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Abstract 

Spatial distribution of acoustic and elastic waves generated by an elementary vibration source at seismic profiling fre-
quencies in an infinite medium close to a layer inclusion, i.e., an extended layer, is numerically simulated. Point dipole 
radiation in a homogeneous infinite medium separated by a liquid layer of different medium density or acoustic wave 
velocity is considered. Transverse elastic SH-waves excited by an oscillating power source in a solid medium also lo-
cated close to the layer of different propagation velocity than the velocity of the vicinity are analyzed. Formulae for the 
spatial distribution of the wave field amplitude are derived and computer graphics of field distribution images is pre-
sented. Wave reflection, penetration deep into the layer inclusion, and transmittance through it are examined. Results of 
the analysis can be applied to seismoacoustic probing of geologic environment by the near field of a harmonic vibration 
source. 

Keywords: Seismoacoustic Probing, Vibration Source, Acoustic, Transverse Waves, Wave Field Amplitudes, Spatial 
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1. Introduction 

New methods of acoustic remote diagnostics of materials 
and vibroseismic probing of geologic environment are 
actively developing now. This research is eventually fo-
cused on solving the so-called inverse problems, i.e., 
problems of inversion or reconstruction of a medium by 
vibroseismic (acoustic) probing data [1,2]. Although some 
fundamental results have been achieved in developing the 
theoretical basis of these methods, the relation between the 
radiation field configurations at the distances of several 
tens of wavelengths from a vibration source to the pa-
rameters of a layered medium structure is not yet studied 
thoroughly [3]. The study of this relation is required for 
optimal solution of this problem; analytical results of the 
so-called direct problems can be used for this purpose. The 
existence of this relation was considered in previous pa-
pers devoted to the analysis of the near elastic-wave field 
configuration in a medium with an elementary plane lay-
ered structure [4-6]. It is assumed that at the distances of 
the order of several near-surface layer depths being simul-
taneously the probing inhomogeneity, the field configura-
tion strongly depends on the geometrical parameters of the 

layered structure and the acoustic parameters of the me-
dium. This informative relation decays, as the distance 
between the source and the receivers grows. Thus the 
problem analyzed in the paper can be formulated as nu-
merical simulation and visualization of the structural fea-
tures of the near field of a harmonic acoustic (vibration) 
source located close to a layer inclusion characterized by a 
jump of wave velocity or density relatively to the analo-
gous parameter of the ambient homogeneous medium. The 
results of the analysis can be of interest for solving the 
problem of productive layer probing in entrails of the earth 
using structural features of near seismoacoustic fields of 
vibration sources, similarly to “near-field” location of in-
homogeneities by pulse signals. If this probing is carried 
out by means of a vibration source operating in the har-
monic vibration mode, precisely field configurations 
should be considered as characteristic informative features. 
In this case, the problems solved by probing can be gener-
ally formulated as the localization of the nearest boundary 
of inhomogeneity relatively to the source location, the 
determination of the characteristic spatial scale of the re-
gion occupied by inhomogeneity, the estimation of con-
trast in densities or wave velocities of media in the region 
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of inhomogeneity (layer) relatively to internal and external 
regions. 

Analogous problems are set when determining produc-
tive layer features in the bottom marine environment, 
which are probably present in the characteristics of hy-
droacoustic signals recorded in shelf probing [1,2,7,8]. 

To extend the application area of the acoustic probing 
analysis and generalize it to solid media, we also set 
forth the results of numerical simulation of the amplitude 
distribution of elastic transverse SH-waves excited by an 
oscillating power source located analogously to that in 
the previous acoustic case, i.e., at some distance from the 
plane parallel layer inclusion having the thickness of one 
or several wavelengths. To describe the field of a scalar 
medium (liquid or gas), one scalar potential is sufficient, 
while the oscillation source is a point oscillating dipole. 
To describe elastic SH-waves in a solid medium in the 
two-dimensional formulation, we use one component of 
the vector potential; a harmonically oscillating power 
source uniformly distributed along an infinite line paral-
lel to the layer boundary has the same orientation of the 
momentum and radiates transverse SH-waves perpen-
dicular to this line. It is interesting to compare wave pat-
terns of acoustic and elastic-wave fields. First we con-
sider a scalar acoustic field and then results of transverse 
elastic wave analysis. 

