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ABSTRACT 

By employing the Srivastava-Owa fractional operators, we consider a class of fractional differential equation in the unit 
disk. The existence of the univalent solution is founded by using the Schauder fixed point theorem while the uniqueness 
is obtained by using the Banach fixed point theorem. Moreover, the integral mean of these solutions is studied by ap- 
plying the concept of the subordination. 
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1. Introduction 

Recently, the theory of fractional calculus has found in- 
teresting applications in the theory of analytic functions. 
The classical definitions of fractional operators and their 
generalizations have fruitfully been applied in obtaining, 
for example, the characterization properties, coefficient 
estimates [1], distortion inequalities [2] and convolution 
structures for various subclasses of analytic functions and 
the works in the research monographs. In [3], Srivastava 
and Owa, gave definitions for fractional operators (de- 
rivative and integral) in the complex z-plane  as fol- 
lows: 



Definition 1.1. The fractional derivative of order   
is defined, for a function  f z  by  
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where the function  f z  is analytic in simply-con- 
nected region of the complex z-plane  containing the 
origin and the multiplicity of 
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Definition 1.2. The fractional integral of order   is 

defined, for a function  f z , by  
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where the function  f z



 is analytic in simply-con- 
nected region of the complex z-plane () containing the 
origin and the multiplicity of  is removed by 
requiring 

 z   1 

log z   to be real when    0. z

Remark 1.1.  
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Further properties of these operators can be found in 
[4,5]. 

2. Preliminaries 

Let  be the class of all normalized analytic functions  

 
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n
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n

f z z a z
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
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in the open unit disk : :U z z   1  satisfying 
 0 0f   and  0 1f  .  Let  be the class of ana- 

lytic functions in U and for any  and 


a ,n  
 ,a n  be the subclass of  consisting of functions 

of the form 


  nf z a a  .nz   
For given two functions F and G, which are analytic in 

U, the function F is said to be subordinate to G in U if 
there exists a function h analytic in U with  

   0 0 and 1 for allh h z z U    

such that  

     for all .F z G h z z U   

. If G is uni- F GWe denote this subordination by 
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valent in U, then the subordination F G  
.

is equivalent 
to    0 0F G  and   F U G U

Lemma 2.1 ]. If th
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 Let f, g be analytic function in U. As- 
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then .
 Section 2, we 

w

0,1 .

In Section 3, we study the existence of locally univa- 
le
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r work is organized as follows: IOu n

ill derive the integral means for normalized analytic 
functions involving fractional integral in the open unit 
disk U  
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nt solution for the fractional diffeo-integral equation  
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subject to the initial condition , where  
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 be a subset of Banach space X and 

:k U 
lent functio

,  :h U       are analytic univa- 
 ce is shown by using 

Schauder fixed poi heorem while the uniqueness is 
verified by using Banach fixed point theorem. 

For that purpose we need the following defin


ns in z U . The existen

sults: 
Let M :A M M  

ct on the setan operator. The operator A is called compa  
M if it carries every bounded subset of M into a compact 
set. If A is continuous on M (that is, it maps bounded sets 
into bounded sets) then it is said to be completely con- 
tinuous on M. A mapping :A X X  is said to be a 
contraction if there exists a er , 0 < 1 real numb    

such that  

, for all , .Ax Ay x y x y X     

Theorem 2.1. Arzela-Ascoli let E be a compact metric 
space and  E  be the Banach space of real or com-
plex valued uous functions normed by   contin

 : sup .t Ef f t  

If  nA f  is a sequence in  such that  E nf  is 
uni ounded and equi-c ous, then formly b ontinu A  is 

compact. 
Theorem 2.2. (Schauder) Let X be a Banach space, 

M X  a nonempty closed bounded convex subset and 
M  is compact. Then P has a fixed point. 

 2.3. (Banach) If X is a Banach space
:P M 
Theorem  and 

unique fixed

3. Existence and Uniqueness 

istence and unique- 

: X X  is a contraction mapping then P has a 
 point.  

P

In this section, we established the ex
ness solution for the diffeo-integral Equation (1). Let 

 : ,U    be a Banach space of all continuous func- 
dowed with the sup. norm  tions on U en

 : sup .u u z  z U

Lemma 3.1. If the function h is analytic, then the ini- 
tial value problem (1) is equivalent to the nonlinear 
Volterra integral equation  
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In other words, every solution of the Volterra Equation 
(2

wing assumptions are needed in the next 
th

here exists a continuous function 

) is also a solution of the initial value problem (1) and 
vice versa. 

The follo
eorem: 
(H1) T  z  on U 

and increasing positive function  , C    such 
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     , ,h z u v z u v    

with the property that  

            .a z u b z v     

Note that 

a z u b z v 

 ,C     
ve function

is the Banach space of all con- 
tin

s function p in U, such 
th

uous positi s. 
(H2) There exists a continuou
at  

    
, .

1

p
k z I u z u



 

 

Remark 3.1. By using fractional calculus we observe 
that Equation (2) is equivalent to the integral equation of 
the form  

       , , ,z zu z I h z u z k z I u z   ,      (3) 

that is, the existence of Equation (2) is the existence of 

 the assumptions (H1) and (H2) hold. 
Th

the Equation (3). 
Theorem 3.1. Let
en Equation (1) has a univalent solution  u z  on U. 
Proof. We need only to show that :P   has a  

fix   ed point by using Theorem 1.2 where
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which is independent of u. 
ous mapping on S. Moreover, Hence P is an equicontinu

for 1 0z  , 2 0z U   such that 1 2z z  and under 
assump  (H w that P is a nt function. 
The Arzela-Ascoli theorem yields that every sequence of 
functions  nu  from 

tion 1), we sho univale

P S  has a uniformly convergent 
subsequenc d theree, an fore  P S  is relatively compact. 
Schauder’ m asserts that P has a fixed 

point. The univalency of the tion h yields that u is a 
univalent solution. 
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If 
 

   
1

1,
1 1 

 L    


   
 then (1) admits a unique uni- 

valen



t solution  .u z  

Proof. Assum operat
we only need t w

e the or P defined in Equation (4), 
o sho  that P is a contraction mapping 

that is P has a unique fixed point which is corresponding 
to the unique solution of the Equation (1). Let 1 2,u u  , 
then for all ,z U  we obtain that 

     

     
     

       

   
 

   

1 2Pu z Pu z

1 1

2 2

1 2 1 2

1 2 1 2

1 2

, , ,

, , ,

, ,
1

1 1

1
.

1 1

z z

z

z z

I h z u z k z I u z

h z u z k z I u z

L
u u k z I u z k z I u z

L
u u u u

L
u u

 



 



 


 





      

 
    
     

     
   





 

Thus by the assumption of the theorem we have that P 
is a contraction mapping. Then in view of Banach fixed 
point theorem, P has a unique fixed point which corre- 
sponds to the univalent solution (Theorem 3.1) of Equa- 
tion (1). Hence the proof. 

The next result shows the integral means of univalent 
solutions of problem (1). 

Theorem 3.3. Let  1u z ,  2u z  be two analytic 
univalent solutions for the Eq

a 2.2 wi
uation 

th 
(1) satisfying the 

assumptions of Lemm    1:p z u z  and 
   2:q z u z  then  

   2π 2π
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 
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0 0
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Proof. Setting    1 1: , ,f z h z u v ,    2 2: , ,g z h z u v , 
. Hence in viewLemma 2.2 imp

Le
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lies that  q z p
tain the result. 
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