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ABSTRACT 

A fully discrete version of a piecewise polynomial collocation method based on new collocation points, is constructed 
to solve nonlinear Volterra-Fredholm integral equations. In this paper, we obtain existence and uniqueness results and 
analyze the convergence properties of the collocation method when used to approximate smooth solutions of Volterra- 
Fredholm integral equations. 
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1. Introduction 

We shall consider the nonlinear Volterra-Fredholm inte- 
gral equation 

           1 2 , 0,y t g t y t Fy t t I T       .  (1) 
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where  and   
and Fredholm integral operators given by 
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where , 1,r r 2 
k C I I  

denotes (real or complex) parameters and 
 and let  be a given function. 2  Ig C

The mentioned equations are characterized by the 
presence of a linear functional argument and play an im- 
portant role in explaining many different phenomena. 

In particular, they turn out to be fundamental when or- 
dinary differential equations based model fail. These 
equations arise in industrial applications and in studies 
based on biology, economy, control and electro-dynamic. 

Collocation method is a widely popular numerical 
technique in solving integral equations, differential equa- 
tions, etc. When collocation method is used to solve 
complicated engineering problems, it has several disad- 
vantages, that is, low efficiency, ill-conditioned, etc. Thus,  

different types of techniques were proposed to improve 
the computational performance of collocation method. 

Recently, Chelyshkov has introduced sequences of 
polynomials in [1], which are orthogonal over the inter- 
val  0,1  with the weight function 1. These polynomials 
are explicitly defined by  
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   0,1, , .  (4) 

The polynomials  mkP t

m k

 have properties, which are 
analogous to the properties of the classical orthogonal 
polynomials. These polynomials can also be connected to 
a fixed set of Jacobi polynomials . Precisely    ,

mP t 

      0,2 11 2kk
mk n kP t t P t

 1   . 

Investigating more on (4), we deduce that in the family 

of orthogonal polynomials  have k multiple   
0mk

m

k
P t



zeros 0t   and m k  distinct real zeros in the inter- 
val  0,1 . Hence, for every m the polynomial  0mP t  
has exactly m simple roots in  0,1 . Following [1], it can 

be shown that the sequence of polynomials   0 0m m
P t




 

generate a family of orthogonal polynomials on  0,1  
which possesses all the properties of other classic or- 
thogonal polynomials e.g. Legendre or Chebyshev poly- 
nomials. Therefore, if the roots of  are chosen as 
collocation points, then we can obtain an accurate nu- 
merical quadrature. 

 0mP t

In the present paper, we further develop the works car- 
ried out in [2-6]. 
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We discuss existence and uniqueness results and ana- 
lyze the convergence properties of the collocation method 
when used to approximate smooth solutions of linear 
Volterra-Fredholm integral equations and finally, some 
numerical results are presented in the final section, which 
support the theoretical results obtained in this paper. 

2. Existence and Uniqueness Results 

Let  denote the Banach space continuous real- 
valued functions, such that 

 C I
 g C I  with 

max .
t I

g g
 
                (5) 

Lemma 2.1. Assume H is a nonempty closed set in a 
Banach space V, and that  is continuous. 
Suppose  is a contraction for some positive integer 
m. Then, T has a unique fixed-point in H. 

:T H H
mT

Proof: For proof see [7].  
Here, in integral Equation (1), we assume that  for 

some constants i

ik
M , satisfies a Lipschitz condition with 

respect to its third argument 

   1 2 1, , , , ,

             0 , , 1,2.
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2       (6) 

Theorem 2.2. Assume g and i  satisfy the condition 
(6) and given functions 

k
,, ig k  are continuous on their 

domains. Moreover, assume 
1

2 .M T                  (7) 

Then the integral Equation (1) has a unique solution 
    .t Iy C  
Proof: We define the nonlinear integral operator 
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Let us show that for m sufficiently large, the operator 
 is a contraction on . For mT  C I  1 2,y y C I  
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Then 
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Since 
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we get 
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By a mathematical induction, we obtain 
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Thus 
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Since, 20 1TM   then 

 2lim 0,
m

m
TM


  

and 

1lim 0,
!

m

m

M

m
  

the operator  is a contraction on mT  IC  when m is 
chosen sufficiently large. By the Lemma 2.1, the operator 
T has a unique fixed-point in  IC .  