2. Near Acoustic Field of a Point Dipole 
Located Close to a Layer Inclusion  
in a Homogeneous Infinite Medium 

The geometry of the problem is shown in Figure 1. 
Three-dimensional infinite space filled with a liquid or 
gaseous medium and characterized by the parameters 

Cand , i.e., the density and the acoustic wave veloc-
ity, is separated by a layer infinite in the andx y  di-

rections and enclosed in the limits h z h H    in the 
vertical z  direction; it has the same density   as the 

vicinity and differs only by the sound velocity 

c ( Cс  ). The source 0
0 ( ) ( ) i tF z r z e   

is a point 

dipole having the power (momentum) 0F  and the os-

cillation frequency  ; it is a perturbation in the form of 
 -functions of the radial r  and axial z  coordinates, 

oriented along the vertical axis ( 0z


is the corresponding 
unitary vector), and located at the distance h  twice 

larger than its thickness H relatively to one of the layer 
boundaries (this value is taken for definiteness of calcu-
lations). In Figure 1, the entire space is divided into four 
artificially isolated zones (numerated by 1, 2, 3, and 4). 
In these four calculation regions due to axial symmetry, 

 

Figure 1. Medium structure and source arrangement for 
the “scalar” problem 
 
the acoustic shift field can be described by the scalar 
potential   represented for each of them as Fou-

rier-Bessel integrals, i.e., by the following expressions 

(the factor tie   is omitted): 
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where  krJ 0  is the zero-order Bessel function, r is the 

radial coordinate, k is the radial wave number component, 

i.e., the integration variable, 222 kC   , 

222 kс   , and the indefinite coefficients 

dBBbba ,,,,,   are further calculated from the 

matching conditions of the z-component of the wave 

displacements zu and the acoustic pressure p at the 

boundaries of all the four isolated regions. 
The problem is based on the solution of a homogene-

ous acoustic wave equation: 
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the source operation is written under the appropriate 
boundary condition instead of being written in the 
right-hand side of the wave equation: 
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The relation between the potential  , the acoustic 
pressure p , and the z-component of the wave dis-

placement zu  is commonly known: 

 2p , zu zz         (4) 

Since the explicit forms of the unknown coefficients 
are determined, the expressions for acoustic displace-
ments in all spatial regions are written using standard 
expansions: 
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Specifically, it follows from the latter formula that 

field )4(
zu transmitted through the layer does not depend 

on the distance h  from the source to the layer bound-
ary closest to it. The first and the last formulae describe 
the acoustic wave field traveling for small distances and 
also lengths much larger than the wavelength from in-
homogeneity and the source. In this case, the integrals in 
Formulae (5) can be asymptotically estimated, while the 
wave displacements corresponding to regions 1 and 4 
can be given by the expressions: 
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In Formula (7), cH , Ccc  , hH , 

and the angle   is measured from the vertical axis z. 

The angular characteristics of wave radiation are ob-
tained by Formulae (6) and (7); they show the amplitude 
angular dependences for the far backscattered wave 

fields )1(
zu  and for the fields traveling forward )4(

zu . 
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The far field characteristics are displayed in Figures 2(а) 
and (b) (in curves 1, 2, and 3,  5.2,,2 ); 

these characteristics correspond to waveguide propaga-
tion in the layer, i.e., for 9.0c . It is seen that in the 
far zone, the angular pattern of backscattered waves 
changes as the frequency grows, while the directivity of 
the field transmitted through the layer remains un-
changed and close to the directivity of the dipole source 
oscillating in a homogeneous infinite medium. The cal-
culation results of antiwaveguide propagation for 

1.1c  are shown in Figures 3(а) and (b). There is a 
considerable difference in the angular dependences of the 
backscattered far field and the field scattered forward. 
The characteristic of the field traveling forward is the 
occurrence of sharply directed maxima with simultane-
ous presence of the central lobe describing the smooth 
dependence. The backscattered field pattern has only 
sharply directed maxima analogous to those mentioned 
above, as applied to the wave field transmitted through 
the layer, which exist there together with smooth lobes. 
They, probably, exist due to the so-called nonray waves 
[3-6].  

The spatial distribution of the acoustic field amplitude 
can be also analyzed by means of numerical calculation 
of the integrals in Formula (5); in this case, the calcu-
lated distances do not exceed the first tens of wave-
lengths. Since the numerical approach has been em-
ployed, the choice of integral signs eliminating ambigu-

ity in the variable k  on two-lobe surfaces and the 
choice of the integration methods essential in the ana-
lytical calculations are not discussed.  

