =-a.Y,(enr), My(r)=-a,d(a,r),
My, (1) =-a,Y,(a,r), M(r)=-ikd, (asr),
Mg (r)=—ikY,(a5r), My ()= (1),
Mg (r)=0, Mg (r)=My(r), Mg (r)=M;(r)
Mg (r) =My (r), Mg (r)=My(r),
Mg (r)=My(r), Mg (r)=My(r), Mg(r)=0,
Mgs (1) = @ o HY (g T) s Mg (r) =My (1),
M. (r)=My(r), j=1,2,34,56,7,8,
Mgy (r) =My (r), Mg (r)=M,(r),
Mes (1) =My (r), Mg (r)=My(r),
Mg (r) =My (r), Mg (r)=My(r), Mg (r)=0,
Mg (1) = ag HYY (g ). (19)
In Equation (19), 62 and &7 are
5?2 =m[(RKM—QKIZ)—V;Z(PR—QZ)],
(i-12)
(20)
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P=A+2N and

ib

ib ib
Kll:pll_;’ K12=p12+;, Kzzzpzz_g'v- (21)

4. Frequency Equation

For perfect contact between the poroelastic cylindrical
shell and the fluids, we assume that the normal and shear
stresses and radial displacements are continuous at r = r;
and r =r,. Thus the boundary conditions in case of a per-
vious surface are

o,+S+P, =0, 0,=0,s=0, u-u; =0, ar=r,
o, +s+P; =0, 6,=0,8=0,u-u, =0, atr=r,.
(22)

The boundary conditions in case of an impervious
surface are

S
—=0,u-u, =0, ar=r,

o, +s+PB; =0, 0,=0,
or

o, +s+P; =0, 0,=0, g—f‘:o, Uu-u, =0 ar=r,.

(23)

Substitution of Equations (12)-(14) and (16)-(18) into
the Equation (22) result in a system of eight homogene-
ous algebraic equations in eight constants C;, C,, Cs, Cy,
A, B, A;; and A;. For anon-trivial solution, the determi-
nant of the coefficients must vanish. By eliminating these
constants, the frequency equation of axialy symmetric
vibrations of poroelastic circular cylindrical shell im-
mersed in fluid in case of apervious surfaceis

|Aij|=o, i,j=12-,8. (24)
In Equation (24), the elements A;; are
A; =M, (r),i=1234andj=12345678,

25
A, =M, (r,), i=5678andj=12345678 )

where M;(r) are defined in Equation (19).

Arguing on similar lines, Equations (12), (13), (15)-
(18) together with the Equation (23) yield the frequency
equation of axially symmetric vibrations of poroelastic
circular cylindrical shell immersed in fluid, in case of an
impervious surface to be

B,|=0, i,j=12-8, (26)
where the elements Bj; are
B, =A;;1=124568andj=1234,56,7,8,
By =Ny (1), j=12,34,56,7,8, (27)
B, =Ny(r,), i=123456,78,

where Mj;(r) and N;(r) are defined in Equation (19).
By eliminating liquid effects from frequency equation

Copyright © 2012 SciRes.

of pervious surface (24), that is, setting b—0, p1,—0,
P20, (A-Q/R) >4, N—>u, Q-0, R>0 and after
some rearrangement of terms, the results of purely elastic
solid are recovered as a special case considered by Chan-
draet al. (1976). The frequency equation of an impervious
surface (26) has no counterpart in purely elastic solid.

4.1. Frequency Equation for Poroelastic Solid
Cylinder

When the ratio of thickness to inner radius of the poroe-
lastic cylindrical shell i.e., h/r;—w as r;—0 with finite
thickness, it reduce to a poroelastic solid cylinder of ra-
dius h. Then the frequency equation of a pervious surface
(24) isreduced to

R[=0, i.i-12,34, (28)
where the elements P; are

R, ={[(Q+R)87 - (A+Q)]K?

2Ne,

+[(Q+R)5f_(p+Q)]af}Jo(alh)+ 3 (esh),
P, = {[(Q+ R)&? -(A+Q)]K*
+[(Q+R)8Z ~(P+Q)]a} 3 (ah) + 2% 3 (ah),

2Nik

Ps = —2Nikea,Jy (ah) + J (esh),
R.= wzpof H(ol) (aofh) v Py = _ZNikal‘]l(alh) ,
P, =—2Nika,J; (a5h) . Py =N(k* -7 )3, (a5h),

Pu=0, Py =(R&-Q)(K*+af)J(ash),
3 =0,

p32:(R522—Q)(k2+a22)30(0!2h), E Fu =0,
Pu=-adi(aah), Py =-a,d(ah),
P = —ile(a3h) , Pu=ay Hgl) (aof h)' (29)

In Equation (29), J,, J; are Bessdl functions of first
kind of order zero and one; HY’, H{" are Hankel func-
tions of first kind of order zero and one.

