
Intelligent Information Management, 2010, 2, 380-385
doi:10.4236/iim.2010.26046 Published Online June 2010 (http://www.SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

The Line Clipping Algorithm Basing on Affine
Transformation

Wenjun Huang
College of Math and Computer Science, Guangxi University for Nationalities, Nanning, China

E-mail: hwjart@126.com
Received March 20, 2010; revised April 25, 2010; accepted May 27, 2010

Abstract

A new algorithm for clipping line segments by a rectangular window on rectangular coordinate system is
presented in this paper. The algorithm is very different to the other line clipping algorithms. For the line
segments that cannot be identified as completely inside or outside the window by simple testings, this algo-
rithm applies affine transformations (the shearing transformations) to the line segments and the window, and
changes the slopes of the line segments and the shape of the window. Thus, it is clear for the line segment to
be outside or inside of the window. If the line segments intersect the window, the algorithm immediately (no
solving equations) gets the intersection points. Having applied the inverse transformations to the intersection
points, the algorithm has the final results. The algorithm is successful to avoid the complex classifications
and computations. Besides, the algorithm is effective to simplify the processes of finding the intersection
points. Comparing to some classical algorithms, the algorithm of this paper is faster for clipping line seg-
ments and more efficient for calculations.

Keywords: Computer Graphics, Line Clipping, Algorithm, Affine Transformation

1. Introduction and Previous Work

In computer graphics, line clipping is a basic and impor-
tant operation, and has many applications. For example,
extracting part of a defined scene for viewing must take
line clipping. The region that includes the part of the
defined scene is called a clip window. Generally, the
window is a rectangle or a general polygon.

The early and classical algorithms of line clipping are
Cohen-Sutherland Line Clipping algorithm [1], Cyrus-
Beck Line Clipping algorithm [2] and Nicholl-Lee-Nicholl
Line Clipping algorithm [3].

Cohen-Sutherland Line Clipping algorithm is one of
the oldest and most popular line-clipping procedures.
The algorithm uses a rectangle window with a coding
scheme to subdivide the two-dimensional space which
includes the graph. Then, each endpoint of a line seg-
ment of the graph is assigned the code of the sub-region
in which it lies. And according to the value of the “&”
and “|” which are made by the two codes of the two
endpoints of the line segment, the algorithm determines
the line segment to be inside of the widow or not. For the
simple situations (the line segments are completely in-

side or outside of the window), the algorithm can quickly
get the results. But for the line segments that cannot be
identified as completely inside or completely outside the
window by the scheme of the algorithm, the algorithm
has to make computations and turn the line segments
into the “simple situations”. Obviously, if the line seg-
ment is outside of the window, the computations are
waste.

Later, Cyrus-Becky proposed Cyrus & Beck algorithm.
The algorithm treats line in parametric form. The theo-
retical model of this algorithm is general. However, it is
rather inefficient. To clip a line segment which is neither
vertical nor horizontal and lies entirely within the win-
dow, it will perform 12 additions, 16 subtractions, 20
multiplications and 4 divisions [4]. Besides, for the gen-
eral case (the line segments will cross all the boundaries
of the window), the algorithm first makes computations
and find the parameters of the intersection points. Then,
according to the signs of the denominators of the pa-
rameters and the values of the parameters, the algorithm
determines which parts of the line segments are inside
the window. Clearly, if the line segment is outside of the
window, the computations are useless.

W. J. HUANG

Copyright © 2010 SciRes. IIM

381

In [3], Nicholl-Lee-Nicholl Line Clipping algorithm
makes four rays which pass an endpoint of the line seg-
ment and four vertexes of the window, and creates three
regions by the four rays. Then, the algorithm determines
which region that the line segment lies in, and determines
finding the intersections or rejecting the line segment.
Before finding the intersection points of the line segment
and the window, the algorithm first determines the posi-
tion of the first endpoint of the line segment for the nine
possible regions relative to the clipping window. If the
point is not in the one of the three especial regions, the
algorithm has got to transform the point to the one of the
three especial regions. To find the region in which the
other endpoint of the line segment lies, the algorithm has
got to compare the slope of the line segment to the slopes
of the four rays. So, for the algorithm, finding the inter-
section points are efficient, but finding the positions of
the two endpoints of the line segment are more compli-
cated than Cohen-Sutherland Line Clipping algorithm.

