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ABSTRACT 

We consider a set of n identical charged pendulums and hang them from a common pivot. The electrostatic repulsive 
charge-charge interaction between the pairs repels the pendulums apart. The weight and the tension of the pendulums 
balance the coulombian repulsion stabilizing the setup to final static equilibrium. The final configuration is a horizontal 
n-gon inscribed in a circle of radius, R. It is the objective of our investigation to measure R as a function of mass, length 
and charge, {m,  ,q}, of the pendulum for a number of pendulums, n, within the range of 2 ≤ n < ∞. As a by-product of 
the analysis for a chosen, n, we evaluate the tensions in the lines.  
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1. Motivations and Goals 

It is the objective of our investigation to quantify the im- 
pact of two-body coulombian electrostatic interaction [1] 
to an assembly of limitless number of identical charges. 
We begin with an assembly of two-charged particles and 
systematically generalize the analysis by increasing the 
number of the particles. In order to quantify the impact of 
the electrostatic forces we consider static scenarios. For 
instance we envision utilizing the charges forming iden- 
tical simple pendulums and hanging them from a com- 
mon pivot. The pendulums lines confine the movement 
of the charges. Active forces on the particles including 
gravity results in equilibrium, bringing the assembly to 
its final rested configuration. The generalization of the 
analysis embodies a calculation addressing the quantifi- 
cation of the electrostatic forces transiting from a discrete 
charge distribution to the continuum. Aside from the 
physics content of the project at hand, the premise of the 
project is to exercise applying cutting-edge emerging 
Computational Algebra System (CAS) in general and 
Mathematica [2] in particular to physics. The testimonial 
of the latter is the fabrication of this entire manuscript in 
one single file embodying text, graphics, simulation, nu- 
meric and symbolic computations. This work is com- 
posed of four sections. In addition to Motivation and 
Goals, in Section 2, we lay the fundamentals of the 
needed physics. In this section we also present the nu- 
meric output of the calculation. In Section 3 we present 
the calculation concerning the continuous charge distri- 
bution and compare its numeric values to its discrete 
counterpart. We close the article with a few closing re- 

marks. 

2. Fundamentals and the Physics of the 
Problem 

We begin our analysis considering three charges. Figure 
1 depicts one such setup. Each of the three massive 
charges form a simple pendulum and all three are hooked 
at a common pivot at a support. The repulsive coulom- 
bian forces repel the charges. Each charge experiences a 
pair of electrostatic force. One such force acting on charge 
1 due to charge 2 is denoted by F21. The orientation of 
the second electrostatic force, F31, is shown as well. The 
orientation of the net force acting on charge 1 aligns 
along the extension of the radius of a virtual circle shown 
by the solid line. At static state this force balances out 
with the horizontal shadow of the tension in the line. The 
equal characters of the three pendulums namely, mass, 
length, and charge, {m, ,q} put the charges evenly in the 
shown horizontal dashed circle of radius, R. 



In order to establish the relationship between the relevant 
physical and geometrical quantities, we begin with the 
static requirement, 0net F . In a 2-dimensional hori- 
zontal coordinate system laid on the horizontal circle 
shown in Figure 1, with the origin at the center of the 
circle and with x-axis along the radius of the circle, the 
static force equation yields, 

   21 311 cos
x

F FF            (1) 

where the coulombian forces, 2 2
21 31 21F F kq r   with 

  2 22
21 2 1 2 1r x x y y   ,     2 2, cos , sinx y R R   

and {x1,y1} = {R,0} with 2π 3  . In MKS units the  
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Figure 1. Three-pendula setup. The relevant forces, weight, 
tension and one of the electrostatic forces are shown. 
 
value of 9

01 4π 9 10k     and q is in coulombs. Sub- 
stituting these polar coordinates in r21 yields,  2

21r
 2 24 is n 2R  . On the other hand in the upright train- 

gle shown in Figure 1 we have sinR   , where   is 
the “conic” angle, the angle the string makes with the 
vertical dashed reference line. Putting these together 
gives, 

 
2

1 2 2 22 1
4 in ns i

2
sx

kq
F cos

 
 
   
  

 
 


     (2) 

This force needs to be balanced with the horizontal 
component of the tension. The weight counter balances 
the vertical component of the tension. These two require- 
ments yield, 

 1sin

cos
x

T F

T m








 g
            (3) 

Forming the ratio of these two equations and substi- 
tuting for Equation (2), gives, 

  2 2 22 s
1

tan 4 in in cos2
2

smgkq  



  

 





   (4) 

In Equation (4) we utilize the trigonometry identity, 
sin2θ = tan2θ/(1+tan2θ), this yields, 

3 2
3 3tan tan 0A A          (5) 

where  

2

23 2

cos
2

1
sin4

2

kq
A

mg



 
 
 

         





      (6) 

The subscript 3 indicates the number of the charges. 
At the outset for a chosen set of parameters, {m, ,q}, 
solution of cubic Equation (5) gives the conic angle θ. 
Utilizing this angle the radius of the circumscribed circle 
R is determined. 



