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ABSTRACT

By employing the Srivastava-Owa fractional operators, we consider a class of fractional differential equation in the unit
disk. The existence of the univalent solution is founded by using the Schauder fixed point theorem while the uniqueness
is obtained by using the Banach fixed point theorem. Moreover, the integral mean of these solutions is studied by ap-
plying the concept of the subordination.
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1. Introduction

Recently, the theory of fractional calculus has found in-
teresting applications in the theory of analytic functions.
The classical definitions of fractional operators and their
generalizations have fruitfully been applied in obtaining,
for example, the characterization properties, coefficient
estimates [1], distortion inequalities [2] and convolution
structures for various subclasses of analytic functions and
the works in the research monographs. In [3], Srivastava
and Owa, gave definitions for fractional operators (de-
rivative and integral) in the complex z-plane C as fol-
lows:

Definition 1.1. The fractional derivative of order «
is defined, for a function f(z) by

1 de 1(4)
I(l1-a)dz “(z-¢)

where the function f(z) is analytic in simply-con-
nected region of the complex z-plane C containing the
origin and the multiplicity of (Z -¢ )70{ is removed by
requiring log(z - é’) to be real when (Z - cj) > 0.

Definition 1.2. The fractional integral of order « is
defined, for a function f (Z) , by

1 z a-1
1f(z)=——| f 7- dd;a >0,
D= b= e
where the function f(z) is analytic in simply-con-
nected region of the complex z-plane (C) containing the
origin and the multiplicity of (z—¢ )a_] is removed by
requiring log(z—¢) tobe real when (z—¢)>0.

Dy f(z):=

—dg;0<a<l,
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Remark 1.1.
I'(u+1 o
Df{z”}:#{z” | > 10<a<]
and
e+l o
If{z”}:#{z” L > La>0

Further properties of these operators can be found in
[4.,5].

2. Preliminaries

Let A be the class of all normalized analytic functions

f(z):z+ianz”

2

in the open unit disk U := {Z eC: |Z| < 1} satisfying
f(0)=0 and f'(0)=1. Let H be the class of ana-
lytic functions in U and for any aeC and neN,
H[a,n] be the subclass of H consisting of functions
of the form f(z)=a+a,z"+---.

For given two functions F and G, which are analytic in
U, the function F is said to be subordinate to G in U if
there exists a function h analytic in U with

h(0)=0and |h(Z)| <1forallzeU
such that

F(z)=G(h(z)) forallzeU.

We denote this subordination by F <G . If G is uni-
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valent in U, then the subordination F <G is equivalent
to F(0)=G(0) and F(U)=G(U).

Lemma 2.1 [6]. If the functions f and g are analytic in
U then

9(z)=< f(z

<[* ‘f re'e‘ 40, u>0,0<r<l.

:>j ‘gre ‘d&

Lemma 2.2 [7]. Let f, g be analytic function in U. As-
sume that 17g(z)eH[0,1], 17f(z)eQ(a) and

f’
Iy f (Z){1+ : (Z)} is univalent in U. If

f(z)

o(@)+|g'(@) _[f(2)]+]*'(2)
r(s) I'(a)

then q(z)=1/g(z)=<p(z)=17f(z).

Our work is organized as follows: In Section 2, we
will derive the integral means for normalized analytic
functions involving fractional integral in the open unit
disk U

p(z):=171(2)<a(2)=179(2), @B (0.1).
In Section 3, we study the existence of locally univa-
lent solution for the fractional diffeo-integral equation

Dfu(z)= h(z,u(z),k(z, Ifu(z))), a,fe(0,1), (1)

subject to the initial condition u(0)=0, where

u:U > C is an analytic function for all zeU and
k:UxC—>C, h:UxCxC—C are analytic univa-
lent functions in z €U . The existence is shown by using
Schauder fixed point theorem while the uniqueness is
verified by using Banach fixed point theorem.

For that purpose we need the following definitions and
results:

Let M be a subset of Banach space Xand A:M > M
an operator. The operator A is called compact on the set
M if it carries every bounded subset of M into a compact
set. If A is continuous on M (that is, it maps bounded sets
into bounded sets) then it is said to be completely con-
tinuous on M. A mapping A: X — X is said to be a
contraction if there exists a real number p, 0< p <1

such that

[AX— Ay| < p|x—y], forall X,y e X.

Theorem 2.1. Arzela-Ascoli let E be a compact metric
space and C (E) be the Banach space of real or com-
plex valued continuous functions normed by

[ ] :=sup,|f (t)|

If A={f,} is a sequence in C(E) such that f is
uniformly bounded and equi-continuous, then A is
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compact.