Similarly, frequency Equation (26) when r;—0 and fi-
nite h, reduce to

Q=0 i,j=1234, (30)
where the elements Q;; are
Q,=P; i=124, j=1234,and
Q, = (Ré‘f —Q)(azl3 + kzal)Jl(alh) ,
Qy = (REZ? —Q)(océ3 + kzaz)Jl(azh) :
Qi =0, Q, =0. (31)
Equations (28) and (30) are the frequency equations of
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axially symmetric vibrations of a poroelastic solid cylin-
der immersed in fluid, for a pervious and an impervious
surface, respectively.

By eliminating liquid effects and after some rear-
rangement of termsin Equation (28), the results of purely

elastic solid considered by Bjorno and Ram Kumar (1972)

are recovered as a special case. Frequency equation of an
impervious surface (30) has no counterpart in purely eas-
tic solid.

4.2. Cut-Off Frequencies

The frequencies obtained by equating wavenumber to
zero are referred to as the cut-off frequencies. Thus for k
= 0, the frequency equation of pervious surface (24) re-
duce to the product of two determinants as

DD, = 0, 32
where D, and D, are
All A12 A13 A14 A17 0
A31 A32 A33 A34 0 0
D1 _ A41 A42 A43 A44 A47 0 '
A51 A52 A53 A54 0 A58 (33)
A7l A72 A73 A74 O 0
A81 A82 A83 A84 O A88
D2 — A25 A26 .
A65 A66

The elements A;; of D, and D, are defined in Equation
(25) are now evaluated for k = 0. From Equation (32) itis
clear that either D; = 0 or D, = 0 and these two equations
give the cut-off frequencies of axially symmetric vibra-
tions. The frequency equation

D1 = 0, (34)

give the frequencies of radia vibrations of poroelastic
cylindrical shells immersed in an acoustic medium, for a
pervious surface while the frequency equation

Dz = 0, (35)

does not depend on fluid parameters, and it give the fre-
guencies of axially symmetric shear vibrations which are
independent of presence of fluid within and around the
poroelastic cylindrical shell. The radial vibrations are
affected by the presence of fluid within and around the
poroelastic cylindrical shell while the axially symmetric
shear vibrations are not affected as can be seen from
Equations (34) and (35).

Similarly, the frequency equation of an impervious
surface (26), when k = 0 is reduced to the product of two
determinants

D3D4 = 0, (36)
where D; and D, are

Copyright © 2012 SciRes.

Bll BlZ Bl3 Bl4 Bl7 0
BSl BSZ 833 B34 0 0
D3 _ B41 B42 B43 B44 B47 0 ’
BSl BSZ BSS BS4 0 BSS (37)
B7l B72 B73 B74 0 0
BSl BSZ BBS BB4 0 BBS
D4 — BZS BZG

Bes  Bes .

The elements appearing in D3 and D, are defined in
Equation (27) are now evaluated for k = 0. From Equa
tion (36) it isclear that either D3 = 0 or D4 = 0. The equa-
tion

D3 =0, (38)
corresponds to frequencies of radial vibrations of a
poroelastic cylindrical shell immersed in an acoustic me-
dium in case of an impervious surface, while the equa-
tion

D,=0, (39)
yield the cut-off frequencies independent of presence of
fluid. Also it is seen that Equations (35) and (39) are
same by virtue of Equation (27). Hence Equation (39) is
independent of nature of surface, that is, pervious or im-
pervious. Therefore, the cur-off frequencies given by
Equation (39) are independent of presence of fluid within
and around the poroelastic cylindrical shell and nature of
surface, that is, pervious or impervious. Equation (35) is
the frequency equation of axially symmetric shear vibra-
tions. From Equation (32), it is clear that the radia vibra-
tions and axially symmetric shear vibrations are uncou-
pled for porodastic cylindrical shell immersed in an
acoustic medium in case of a pervious surface. Similarly,
these are uncoupled for an impervious surface as can be
seen from Equation (36). The cut-off frequencies of
poroelastic solid cylinder for pervious and impervious
surfaces are obtained in a similar way as obtained in case
of porodastic cylindrical shells.