3. Collocation Method 

Let  , 0, , 1,nt nh n N t TN     define a uniform 
partition for  0, ,TI   and let 
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1
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The mesh N  is constrained in the following sense: 

T
h

N
  

with a given mesh N  we associate the set of its 
interior points,  1, , 1n N: :N nZ t .  

1d  


 For a fixed 
 and, for given integers  and  the 

piecewise polynomial space 
1N  1,m 

  d
Nm dS Z  is defined by 

      : : ; ,0 1
n

,N m dm dS Z u C I u n N  
d d       

where πm d  denotes the set of (real) polynomials of a 
degree not exceeding m d . The dimension of this 
space is given by dim     1.N mN d  d

m dS Z  
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For integral equation, we have  hence, the 

collocation space will be 

1,d  
  1

1 NmS Z
  . Let 

   1
1 ,Nmn

u S Z

  

for all nt   we have 
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u t u t sh L s u t c h
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r    (15) 

From (15) we see that an element    1
1 ,Nmu S Z
  is 

well defined when we know the coefficients 

  n ru t c h  

for all  In order to compute these coef- 
ficients, we consider the set of collocation parameters 

0, , 1.n N  

 jc

:

, where  and define the set 

 of collocation points by 

10 mc c   
, 1

0j n
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1.

 , 1,

m N

N n jX t
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The collocation solution  will be de- 
termined by imposing the condition that satisfies the 
integral Equation (1) on the finite set 
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Thus, for ,n j  the collocation Equation 
(16) assumes the form 

n jt t t c h  
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From this equation and after some computations, we 
obtain 
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Now, by using the local Lagrange basis functions 
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for approximating the integral terms, we use the La- 
grange interpolating polynomial to approximate 

 and , we obtain   1 , , ,n jk t s u s  2 , , ,n jk t s u s
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Defining the quadrature weights 

 1

0
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and 

 , ,0
: d , , 1,jc
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the fully discretized collocation equation corresponding 
to (20)-(22) is thus given by 
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Note that,  and Equation (23) represent 
for each 

  1
1m Nu S Z


0,1, , 1,n N


   a recursive system of m 
nonlinear algebraic equations with the unknowns  ,n ju t . 

4. Global Convergence 

Let  denote the (exact) collocation solu- 
tion to (1) defined by (16). In our convergence analysis 
we examine the linear test equation  

  1
1m Nu S Z
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where  1 ,k C D   2 .k C I I   We will assume that 
1

2
  is not in the spectrum  F  of the Fredholm in- 

tegral operator F. A comment of the convergence results 
to the nonlinear Equation (1) can be found at the end of 
this section. 

Theorem 4.1. Assume that the given function in (24) 
satisfy   1 2, ,m m m .g C k C D k C I I     Then for all 
sufficiently small h T N  the constrained mesh collo-

cation solution  to (24), for all   1
1m Nu S Z


1,N


0,1, ,n    satisfies 

,m
m mC M h


             (25) 
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where m  are positive constants not depending on h. 
This estimate holds for all collocation parameters 

C
 jc  

with  1

Proof: In each interval 1i i , the exact solution y 
of (24) is m times continuously differentiable. This fol- 
lows from the smoothness hypotheses we have imposed 
on 1 2