Now we consider patterns of the spatial amplitude dis-
tribution of the z-component of wave displacements, 
which are obtained as a result of numerical simulation 
using Formula (5) for the same values of acoustic wave 
velocity jump in the media located inside and outside the 
layer, i.e., for the waveguide propagation c c C   

0.9  and for the antiwaveguide propagation c  

1.1Cc . Note that the actual pattern of the acoustic 

shift field is to be axially symmetrical relatively to the 
axis z and can be a set of interleaved axially symmetri-
cal bodies. However in graphical presentation of the am-
plitude field distribution, we use the isometric projection, 
in which the field level is represented as relief rising 
above the plane zr , . The calculated structure of the 

acoustic displacement field zu  is shown in Figures 

4(а), 4(b), 4(c) and 4(d) for 9.0 Cсc  and in 

Figures 5(а), 5(b), 5(c) and 5(d) for 1.1 Cсc .  

Figure 4(а) displays the field fragment corresponding 
to region 1 located behind the source on the opposite side 
of the layer region, i.e., for 0z ; thus it should be con-

sidered turned in the opposite direction along the vertical 
coordinate z and the corresponding axis in it is denoted -z. 
The same scale is used in both axes. The level decrease 
is accompanied by the presence of a fan-shaped structure 
in the field image over the entire plane, which means the 

oscillating dependence of zu on r  for constant z  or 

the oscillating dependence on z  for constant r . It fol-

lows from the dependence zu  on the coordinates that 

there is an acoustic radiation maximum directed at a 
small angle to the axis z , which is indicated by “eleva-  
tion” in the appropriate relief region inclined to this axis. 
As distinct from Figure 4(а), in Figures 4(b) and 4(c) 
the scale of the axis z is 100 times smaller than the 
scale of the axis r . The analyzed spatial interval along 
the vertical axis amounts to hz 0  in Figure 4(b) 
and to h z  h H  in Figure 4(c). In Figure 4(c) for 
more detailed consideration of the pattern in the radial 
r direction in the layer region, we used a 10 times 

smaller scale. In regions 2 and 3 at larger distances from 
the source, the field amplitude sharply decreases both in 
radius and vertical z - direction, which is seen in Fig-
ures 4(b) and 4(c). After deep minimum when the face 
boundary of the layer is approached, sharp decrease of 
the level is changed by the amplitude growth accompa-
nied by its oscillations. Oscillation amplitude decreases 
in region 3 are not strong, which indicates that there is 
the excitation of several interfering modes in the layer; 
each of the resonance frequencies of these modes being 
far from the chosen frequency of the source. In region 4 
(Figure 4(d)), one can see a comparatively rapid de-
crease of the field level; it is not so sharp as the level 
differences in Figures 4(b) and 4(c), if 100-fold scale 
difference along z axis in these figures is taken into 
account. The pattern of the near field in region 4 does not 
reveal details of the angular concentration of the acoustic 
field radiated beyond the layer and going to infinity. 
Therefore, the calculation data obtained from (7) and 
shown in Figure 3(a) supplement the entire field pattern. 
At the same time it is evident that even at small distances, 
the field backscattered by the layer has more peculiarities 
in its spatial configuration than the field transmitted 
through the layer outward has in its amplitude distribu-
tion. If it is assumed that the spatial configuration can be 
the informativeness parameter representing the charac-
teristics of the layer itself, then it is seen from compari-
son that the reflected field contains more information 
than the field transmitted on the opposite side. In conclu-
sion of this brief review of the wave pattern it can be 
assumed that amplitude oscillations along the radial and 
axial coordinates in the near backscattered field is the 
consequence of interference of the waves reflected from 
the nearest (face) and the second (external relatively to 
the source) boundaries. This statement is also applicable to 



Numerical Simulation of Near-Field Seismoacoustic Probing of a Layer Inclusion in a Homogeneous Infinite Medium 

Copyright © 2010 SciRes.                                                                                 JMP 

114 

other cases considered below, although wave interference 
in the field transmitted outward is not always so strong.  