5. Non-Dimensionalization of Frequency
Equation

For the purpose of numerical computation we set b = 0,
and the wavenumber k is real. The phase velocity C is
the ratio of frequency to wavenumber, that is, C=a/k. To
analyze the frequency Equations (24) and (26) it is con-
venient to introduce the following non-dimensiona vari-
ables:

a=PH", a,=QH™", a,=RH™", a,=NH™,
my, = /711/771' my, = /712,071-

2
’

x=(VoVit), 7=(VoVst) L z=(VoVst)', s=hLt,
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My = ppp s t=pp ™, M=V Vi', t=pyup,
m, =V, V', Q=ohCt, £=CV/,
m, = Vi Cal , My =V C(_Jl ’ (40)

where Q is non-dimensional frequency, & is non-dimen-
sional phase velocity of poroelastic cylindrical shellsim-
mersed in an acoustic medium, H =P+ 2Q + R, p = p11
+ 2012 + P2, Co and Vq are the reference velocities
(C2=N/p,VZ =H/p), C[= K] is phase velocity h is
the thickness of the poroelastic cylindrical shell and L is
wavelength. Let

g:r—z,sothat E:(g—l). (41)

n nh

6. Results and Discussions

Two types of poroelastic materials are considered to
carry out the computational work, one is sandstone satu-
rated with kerosene, say Materia-I (Fatt, [15]), the other
one is sandstone saturated with water, Material-11 (Yew
and Jogi, [16]), whose non-dimensional physical param-
etersaregivenin Table 1.

For a given poroelastic material, frequency Equations
(24) and (26), when non-dimensionalized using Equa-
tions (40) and (41), constitute a relation between non-
dimensional phase velocity & and ratio of thickness to
wavelength 6 (= h/L) for fixed values of g. Different
values of g, viz., 1.034, 3 and infinity are taken for nu-
merical computation. These values of g represent thin
poroelastic cylindrical shell, thick poroelastic cylindrical
shell and poroelastic solid cylinder respectively. The
values of dliein [0, 1]. Non-dimensiona phase velocity
¢ is determined for different values of ¢ and for fixed
values of g, each for a pervious and an impervious sur-
face. For poroelastic cylindrical shells immersed in an
acoustic medium, the values of m, my, t and t; are taken
aam=m;=15andt =1t; = 04. To compute the fre-
quencies of radia vibrations of poroelastic cylindrical
shells immersed in an acoustic medium, Equations (34)
and (38) are non-dimensionalized using Equations (40)
and (41). Equations (34) and (38) constitute the relation
between non-dimensional frequency Q and ratio of thick-
ness to inner radius h/r;. For broad spectrum of values of
h/ry, frequency Q is computed for the considered poroe-
lastic materials-l and Il. To compute the frequency of
radial vibrations of poroelastic cylindrical shells im-
mersed in an acoustic medium, the values of t, t;, m,, ms

aretaken ast = t; = 0.4, m, = mz = 1.5. The non-dimen-
sional form of Equations (24), (26), (34), (38) are solved
numerically to compute either the phase velocity or the
frequency, following the analysis of Gazis[1]. The coun-
terpart of frequency Equation (34) was not solved nu-
merically for elastic medium by Chandra et al. [3] while
the author solved these equations for poroelastic medium
in adifferent paper.

The phase velocity of axially symmetric vibrations of
poroelastic cylindrical shells immersed in an acoustic
medium is presented in Figures 1-3 for material- | and 11
each for a pervious and an impervious surface. Figure 1
shows the phase velocity for materials-1 and |1 in case of
pervious and impervious surfaces. From Figure 1 it is
clear that the phase velocity for a pervious surface is
higher than that of an impervious surfacein 0 < 6< 0.5

14
Pervious Surface
12p--------- Impervious Surface ..
/ Mat-I
2
5 10
S
o
- Mat-I
2 6
= Mat-1I
4
" /' Mat-11
0
0 01 02 03 04 05 06 07 08 09 1

Ratio of thickness to wavelength

Figure 1. Phase velocity as a function of wavelength (Mat-I,
Mat-11, Thin-Shell) axially symmetric vibrations of poroe-
lastic cylindrical shellsimmersed in an acoustic medium.