Independently, You-dong Liang, Brian A.Barsky, Mel
Slater offered a more faster algorithm [5,6]. This algo-
rithm is based on a parametric representation of the line
segment. The algorithm is somewhat complicated and
inefficient. To clip a line segment which is neither verti-
cal nor horizontal, it will perform 16 comparisons, 7
subtractions, and 4 divisions.

In [7], Vaclv Skala proposed a line clipping algorithm
for convex polygon window. The algorithm uses the bi-
nary search to find the intersections in the clipping win-
dow. The complexity is O (lg N). But for the rectangle
window, the algorithm does not have obvious advantage
in comparison with the Cyrus-Beck algorithm.

In [8], the authors proposed the Optimal Tree algo-
rithm. Based on the regions (there are nine regions sub-
divided by the four boundaries of the window) that the
endpoints of the line segment lies in, the authors pro-
posed five types of “Partition-Pairs”: the “window-side
or side-window” (including 8 cases), the “window-corner
or corner-window” (including 16 cases), the “side-side”
(including 20 cases), the “side-corner or corner-side”
(including 16 cases) and the “corner-corner” (including 4
cases). There are 64 cases in the five types of “Parti-
tion-Pairs” and the optimal tree includes these 64 cases.
The algorithm performed uniformly faster than all above
algorithms. But the algorithm is too complicated.

In [9], the author proposed an algorithm based on ho-
mogeneous coordinates. In the algorithm, the author as-
sumes a rectangular window P and a line p given as F(x)
= ax + by + c = 0. The line p subdivides the space into
two half-spaces as F(x) < 0 and F(x) > = 0. According to
the locations of all the vertexes of the window to the line,
the author makes out 16 possible cases and makes a table
storing the cases. To clipping a line, the algorithm makes
the calculations and determines the locations of all the
vertexes of the window to the line. Having compared the
locations with the cases in the table, the algorithm de-

termines which edges of the window intersect the line
and finds the intersection points by the cross products of
their homogeneous coordinates. The algorithm is ineffi-
cient. To clip a line segment which will cross the win-
dow, the algorithm first codes the two endpoints of the
line segment, and makes 4 comparisons and 2 cross
products (taking 12 multiplications). If turning the inter-
section points (xi, yi, w) into (xi/w, yi/w), the algorithm
still makes 4 divisions. So, in Euclidean space the com-
putational complexity of the algorithm is more than
Cohen- Sutherland algorithm.

In this paper, a new line clipping algorithm for a rec-
tangle clip window will be given. Comparing those algo-
rithms above, this algorithm makes the speed of line clip-
ping faster and makes the calculations more efficient.

2. Theorems

2.1. Theorem 1

In a plane, the necessary and sufficient conditions for
two line segments without any points of intersection are
that there are no any points of intersection of the two line
segments after applying an affine transformation to the
two line segments.

Proof. We suppose that there are two line segments

1L (the endpoints are 11p and 12p) and 2L (the end-

points are 21p and 22p) in a plane, and 1L  2L = .

Also, we suppose that there is a affine transformation T,
and we apply the affine transformation T to the two line
segments 1L and 2L :

T(1L) = '
1L (the endpoints are '

11p and '
12p),

T(2L) = '
2L (the endpoints are '

21p and '
22p).

2.1.1. The Sufficient Condition (Proof by

Contradiction)

If '
1L  '

2L = A'(A'  ), we apply the 1T (1T exist

because T is an affine transformation) to '
1L and '

2L , and

have)('
1

1 LT  = 1L ,)('
2

1 LT  = 2L . The 1T is still an

affine transformation. According to the properties of
affine transformation, we get the conclusion: Straight
line 1L  straight line 2L   . So, we set the straight

line 1L  The straight line 2L = A (A  ). Because

1L  2L = , so the point A the extension of the line

segment 1L or the line segment 2L . So

11p A/ 12p A > 0 or 21p A/ 22p A > 0.