It follows from Figures 5(а) and 5(b), and c that for 
c c C   1.1 , the spatial distributions of the wave 
amplitudes corresponding to spatial regions 1, 2, and 3 
have the forms essentially analogous to those considered 
above. There is an apparent difference from the previous 
case only in the amplitude distribution in spatial region 4 
corresponding to the field transmitted through the layer 
(Figure 5(d)). In the first case, space-angular oscillations 
in the transmitted field level were absent; while in con-
sidered case, they are present in the three-dimensional 
image of amplitudes. This is indicated by the fan-shaped 
angular-periodic structure observed up to some angle to 
the vertical axis and similar to the structure shown in  

Figure 4(a); its angular periodic repetition is approxi-
mately the same as in region 1. The primary role here is, 
probably, played by nonray waves having a rather high 
level in the spatial region limited by the sector forming 
the angle  cCarccos  with normal to the bound-

ary [3-6]. 
Thus in the considered cases, there is some difference 

in the entire pattern of the spatial distribution of acoustic 
fields, which can be used for remote diagnostics of a 
probed inhomogeneity. It is evident that spatial ampli-
tude distributions of both the backscattered field and the 
field transmitted through the layer should be recorded, 
since the near field structure of the acoustic wave transmitted 
through inhomogeneity also represents the influence of  

 

 

Figure 2. Angular field characteristics (а) – (1)
zu , (b) – (4)

zu . Curves 1, 2, and 3 – Ω = , ,2 2.5   ,  0.9c   

 

 

Figure 3. Angular field characteristics: (а) – (1)
zu , (b) – (4)

zu . Curves 1, 2, and 3 –Ω = , ,2 2.5   ,  1.1c   
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Figure 4. Fragments of the amplitude distribution pattern of the field 
zu ; relief over the coordinate plane r z : (а) – Re-

gion 1; (b) – Region 2; (c) – Region 3; (d) – Region 4.  0.9c  ,  11.1 h C ,  5 H c  

 
the inhomogeneity parameters. 

The problems of the backscattered acoustic field of a 
dipole harmonic source and of the field transmitted 
through a layer inclusion into a homogeneous infinite 
medium (when the media differ only in density) are 
solved analogously to the stated above. If we consider 
the same geometry of the layer-medium structure as in  
the case of Figure 1, use the same arrangement of the  

source relatively to the boundaries ( h  is the distance  
between the source and the face boundary of the layer 
and H  is the layer thickness), and assume that the sound 
velocity C  is equal everywhere, the density of the me-
dium in the vicinity is 1 , while in the layer is 2 , it is 
easy to obtain the following expressions for the acoustic 
displacements in the reflected acoustic field )1(

zu and the 
acoustic field )4(

zu transmitted through the layer: 

1

2(1) 2 ( )0
02

01 2 1

1 2

2 cos( ) sin( )

1 ( )
4

2 cos( ) sin( )

i h i h H i z
z

H i H
iF

u e e e J kr kdk

H i H




   
 


    

  
    

                    

 ,           (8) 



Numerical Simulation of Near-Field Seismoacoustic Probing of a Layer Inclusion in a Homogeneous Infinite Medium 

Copyright © 2010 SciRes.                                                                                 JMP 

116 

 

 

Figure 5. Fragments of the amplitude distribution pattern of the field 
zu ; relief over the coordinate plane r z : (а) – Re-

gion 1; (b) – Region 2; (c) – Region 3, and (d) – Region 4. c   ,  9.1 h C ,  5 H c  
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These formulae are employed to carry out numerical 

calculation and analysis of the near acoustic field struc-
ture for different density contrasts in the layer and in the 

Vicinity 2 1 2 11, 1     , enabling one to deter-
mine the influence of variations in the ratio of the densities 
in inhomogeneity and in its vicinity. Figures 6 and 7  
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Figure 6. Fragments of the amplitude distribution pattern of the field
zu :  10Ch ,  5CH , 9.012  ; (а) 

– Region 1; (b) – Region 4 
 

 

Figure 7. Fragments of the amplitude distribution pattern of the field zu : 10h C  , 5 C  , 2 1 1.1   ; (а) 

– Region 1; (b) – Region 4. 
 