Utilizing the result of the three-charge system we sys- 
tematically extend the analysis for a system of n charges. 
The virtual circles formed by the charges for 2 ≤ n ≤ 7 
are shown in Figure 2. The middle graph of the first row  

 
 

 

Figure 2. Self-organized distributed point-like charges for n 
= 2, 3, 4··· 7. 
 
corresponds to the calculation presented thus far. Utiliz- 
ing these graphs the distance between the far right charge 
and the rest of the charges are calculated. These figures 
are also used to calculate the needed angles for evaluat- 
ing the horizontal components of coulombian forces. 
Plots depicted in Figure 2 reveal the fact that configura- 
tion of the distributed charges for even and odd charges 
are different. In both cases the distributions possess sym- 
metry about the horizontal axis that passes through the 
center of the circle. However, for even number of charges 
there is always one purely horizontal coulombian force 
originating from the far left charge; this is missing for the 
odd cases. Consequently, the format of the net force for 
even number of charges is different from the odd cases. 
However, one realizes A3 given by Equation (6) is com-
posed of two distinct terms; the physical quantities are 
lumped together in the first parentheses, while the second 
parentheses contains the angular terms of the associated 
geometry. Therefore, n > 3 changes only the value of the 
second parentheses. Utilizing the symbolic computational 
features of Mathematica for a chosen number of charges, 
n, the second column of Table 1 gives the terms of the 
second parentheses for An. The third column of the same 
table is the associated numeric values of the second 
column. 

Inspection of this table confirms the comments made 
in the previous paragraph. Namely, the common value 
1/2 for even n’s is the signature of the far left charge; this 
factor is absent for the odd n’s. In Table 1, because of 
space limitation only the terms for the 10-charge con- 
figuration, the decagon, are given. With no restriction the 
table can be extended for a limitless number of charges, 
i.e. 2 ≤ n < ∞. 

Utilizing the terms given in Table 1 and adopting the 
format of Equation (5) we compose the general equation 
for a n-charge system, namely, 

3 2tan tan 0;  for 2,3,4,n n n nA A n         (7) 

 

2

2

2
where 

4

         .corresponding elements of column 3,

n

kq
A

mg

 
  
 

Table 1

(8) 
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Table 1. The first column is the number of charges, the second column is the symbolic geometry related factor of corre- 
sponding, An, and the third column is the numeric values of the 2nd column for α = π. 

n-gon terms values 

2 2/1  0.5000 

   2cos csc6 3   1.1550 3 

   1 2 cot csc4 4   1.9140 4 

       2 2cos csc cos csc3 10 5 10 2 5     2.7530 5 

       2 21 2 cos csc cos csc3 6 6     3  3.6550 6 

           2 2cos csc cos csc cos csc5 14 7 3 14 2 7 14 3 7       2  4.6100 7 

           2 21 2 cos csc cot csc cos csc3 8 8 4 4 8 3 8         5.6100 8 

               2 2 2cos csc cos csc cos csc cos csc7 18 9 5 18 2 9 6 3 18 4 9          2  6.6500 9 

               2 2 21 2 cos csc cos csc cos csc cos csc2 5 10 3 10 5 5 3 10 10 2 5           2  10 7.7250 

 
For a set of reasonable values of {m, ,q} such as 

{m→1·10–6, q→5·10–9, →1.0} in metric units we 
evaluate An. Deploying Mathematica numeric equation 
solver we then solve Equation (7) for θn. With these roots 
at hand 1) we plot the conic angle θn vs. n, and 2) apply-
ing Rn = sinθn we evaluate and then display the radii of 
the virtual circles in Figure 2. Finally according to Equa- 
tion (3), Tn cosθn = m·g we display the tension in the 
pendulum vs. n. These are shown in the graphic matrix, 
Figure 3. 