But
'

11P A'/ '
12P A' < 0 and '

21p A'/ '
22p A' < 0.

W. J. HUANG

Copyright © 2010 SciRes. IIM

382

Those are contradictory in the properties of affine
transformation.

2.1.2. The Necessary Condition
The proof is as same as the proof of the sufficient condi-
tion.

From the theorem, two important inferences can be
derived:

1) On a plane, the necessary and sufficient conditions
for two line segments with a point of intersection are that
there is a point of intersection of the two line segments
after applying an affine transformation to the two line
segments.

2) On a plane, the necessary and sufficient conditions
for that a line segment is inside of a window (or outside
of the window, or across the window) are that the line
segment is inside of the window (or outside of the win-
dow, or across the window) after applying an affine
transformation to the line segment and the window.

2.2. Theorem 2

In a rectangular coordinate system, we suppose that the
slope of a straight line a (The endpoints are

),(111 aa yxA and),(222 aa yxA) is 1/c(c  0) and the

straight line b (The endpoints are),(111 bb yxB and

),(222 bb yxB) is vertical to the axis x (i.e. b the axis x).

If apply the affine transformation

xT : x' = x-cy, y' = y; ((x, y) is a point.)

to the line segments a and b, i.e.
a' = xT (a) and b' = xT (b).

There is a conclusion: The line segment a' the axis x
and the slope of b' = –1/c.

Proof. xT (a) and xT (b) are

 , , 1, 2, 1, 2i i i i ix x cy y y i a a b b     .

1) 1 2a ax x 

   
   
      

1 1 2 2

1 2 1 2

1 2 2 1 2 1 1 2

0

the axis

a a a a

a a a a

a a a a a a a a

x cy x cy

x x c y y

x x x x y y y y

a x.

   

   

     


 

2) The slope of b

   
     
     
    

2 1 2 1

2 1 2 2 1 1

2 1 2 1 2 1

2 1 2 10

1

b b b b

b b b b b b

b b b b b b

b b b b

= y y x x

y y x cy x cy

y y x x cy cy

y y cy cy

c

    

    

    

   

 

2.3. Theorem 3

In a rectangular coordinate system, we suppose that the
slope of a straight line a (The endpoints are 1A (1ax , 1ay)

and 2A (2ax , 2ay)) is c (c  0) and the straight line b

(The endpoints are 1B (1bx , 1by) and 2B (2bx , 2by)) is

vertical to the axis y (i.e. b the axis y). If apply the af-
fine transformation

yT : x' = x, y' = - cx + y; ((x, y) is a point.)

to the line segment a and b, i.e.
a' = yT (a) and b' = yT (b)

There is a conclusion: The line segment a' the axis y
and the slope of b'= –c.

Proof. yT (a) and yT (b) are

 , , 1, 2, 1, 2i i i i iy y cx x x i a a b b     .

1) 1 2a ay y 

   
   
      

1 1 2 2

1 2 1 2

1 2 2 1 2 1 1 2

0

the axis

a a a a

a a a a

a a a a a a a a

y cx y cx

y y c x x

y y y y x x x x

a y.

   

   

     


 

2) The slope of b

   
     
      

    

2 1 2 1

2 2 1 1 2 1

2 1 2 1 2 1

2 1 2 10

b b b b

b b b b b b

b b b b b b

b b b b

= y y x x

y cx y cx x x

y y cx cx x x

c x x x x

c

    

    

    

   

 

3. The Basic Idea of the Algorithm

We suppose that there are a rectangular window and
some line segments in a rectangular plane coordinate
system (see Figure 1).

Four types of the line segments are gotten by classify-
ing the line segments according to the positions against
the window.

The first are outside of the rectangular window (see
the line segment a in Figure 1(a)).