 
 
 

deal with fragments of relief above the plane zr,  in 
regions 1 and 4, which are calculated by Formulae (8) 
and (9) using the same values of the density ratio as in 

the velocity ratio calculations, i.e., 2 1 0.9,    2 1   
1.1 . These fragments are much similar to those con-

sidered above; the same picture is observed in interme-  
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diate regions 2 and 3, thus neither appropriate fragments 
are shown nor are calculation formulas for these regions. 
It is seen in Figure 6(а) that if the media differ in density 
( 9.012  ), the distribution of the backscattered 

acoustic field is characterized (as in the previous case) by 
amplitude decrease and fan –shaped relief but of lower 
angular periodicity than that in Figure 4(а). The level of 
the field transmitted through the layer (see Figure 6(b)) 
decreases at larger distances from the external boundary 
but angular periodicity of amplitude values is absent. For 
a higher density contrast, i.e., for 1.112   (see 

Figures 7(а) and 7(b)), the amplitude distribution pat-
terns in reflected waves and waves transmitted through 
the layer remain practically invariable, which indicates a 
weak influence of the density contrast variation on the 
near acoustic field configuration in the layer – vicinity 
structure, as distinct from the previously considered ve-
locity jump. 

Generally, when comparing differentiation of media in 
density and velocity inside and outside the layer, we 
come to the conclusion that the sound speed jump in 
homogeneity causes a more pronounced variation of the 
near field configuration; thus the search system sensitiv-
ity to variation of this parameter is higher than the sensi-
tivity to density contrast variation. This is the main dis-
tinction of these cases, which should be taken into ac-
count in the search for inhomogeneities and can be con-
sidered as one of the diagnostic properties enabling one 
to differentiate “inhomogeneities in density” and “inho-
mogeneities in velocity”.  

Therefore, the obtained fragments of the near acous-
tic field of a dipole harmonic source operating close to 
a layer inclusion yield the entire field pattern in princi-
pally different cases of velocity and density contrasts 
inside and outside inhomogeneity. The revealed peculi-
arities provide qualitative information on their applica-
bility as informative attributes in the search for inho-
mogeneity. The distance from the source to the nearest 
(face) boundary of the layer, the thickness of the layer, 
and hence the sound speed (density) in region 3, i.e., in 
the zone occupied by probed inhomogeneity, is deter-
mined by the field configurations in regions 1, 2, and 4. 
Thus remote reading of the inhomogeneity parameters 
in the harmonic oscillation mode requires “reflection” 
and “transmittance” probing. More detailed numerical 
simulation of near fields will provide quantitative data 
on the relation of inhomogeneity contrast against the 
vicinity to the spatial structures of these fields in the 
parameters of density and sound speed. Finally, it can 
be noted that the illustrations confirm our statements 
only qualitatively; the problem of frequency choice 
optimization required for practical acoustic probing is 
not considered. 

3. Transverse SH-Wave Field Generated in  
an Infinite Medium by an Extended  
Oscillating Power Source Close to a Layer  
Inclusion (Two-Dimensional Problem) 

The considered vibration source tieyxzZ  )()(0
0


 

is the “force oscillating with the frequency ” (the force 

vector is parallel to the unit vector 0z


and has the am-

plitude 0Z ; the factor tie  is omitted as previously) is 

uniformly distributed along the axis z due to the 
two-dimensional approximation used in the analysis (see 
Figure 8). The source is omnidirectional relatively to 
radiated SH-waves, i.e., in the plane x, y oriented nor-

mally to the 0z


direction. Thus besides comparing 
acoustic and vibroseismic cases in this analysis, it is pos-
sible to study the influence of the source directivity on 
the near field characteristics. As in the previous case, the 
layer occupies the spatial region , x  h   

Hhy  ,  z . The vicinity is characterized 

by the transverse wave velocity 
tC  and differs from the 

analogous value ct inside the layer; both media have the 
same density  .  

It is shown in References [4-6] that to describe the wave 

displacements zu  in the two-dimensional problem, it is 

sufficient to introduce one component of the vector poten-
tial x  satisfying the homogeneous wave equation: 

0
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t
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           (10)

 

By analogy with the previous case of a dipole source 
in a scalar medium, the entire space is divided into four 
especially distinguished regions (see Figure 8); in each 
region the value x  is represented as the Fourier ex-

pansion, i.e., by the following expressions:  

dkekA ikxyi
x

t




 )()1( , 0y , 

 (2) ( ) ( )t ti y i y ikx
x B k e C k e e dk


  



  ,     

hy 0 ,               (11) 

 (3) ( ) ( )t ti y i y ikx
x a k e b k e e dk 


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

  , 
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Hhyh   






 dkekD ikxyi
x

t)()4( ,  yHh  

where 222 kС tt   , 222 kctt   , 

tt candC  are the shear wave velocities in the vicinity 

and inside the layer and k  is the integration variable. 