0 1mc c    .
t t 

, ,g k k  and from the expressions for  y t . From 
this it is obvious that both the left and right limits of 
 y t , as t tends to , exist and are finite. We will 

prove the estimate (25) by using the Peano’s Theorem to 
write  
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Thus, it follows from (15) that the collocation error 
: y u    possesses to the local representation 
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By substituting the (29) in the (30) and after some 
computations, we obtain 
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by substituting the Equations (32)-(38) in Equation (31) 
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this linear algebraic system may be written more con- 
cisely as  
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Since the kernel iK  is continuous on their domains, 
the elements of the matrixes 2, , 0,1, ,n n N 1  

2,nh

 are 
all bounded. By using the Neumann Lemma the inverse 
of the matrix 12n mI     exists whenever 

1 2,
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for some matrix norm. This clearly holds whenever h is 
sufficiently small. In other words, there is an 0h   so 
that for any mesh N  with ,h h  each matrix n  
has a uniformly bounded inverse. Therefore, matrix   
has a uniformly bounded inverse. 

Also, the invertibility of the m m  block matrix 
 now depends not only on h but also on 
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It is clear that, matrix  has a uniformly bounded in- 
verse and the elements of the matrixes  are all bounded. 
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uniformly for  0,1s  and 0 1  where ,n N  

2 .m m mC W K   

The is equivalent to the estimate   .m m
mC y h

 
  

 
We conclude this section with a comment regarding 

the extension of the results of Theorem 1 to the nonlinear 
Equation (1). Under the assumption of the existence of a 
(unique) solution  y t  on I, the nonlinear analogue of 
the error Equation (30) is 
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where           : 1 ,0i i i iz s y s u s s      1.
Hence, the above proof is easily adapted to deal with 

the nonlinear case (1), and so the convergence results of 
Theorem 1 remain valid for nonlinear Volterra-Fredholm 
integral equations. 

5. Presentation of Results 

In this section, we report on the numerical result of test 
problem solved by the proposed method of this article. 

Typical forms of collocation parameters jc  are: 
Gauss points: Zeros of  2 1 ;mP t   

Radou I points: Zeros of   12 1 2 1 ;m mP t P t   

1 ;

 

Radou II points: Zeros of     12 1 2 1 ;m mP t P t  

Chelyshkov points: Zeros of  

       0,1
0 1 2

m

m mP t P t    

where  and  mP t    ,
mP t   are Legendre and Jacobi 

polynomials, respectively. 
Example 5.1. The nonlinear Volterra-Fredholm inte- 

gral equation in  0,1  
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Table 1. Error for example 1. 

m N 
Guass

e


 
Radau

e



 

Radau

e



 

Chelyshkov

e


3 2 2 × 10–30 2 × 10–30 2 × 10–30 1 × 10–30 

3 4 2 × 10–30 2 × 10–30 3 × 10–30 1 × 10–30 

3 8 2 × 10–30 2 × 10–30 2 × 10–30 2 × 10–30 

 
has the following analytical solution  y t  t  therefore, 
provides an example to verify the accuracy of this meth- 
od. 

Table 1 shows the maximum errors involved pre-  

sented method with 
1 1 1

, , ,
2 4 8

h   along with the exact 

solution. 
For computational purposes, in the test problem dif- 

ferent forms of kernels are considered. All the computa- 
tions were carried out with Maple. In each cases of Ex- 
ample the obtained nonlinear equations was solved by 
the Newton’s method. 

The result for collocation points jc  are presented in 

Table 1 which indicates that the numerical solutions ob- 

tained from (56) and step sizes equal to 
1 1

,  
2 4

 and 
1

8
 

are nearly identical. These results indicate that, if we use 
the Chelyshkov points, then we obtain the numerical so- 
lutions of minimum error. 

6. Conclusion 

We have shown that the collocation method yields an 
efficient and very accurate numerical method for the ap- 
proximation of solutions to Volterra-Fredholm integral 
equations. Also we have shown that, if the roots of 

 0mP t  are chosen as collocation points, then we can 
obtain an accurate numerical quadrature. 
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