The second are inside of the rectangular window (see
the line segment b in Figure 1(a)).

The third are parallel or vertical to the edges of the
rectangular window and intersecting the rectangular win-
dow (see the line segment c in Figure 1(a)).

The fourth are the other line segments that do not be-
long to any types as above (see the line segments d, e,
and f in Figure 1(a)).

W. J. HUANG

Copyright © 2010 SciRes. IIM

383

(a) (b)

(c) (d)

In the Figure (a) and (d), the vertexes of the window are A (wlx , wty),

B (wrx , wty), C (wrx , wby) and D (wlx , wby).

In the Figure (b), the vertexes of the window are 'A ('

wltx , '

wty),
'B ('

wrtx , '

wty), 'C ('

wrbx , '

wby) and 'D ('

wlbx , '

wby).

In the Figure (c), the vertexes of the window are 'A ('

wlx , '

wtly),
'B ('

wrx , '

wtry), 'C ('

wrx , '

wbry) and 'D ('

wlx , '

wbly).

Figure 1. The process of the clipping. (a) Lines and window;
(b) Tx(d) and Tx(w); (c) Ty(d) and Ty(w); (d) The result.

For the first, the second and the third, we process them
with subtraction. For the fourth, we apply the affine
transformations to the line segments of the fourth and
apply the same affine transformations to the window
with the theorem 2 and the theorem 3, turning the fourth
into the line segments that are vertical or parallel to axis
x, and turning the window into a parallelogram that have
two edges which are vertical to the line segment (see
Figures 1 (b) and (c)). Now, according to theorem 1 ~
theorem 3, we can easily determine the line segment is
outside of the window or across the window.

After getting the intersections of the line segment and
the window, we apply the inverse transformations of the
affine transformations to the intersections, and the line
segment clipped by the window is gotten.

4. The Steps of the Algorithm

/*In the step (2), (3), (4) and (5), we process the first, the
second, the third and the fourth as above orderly.*/

1) Preparation:
Give a rectangular plane coordinate system xoy;
Give four edges of a rectangular window W:
float wlx , wrx , wty , wby , (wlx < wrx , wby < wty);

Give a line segment randomly:
float 1p (1x , 1y), 2p (2x , 2y); int flag: = 0;

float 11p (11x , 11y): = 1p (1x , 1y),

22p (22x , 22y): = 2p (2x , 2y);

int 1f : = (wlx  1x  wrx) && (wby  1y  wty);

int 2f : = (wlx  2x  wrx) && (wby  2y  wty);

2) if ((1x and 2x)  wlx) || ((1x and 2x)  wrx) ||

((1y and 2y)  wby) || ((1y and 2y)  wty), goto (7);

3) else if (1f && 2f), goto (6);

4) else if (1y = 2y) {

if (1x > 2x){ swap(1p , 2p); swap(11p , 22p);}

if (1x  wlx) and (2x  wrx)

{ 11x : = wlx ; 22x : = wrx ; goto (6);}

else if (1x  wlx) and (2x  wlx)

{ 11x : = wlx ; goto (6);}

else if (1x  wrx) and (2x  wrx)

{ 22x : = wrx ; goto (6);}

}
else if (1x = 2x) {

if (1y > 2y){ swap(1p , 2p); swap(11p , 22p);}

if (1y  wby) and (2y  wty)

{ 11y : = wby ; 22y : = wty ; goto (6);}

else if (1y  wby) and (2y  wby)

{ 11y : = wby ; goto (6);}

else if (1y  wty) and (2y  wty)

{ 22y : = wty ; goto (6);}

}
5) else{
5.1) c: = (2x - 1x)/(2y - 1y);

5.2) if (1y > 2y) {swap (1p , 2p); swap(11p , 22p);}
'
1p : = xT (1p); '

2p : = xT (2p); w':= xT (w);

/*After getting the affine transformation, the rectan-
gular window become a parallelogram having two edges

that parallel to axis x, and the line segment ('
1p , '