The oscillation displacements zu and significant 

stresses in the considered waves 
yz  are expressed 

through x  using differential operations: 

yu xz  )4..1()4..1(  ,             (12) 

 

yuС ztyz  )4,2,1(2)4,2,1(  , yuс ztyz  )3(2)3(  , (13) 

where  is the density of the medium; the source opera-

tion is described by one of the conditions for 0y  

instead of appropriate expressions in the right-hand side 
of Equation (10). The boundary condition is: 

)()0()0( 0
)1()2( xZyy yzyz        (14) 

The unknown coefficients ( ), ( ), ( ),A k B k C k ( ),a k  

( ),b k ( )D k  are found by matching the indicated shift 

components and strains at the boundaries of the four dis-
tinguished regions. Omitting intermediate calculations, 
we write down the resultant expressions for the wave 
displacements: 
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It follows from (15) that similarly to the previous case 

with an acoustic dipole, the field )4(
zu  does not depend 

on the parameter h , i.e., the distance between the source 
and the nearest layer boundary, which is the consequence 
of the unlimited scale of inhomogeneity along the coor-
dinate x  and the absence of absorption in the medium. 
The obtained expressions are used in the numerical cal-
culation enabling one (by means of computer graphics) 
to visualize the spatial distribution of wave amplitudes at 
the distances of up to several tens of wavelengths from 
the source for the layer thickness of the order of or 
smaller than the wavelength and to analyze the peculiari-

ties of this spatial distribution. Specifically, these ex-
pressions are used to make calculations and obtain pat-
terns of the wave displacement field (in the isometric 
projection) for the relative distance from the source and 
the layer thickness assigned in the dimensionless form: 

 9tCh ,  5tcH . As previously, the calcu-
lations are carried out for two velocity jumps 

9.0tt Cc  and 1.1tt Cc . As the integral expres-

sions, each of the four fragments of the field pattern cor-
responds to its spatial region; the amplitude distribution 
is shown as a relief rising above the plane yx, .  

Figures 9(a), (b), (c), and (d) should be considered in 
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Figure 8. Mutual arrangement of the source and the layer 
scattering of shear SH-waves 

 
the following sequence: Figure 9(а) – region 1, Figure 
9(b) – region 2, etc., while for obtaining the entire field 
pattern in all the regions all the fragments should be 
joined. Since Figure 9(а) should be considered turned in 
the opposite direction along the transverse coordinate y, 
the corresponding axis in it is denoted -y. It follows from 
the given pattern that in region 1 at larger distances from 
the source, besides a decrease of the field )1(

zu  we ob-
serve periodic sequences of maxima occupying fan- 
shaped angular sectors, which pass into directional lobes 
in the far field. Note that the scale of the longitudinal 
coordinate x is the same in all the figures, while the scale 
of the transverse coordinate y in Figures 9(b) and 9(c) is 
two orders smaller than that in Figures 9(а) and 9(d), i.e., 
the unit length in the transverse direction y in Figures 

9(b) and 9(c) is 100 times larger than that in Figures 9(а) 
and 9(d). Taking into account the scale difference it can 
be concluded that at larger distances from the source and 
approach to the layer boundary in the second region, the 

amplitude of the field )2(
zu decreases even more abruptly 

than that in Figure 9(а). The amplitude of the field pe-
netrating into the layer is maximum in the region oppo-
site to the source, decreases abruptly when escaping 
along the coordinate x  (symmetrically on both sides), 
and oscillates along the coordinate y . It is seen in Fig-

ure 9(c) that waveguide conditions for excitation and 
propagation of several first modes of SH-wave occur 

inside the layer. The field )4(
zu outside the layer (see 

Figure 9(d)) also decreases rapidly and the amplitude 
distribution in region 4 differs considerably from the 
analogous one in region 1. A similar situation is consid-
ered in the first section for a dipole source in the scalar 

acoustic problem.  
To gain a better understanding of wave reflections 

occurred in near-field probing in the near region of the 
source, it is expedient to consider antiwaveguide propa-
gation for an inverse jump of SH-wave velocities inside 
the layer and in the vicinity, which equals, for example, 

1.1tt Cc . 