As mentioned earlier, Table 1 contains the terms asso- 
ciated with 2 ≤ n ≤ 10. Plots depicted in Figure 3 are 
those for 2 ≤ n ≤ 32. It is interesting to observe that the 
angle θn and the radii Rn are not linear functions of n, 
where the tension behaves linearly. Interested observers 
may verify objectively the impact of varying the charac- 
ters of the pendulums on the shown plots of Figure 3. 
For instance one should expect a larger charge q results 
in a larger angular variation. On the contrary a heavier 
mass m results in a smaller angular deviation vs. n, and 
etc. 

3. Continuous Charge Distribution 

As show in Figure 3 increasing the number of charges 
increases the radii of corresponding virtual circles ac- 
cordingly. As shown, the radius is not a linear function of 
n. For large n the rate of change of R is drastically milder 
vs. its rate for the smaller n. The consequence of this 
observation is that the distance between the adjacent 
charges for instance for a decagon is 0.27 m where for a 
set of 30 charges it is 0.13 m, i.e. it is half as large. In 
other words, the distribution of a large number of charges 
may be considered to be approaching to continuum. 
Therefore, we consider a “large” number n as a continu- 
ous distribution and evaluate the force that such distribu- 

tion exerts on a single charge placed on the plane of the 
circle. The strategy is to apply , where qF E E  

V , the electrostatic potential is subject to the density 
of the continuous charge distribution, λ = (n·q)/(2π·R). 
The integration yielding the potential is, 

 
 

2π

2 2
0

d
_, _

2π 2 cos

nkq
V R x

R x Rx






 
     (9) 

where, R is the radius of the loop, x, is the distance of a 
point from the center of the loop along the x-axis in the 
coordinate system used throughout this article, and   is 
the angle between the radius vector connecting the center 
of the loop to a point on the rim of the loop and the 
x-axis. Since for the case at hand ˆ

xi  , Fx is, 

  1 / /PowerExpand / /Simplify,x xF q V R x      (10) 
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(11) 
EllipticK, and EllipticE are the elliptic integral of the 

first and the second kind, respectively [3]. It might be 
tempting to evaluate the electric field directly by inte- 
grating the square of the denominator of the integrand in 
Equation (9); however, this increases the CPU time dras- 
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Figure 3. The left upper graph is the display of the conic angle θn vs. n. The right upper graph is the display of the corre-
sponding circular orbits. The bottom two graphs are Rn and Tn vs. n. 
 
tically. The proposed strategy is preferred. 

We then for instance compare the numeric value of 
Equation (11) for n = 32 to the force value according to 
the modified version of Equation (2), i.e.  

 



2

1 2

2

4
.corresponding elements of column 3,

x

kq
F

R


Table 1
. 

In order to match these two forces we realize the ra- 
dius, R, in the former needs to be about (20-30)% greater 
than the values used in the latter. The value of x also is to 
be about 50% - 60% greater than the radius R. In other 
words, there is no unique set of values {R,x} that is con- 
ducive to the matching values of these two forces. For 
the chosen finite number of charges, n, one might inter-
pret the required larger radius corresponds to the needed 
thinner (discrete) charge distribution. 

4. Conclusion and Remarks 

In this article by utilizing the fundamentals of a two-body 
static electrostatic interaction we consider a controlled 
situation where n charges are present. By restricting the 
movement of the charges we envision a situation where 
the charges organize themselves forming various two di- 
mensional n-gons. We then evaluate the coulombian for- 
ces of the n – 1 charges on one of the charges. Evaluation 
of this force entails calculating certain projection angles. 
In the course of analyzing these forces we were able to 
ecognize a certain pattern conducive to formulating the 

problem for a limitless number of countable charges. Due 
to space limitation we report the general trend of a deca-
gon. However, in the course of numeric analysis we use 
the extended version of the pattern evaluating a 32- 
charged set. With great efforts we developed a Mathe- 
matica code automating the evaluation of the symbolic 
and the corresponding numeric values of terms in Table 
1. As pointed out in the Introduction section, we deploy 
Mathematica utilities crafting the needed graphs, as well 
as symbolic and numeric evaluations. Furthermore, we 
also reason that for a large number of charges the distri- 
bution appears as continuous. Applying Mathematica 
symbolic computational power we are able to evaluate 
symbolically the electrostatic potential, its associated 
electric field and the force. 

r
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