2p) is

vertical to the axis x. See Figure 1(b).*/

5.3) if (c >0) && (('
1x  '

wrbx) || ('
1x  '

wltx)) goto (7);

/*see Figure 1(b)*/

else if(c < 0) && (('
1x  '

wrtx) || ('
1x  '

wlbx)) goto(7);

/*refer to the Figure 1(b)*/
else {

if ('
1x  '

wlbx) and ('
1x  '

wrbx) {flag++;

if ('
1y  '

wby) and ('
2y  '

wby) '
1y = '

wby ;

11y = 1
xT ('

1y); 11x = 1
xT ('

1x);

}

if ('
1x  '

wltx) and ('
1x  '

wrtx) {flag++;

if ('
1y  '

wty) and ('
2y  '

wty) '
2y = '

wty ;

22y = 1
xT ('

2y); 22x = 1
xT ('

2x);

}
if (flag = 2) goto (6);

W. J. HUANG

Copyright © 2010 SciRes. IIM

384

/*“flag = 2” means that the line clipping have been
finished.*/

5.4) if (1x > 2x){swap(1p , 2p); swap(11p , 22p);} c: =

1/c; '
1p : = yT (1p); '

2p : = yT (2p); w' = yT (w);

/*After getting the affine transformation, the rectan-
gular window become a parallelogram having two edges

that parallel to axis y, and the line segment ('
1p , '

2p) is

vertical to the axis y. See Figure 1(c).*/

5.5) if ('
1y  '

wbly) and ('
1y  '

wtly) {flag++;

if ('
1x  '

wlx) and ('
2x  '

wlx) '
1x = '

wlx ;

11y = 1
yT ('

1y); 11x = 1
yT ('

1x);

}

if ('
1y  '

wbry) and ('
1y  '

wtry) { flag++;

if ('
1x  '

wrx) and ('
2x  '

wrx) '
2x = '

wrx ;

22y = 1
yT ('

2y); 22x = 1
yT ('

2x);

}
/*see Figure 1 (c)*/
}
6) Drawing the line (11x , 11y , 22x , 22y);

7) The end;

5. The Calculation Complexity

In the most complex case (the lines belong to the fourth
type as above), after using 2 divisions to get the slope
and the 1/slope of a line segment, the algorithm uses two
steps with 4 multiplications to make the clipping.

First, the algorithm translates the window and places
the “bottom edge” on the axis x, and makes the same
translation for the line segment. Then, it uses one multi-
plication to apply an affine transformation to the “top
edge” of the window and uses another multiplication to
get the intersection of the window and the line segment
(see Figure 1(b)).

Second, the algorithm translates the window and places
the “left edge” on the axis y, and applies the translation
to the line segment. Then, it uses one multiplication to
apply an affine transformation to the “right edge” of the
window and use another multiplication to get the intersec-
tion of the window and the line segment (see Figure 1(c)).

So, the algorithm at most uses 2 divisions and 4 multi-
plications to finish the clipping for a line segment (See
Table 1).

Here, we list the calculation complexities of the algo-
rithm and other algorithms in Table 1 for comparing.
Where “C-S algorithm”, “C-B algorithm”, “N-L-N algo-
rithm”, “L-B algorithm”, “VS algorithm” and “L-B-2
algorithm” indicate that the Cohen-Sutherland Algorithm
[1], the Cyrus-Beck Algorithm [2], the Nicholl-Lee-
Nicholl Algorithm [3], the Liang-Barsky-Slater Algorit-

hm [5,10], the O(lg N) Line Clipping Algorithm in 2E
[7] and the Optimal Tree Algorithm for Line Clipping [8]
orderly.

6. Results and Discussion

The algorithm in this paper has been realized with a
computer in C language with TC system. It is successful
for the algorithm to clip the random line segments (see
Figure 1(a)). We take the special situation like line seg-
ment d in Figure 1 for a sample to perform the process of
the clipping and to make comparisons. The comparisons
between the algorithm in this paper and Cohen-Suther-
land algorithm have been list in Table 2. In Table 2, the
first row give the numbers of the line segments, the sec-
ond row give the times of performing the algorithm in
this paper, and the third row give the times of performing
Cohen-Sutherland algorithm. We use the function cclok()
in TC to keep the times.

