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ABSTRACT 

This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest 
generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method is efficient. 
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1. Introduction 

Monte Carlo and quasi Monte Carlo methods comprise 
that branch of experimental mathematics which is con- 
cerned with experiments on random numbers. In the last 
decade they have found extensive use in the fields of 
operational research and nuclear physics, where there are 
a variety of problems beyond the available resources of 
theoretical mathematics [1,2]. The problem of calculating 
the largest or smallest generalized eigenvalue problem is 
one of the most important problems in science and engi- 
neering. This problem arises naturally in many applica- 
tions. Mathematically it is a generalization of the sym- 
metric eigenvalue problem and it can be reduced to an 
equivalent symmetric eigenvalue problem. Recently, 
evaluating the smallest and largest eigenpair of large 
scale matrices using Monte Carlo and quasi Monte Carlo 
methods has been studied [3-5].  

Let  are real symmetric matrices and the 
matrix B is a positive definite matrix. Consider the prob- 
lem of evaluating the smallest eigenpair of the pencil (A, 
B) i.e. the values for which  

, n nA B 

Ax Bx                   (1) 

A generalized eigenvalue problem (1) is said to be 
symmetric positive definite (S/PD) if A is symmetric and 
B is positive definite. 

2. Markov Chain Monte Carlo Algorithm 

Suppose that the matrix n nA   and two vectors 
 are given. Consider the following Markov 

chain  with length  
, nf g 

iT i

0 1:iT k k k   i             (2) 

where for ,  1, 2, ,jk n  1, 2, ,j i  . The statistical 

nature of constructing the chain (2) follow as 

   0 1, j jp k p p k k p            (3) 

where p  and p  show the probability of starting 
chain at   and transition probability from state   to 
 , respectively. In other words, we have 
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 ,  and W1, 2, ,j i  1.0   

Theorem 1. Consider the linear system Ax b . Let 
us the nonsingular matrix n nM  , such that  

n nMA I L    , then the system can be presented in 
the following form  

x Lx f                   (4) 

where f = Mb. Then under condition 
1 1

max 1
n

ij
i n j

l
  

 , the 

random variable  h  is unbiased estimator, i.e. 

  , .E h h x     

Proof [3]. 
Suppose that ( )ix  is the  iterative solution of the 

following recursion relation with 

thi
(0) .x f  Now, we 

consider the random variable 
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i j
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then   ( 1), .i
iE h h x      

By simulating N random paths with length i: 
( ) ( ) ( ) ( )

0 1:s s s
iT k k k    s

i

Table 1. Computing the smallest eigenpair for different 
matrices using MCMC algorithm. 

Rel. error of  Rel. error of  
Matrix dimension 

eigenvalue eigenvector 

64 × 64 26 × 10e
we can write 

1. −7 8.36 × 10e−4 

 
( )
0

( )

( )
0

( ) ( )

0

s

s
j

s

i
ks s

i j k
j

k

h
h W

p 

    f

The Monte Carlo estimation can be evaluated by 

 ( )

1s

1ˆ
N

s
i i h

N
   , which is an approximation of  

( 1), .ix   
he following choice for the initial

on probability matrix leads t

h
Now, consider t  den- 

sity vector and the transiti o 
an Almost Optimal Monte Carlo (AOMC) algorithm. 
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Theorem 2. Using the above choice   1

n
p p  
  

biased estim

and 

 the variance of the un ator 

fo ized. 
Proof [3]. 

CI)  

In e Carlo iterative algorithm can be applied 
al- 

, 1

n
p p   

   
r obtaining the inverse matrix is minim

3. Inverse Monte Carlo Iterative (IM

verse Mont
when A is a nonsingular matrix. In this method, we c
culate the following functional in each. 

1, ,

, ,

j j j j

j j j j

h Af h Bf

h Bf h Bf

  

It is more efficient that we first evaluate the inverse 
matrix using the Monte Carlo algorithm ,4]. The algo- 
rithm can be realized as follows 

 [3

The Proposed Algorithm 

1) Inputs n nA  , nf  . 0

r 2) Starting from initial vecto
3) For 1, 2,j    

0f . 

4) Using gl ori ], obal alg thm [4 Calculate the sequence 
of i  the following Sys- 
te
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5) Output: Smallest eigenvector 
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128 × 128 1.18 × 10e−7 6.33 × 10e−4 

256 × 256 6. 3.

7
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48 × 10e−8 

.91 × 10e−8 

16 × 10e−4 

1.83 × 10e−4 512 × 512 

24 × 102 7.04 × 10e−8 1.06 × 10e−4 

 

 

Figure 1. Relative error based on number of Markov 
chains. 
 

6) End of Algorithm. 

section, the results listed in Table 1 are relative 
rr MC. In all of computations we 

us tion eig (A, B) results in contrast 

ed in this paper. Also, we 
he number of Markov chains the 

eased (Figure 1). 
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