10

Pervious Surface
FEEEEEEEERE Impervious Surface
& 7 Mat-I
.g i E
< 6 "\ Mat-1 §
> R g
% Mat-1I ‘;‘
£ 4 N
21 AMarm
0

01 02 03 04 05 06 07 08 09 1
Ratio of thickness to wavelength

Figure 2. Phase velocity as a function of wavelength (Mat-I,
Mat-11, Thick-Shell) axially symmetric vibrations of poroe-
lastic cylindrical shellsimmersed in an acoustic medium.

Table 1. Material Parameters.

Material/Parameter & % % A my; my, My, X y Z
| 0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 4.763 3.851
1 0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129
Copyright © 2012 SciRes. OJA
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—_
(=

Pervious Surface

gl -7 Impervious Surface
o
S Mat-I1 Mat-11
© Mat-I
26 Mat-I
2] (-Mat-11
= 4

;7 Matl Mat-II
0 01 02 03 04 05 06 07 08 09 1

Ratio of thickness to wavelength

Figure 3. Phase velocity as a function of wavelength (Mat-I,
Mat-11, Solid cylinder) axially symmetric vibrations of po-
roelastic solid cylindersimmersed in an acoustic medium.

for material-1 while beyond 6= 0.5 it isless than or equal
to the phase velocity of an impervious surface. The phase
velocity of pervious and impervious surfaces is amost is
same in case of material-1l. The phase velocity for mate-
rial-1, in general, is higher than that of material-Il both
for pervious and impervious surfaces. Thus it can be in-
ferred that presence of mass-coupling parameter in-
creases the phase velocity for thin poroelastic cylindri-
cal shellsimmersed in an acoustic medium.

Figure 2 shows the phase velocity of thick poroelastic
cylindrical shells immersed in an acoustic medium in
case of materials-| and Il each for a pervious and an im-
pervious surface. It is seen from Figure 2 that the phase
velocity of a pervious surface in case of material-l is al-
most same to that of an impervious surfacein 0< 6< 0.2
and 0.7 < < 1. In 0.2 < 6 < 0.5 the phase velocity of a
pervious surface is higher than that of an impervious
surface while in 0.5 < 6 < 0.7 it is less than that of an
impervious surface. Again asin case of athin poroelastic
cylindrical shell, the phase velocity is same for pervious
and impervious surfaces for thick poroelastic cylindrical
shell. In general, the phase velocity for thick poroelastic
cylindrical shell is higher in case of material-l than that
of materia-Il. The phase velocity decreased with the
increase of thickness for a pervious surface in case of
material-l. In case of an impervious surface, in general,
the phase velocity increases with the increase of thick-
ness. Increase of thickness has no significant effect on
phase velocity in case of material-Il for pervious and
impervious surfaces.

Figure 3 shows the phase velocity of poroelastic solid
cylinders immersed in an acoustic medium each for a
pervious and an impervious surface in case of materials-|
and I1. From Figure 3 it is clear that the phase velocity of
pervious and impervious surfaces vary in a staggered
way for material-l. In case of material-Il, the phase ve-
locity of apervious surface, in general, is higher than that
of an impervious surface unlike in case of poroelastic
thin and thick cylindrical shells. Therefore it is inferred

Copyright © 2012 SciRes.

that the absence of mass-coupling parameter increases
the phase velocity of a pervious surface of a poroelastic
solid cylinder. Also the presence of mass-coupling pa
rameter increases the phase velocity of an impervious
surface of the poroelastic solid cylinder. In general, the
phase velocity is less in poroelastic solid cylinder than
that of either athin shell or athick shell both for pervious
and impervious surfaces and for both the considered ma-
terials.

7. Concluding Remarks

The study of axially symmetric vibrations of poroelastic
cylindrical shells immersed in an acoustic medium has
lead to following conclusions:

1) Radial vibrations and axially symmetric shear vibra-
tions are uncoupled when the wavenumber is zero.

2) The frequency equation of axially symmetric shear
vibrations is independent of nature of surface and pres-
ence of fluid within and around the poroelastic cylindri-
cal shell.

3) The phase velocity is same for pervious and im-
pervious surfaces in case of material-Il each for thin and
thick poroelastic cylindrical shell.

4) In general, the phase velocity is higher for mate-
rial-l than that of material-Il each for a pervious and an
impervious surface.

5) The frequency of radial vibrations of poroelastic cy-
lindrical shell immersed in an acoustic medium for a per-
vious surface is higher than that of an impervious surface
in case of material-I.

6) The frequency of an impervious surface is higher
than that of a pervious surface in case of material-11.
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