Some important facts are as follows:
1) The complexity of the algorithm in this paper is less

than VS algorithm, see Table 1;
2) L-B-2 algorithm is faster than C-S algorithm, L-B

algorithm, N-L-N algorithm and C-B algorithm [6,8];

Table 1. The calculation complexities.

Operations
Algorithms

× ÷ making codes

Our algorithm 4 2 0

C-S algorithm 4 2 6

L-B algorithm 4 4 0

N-L-N algorithm 1 6 0

C-B algorithm 12 2 0

L-B-2 algorithm 4 2 0

VS algorithm 7 2 0

Table 2. The times of the clipping.

Lines

5000 10,000 20,000 30,000 60,000

T 0 0 0 0 1

Tc-s 0 1 1 1 3

1,200,000 1,500,000 1,800,000 2,100,000

18 23 28 31

56 70 85 98

W. J. HUANG

Copyright © 2010 SciRes. IIM

385

3) L-B-2 algorithm is 2.5 (the average) or 3.03 (the
maximum) times [8] as fast as Cohen-Sutherland algo-
rithm for the speed of line clipping.

4) The algorithm in this paper is 3.1 (the average) or
3.5 (the maximum) times as fast as Cohen-Sutherland
algorithm, see Table 2.

From the facts above, we derive the conclusion that
the algorithm in this paper is faster than the other algo-
rithms in Table 1 for line clipping.

7. Conclusions

For the special situation that the line segment or its ex-
tension (like the line segment d in Figure 1) intersects all
the edges or their extensions of the window, the clipping
speed of our algorithm is obviously faster than other al-
gorithms. But for the random situations, the average
clipping speed of our algorithm is a little bit faster than
other algorithms.

8. References

[1] D. Hearn and M. P. Baker, “Computer Graphics,” C Ver-

sion, 2nd Edition, Prentice Hall, Inc., Upper Saddle River,
1998, p. 226.

[2] M. Cyrus and J. Beck, “Generalized Two and Three Di-
mensional Clipping,” Computers and Graphics, Vol. 3,

No. 1, 1978, pp. 23-28.

[3] D. Hearn and M. P. Baker, “Computer Graphics,” C Ver-
sion, 2nd Edition, Prentice Hall, Inc., Upper Saddle River,
1998, p. 233.

[4] T. M. Nicholl, D. T. Lee and R. A. Nicholl, “An Efficient
New Algorithm for 2-D Line Clipping: Its Development
and Analysis,” Computers and Graphics, Vol. 21, No. 4,
1987, pp. 253-262.

[5] D. Hearn and M. P. Baker, “Computer Graphics,” C Ver-
sion, 2nd Edition, Prentice Hall, Inc., Upper Saddle River,
1998, p. 230.

[6] C. B. Chen and F. Lu, “Computer Graphics Basis,” Pub-
lishing House of Electronics Industry, Beijing, 2006, pp.
167-168.

[7] V. Skala, “O (lg N) Line clipping Algorithm in E2,”
Computers and Graphics, Vol. 18, No. 4, 1994, pp. 517-
527.

[8] Y. D. Liang and B. A. Barsky, “The Optimal Tree Algo-
rithm for Line Clipping,” Technical Paper Distributed at
Eurographics’92 Conference, Cambridge, 1992, pp. 1-38.

[9] V. Skala, “A New Approach to Line and Line Segment
Clipping in Homogeneous Coordinates,” Visual Computer,
Vol. 21, No. 11, 2005, pp. 905-914.

[10] Y. D. Liang, B. A. Barsky and M. Slater, “Some Im-
provements to a Parametric Line Clipping Algorithm,”
Technical Report No. UCB/CSD 92/688, Computer Sci-
ence Division, University of California, Berkeley, 1992,
pp. 1-22.