Figures 10(a), (b), (c), and (d) exhibit analogous frag-
ments of the spatial field distribution in the same format 
and in the same spatial regions as in the figure considered 
above. Comparison of the amplitude distributions with the 
analogous ones of the previous case (Figure 9) shows that 
the spatial dependence can be either the same or slightly 
different. The near field in the reflection region (Figure 
10(а) – region 1) has practically the same structure as in 
the previous case. The configurations of the amplitude 
distributions in region 2 (Figures 10(b)) in those cases are 
also similar. The field configuration in the layer (Figures 
10(c)), i.e., in region 3, differs by the absence of periodic 
structure indicating the excitation of SH-wave modes, in 
spite of the presence of a crest with undulatory amplitude 
modulation also typical of the previous case. In region 4 
immediately outside the layer limits (see Figures 10(d)), 
an increased-amplitude angular sector forms being similar 
to that in the scalar acoustic problem.  

The revealed peculiarities differentiating the structures 
of the near fields traveling in opposite directions from 
the layer in waveguide and antiwaveguide cases demon-
strate the possibility of remote diagnostics of elasticity 
jump in the media occupying the internal and external 
regions of the layer and enable one to accept them as 
informative diagnostic attributes applicable, specifically, 
for solving problems of remote diagnostics and medium 
structure retrieval. Hence the previously formulated 
statement on the necessity of reflected and transmitted 
wave recording for diagnostics of inhomogeneity in its 
near-field probing, which is similar to reflection and 
transmittance location, is valid. Generally, similar results 
on peculiarities of wave reflection and transmittance 
through a layer several wavelengths thick are typical of 
the scalar acoustic problem and the problem with a 
source exciting SH-waves in an elastic medium. 

4. Conclusions 

Numerical simulation of near-field probing of inho-
mogeneity (layer inclusion) in acoustic and seismic me-
dia is carried out, which has confirmed its applicability 
with the use of near acoustic and elastic fields of har-
monic sources and recording of waves reflected by in 
homogeneity and transmitted through it. The study is 
based on the analysis of the visual pattern of the spatial 
amplitude distribution in near and far wave fields calcu-
lated by the formulae derived in this paper. The simulta-
neously considered angular characteristics of the far 
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Figure 9. Fragments of the spatial distribution of wave amplitudes of an oscillating source for 0.9t tc C  , 11.1th C  , 

= 5tωH c : (а) – Region 1; (b) – Region 2; (c) – Region 3; (d) – Region 4 

  
acoustic field do not contradict the revealed peculiarities 
of the near field of elementary oscillation sources oper-
ating close to inhomogeneity. The employed values of 
inhomogeneity contrast characterize the relation of den-
sities and sound speeds in the layer and ambient acoustic 
medium. To predict the distance from the source to the 
layer inclusion and to estimate its thickness, the qualita- 

tive character of the dependence ChcH  ,  

( ,t tH c h C  ) should be studied. Complete investiga-
tions require numerical simulation of a number of definite 
values of the mentioned parameters in addition to the 
given calculations. At the same time, the near field pecu-
liarities found in this paper (even in a limited volume of 
simulation data) are useful for optimal arrangement of 
sources and recording receivers in design of experiments 
on seismic exploration of productive stratum in massif, 
characterized by an abrupt decrease of SH-wave velocity. 
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Figure 10. Fragments of the spatial distribution of the wave field for 1.1t tc C  , 9.1 th C  , = 5tωH c : (а) – Region 1; 

(b) – Region 2; (c) – Region 3; (d) – Region 4 
    
The structures of the near fields of a vibration source, 
which are backscattered or transmitted through inho-
mogeneity, should be considered as a set of informative 
basic characteristics indirectly indicating the presence of 
a stratum with deposit. Shelf investigations of sea bottom 
sediments containing gas condensate layers can be simi-
lar to the search for hydrocarbon accumulation in geo-

logic environment on land territories. In some cases, the 
search for inhomogeneities using harmonic oscillation 
sources can precede pulse location and determine only 
tentative information or boundary contours. In other cas-
es, it is expedient to employ near-field probing using 
harmonic sources to increase reliability of pulse echo-
sounding of geological structures or prediction accuracy 
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of their characteristics in remote diagnostics [9]. 
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