Theorem 2.2. (Schauder) Let X be a Banach space,
M < X anonempty closed bounded convex subset and
P:M — M is compact. Then P has a fixed point.

Theorem 2.3. (Banach) If X is a Banach space and
P:X — X is a contraction mapping then P has a
unique fixed point.

3. Existence and Unigqueness

In this section, we established the existence and unique-
ness solution for the diffeo-integral Equation (1). Let
B:=C[U,C] be a Banach space of all continuous func-
tions on U endowed with the sup. norm

u(zﬂ.

Lemma 3.1. If the function h is analytic, then the ini-
tial value problem (1) is equivalent to the nonlinear
Volterra integral equation

u(z):r(z_g)w

" I(a)

Jull= sup..

h(¢.u($).v(¢))dS ae(0,1). (2)

In other words, every solution of the Volterra Equation
(2) is also a solution of the initial value problem (1) and
vice versa.

The following assumptions are needed in the next
theorem:

(H1) There exists a continuous function p(z) on U
and increasing positive function ¥ e C[R,,R,] such

that
Iz ) <[ (@) (lul+ V)
with the property that
¥ (a(2)|ul+b(z (lull)+b(2) ¥ (Iv])-

Note that C[R,,R, ] is the Banach space of all con-
tinuous positive functions.

(H2) There exists a continuous function p in U, such
that

V) <a(z)¥

(e e oLl

Remark 3.1. By using fractional calculus we observe
that Equation (2) is equivalent to the integral equation of
the form

u(z)= Ifh(z,u(z),k(z,lfu(z))), (3)

that is, the existence of Equation (2) is the existence of
the Equation (3).
Theorem 3.1. Let the assumptions (H1) and (H2) hold.
Then Equation (1) has a univalent solution u(z) onU.
Proof. We need only to show that P:B8— 3 has a
fixed point by using Theorem 1.2 where
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(Pu)(2):= Z“h( u(z),1 k(z,u(z))) then
|(Pu)(z)|: (z u(z) ,k(z,l u(z) ))‘
( z ,k(z,l u z ))‘

. ||P|| (||u||+‘k(z, |fu(z))‘) “)

a+1

. \Pupu el
C(a+1)| T(B+1)
_¥lel[r(s+1)+]el]
L(S+1)T(a+1)
where W = SUp,. ‘I’("u”) Thus we obtain that

IPl < ‘PIIPII[F (B+)+[Pl] _
L(B+1)T(a+1)

that is P:B, — B,. Then P mapped B, into itself.
Now we proceed to prove that P is equicontinuous. For
7,2, €U suchthat z, #2,, |z,-7|<&8, 6>0. Then

forall ueS, where
N Pl VDK )
’ " LB+ (a+1) |

we obtained

|(Pu)(zl)_(Pu)(Zz )|

_ gn%h(;,u(g),v@»d:
B h(cu@ o)

e e oy
—mjo [(Zl—é") -(2,-¢) Jdéf

SNCEREY

h a a a
:&)‘[2(22—21) +2¥ -1 J

F(a+1
[ I Il .
S P R B ey L

which is independent of u.

Hence P is an equicontinuous mapping on S. Moreover,
for z,#0, z,#0€U such that z #2z, and under
assumption (H1), we show that P is a univalent function.
The Arzela-Ascoli theorem yields that every sequence of
functions {u,} from P(S) has a uniformly convergent
subsequence, and therefore P(S) is relatively compact.
Schauder’s fixed point theorem asserts that P has a fixed
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point. The univalency of the function h yields that u is a
univalent solution.

Now we discuss the uniqueness solution for the prob-
lem (1). For this purpose let us state the following as-
sumptions:

(H3) Assume that there exists a positive number L
such that for each u,, v, and Uu,,v, €B,

|h(z,u1 (2),v,(2))=h(z.u,(2).v, (z))|
<LJu - uf+ v -]

(H4) Assume that there exists a positive number ¢
such that for each u ,u, e B we have

(120 2) (2102

Theorem 3.2. Let the hypotheses (H1-H4) be satisfied.
L[T(B+1)+/]
L(B+1)I(a+1)

valent solution u (Z )

<1, then (1) admits a unique uni-

Proof. Assume the operator P defined in Equation (4),
we only need to show that P is a contraction mapping
that is P has a unique fixed point which is corresponding
to the unique solution of the Equation (1). Let u,,u, € 5,
then for all zeU, we obtain that

|(PU1)(Z)_(PU2)(Z)|
¢ 1h(z.u (2). k(2120 (2)))
_h(z,uz(z),k<z,lﬂu (Z)))‘

<m[uu w22 ) )
Fa bl 1)uul—uzn}
M" o

L(B+1)T(a+1) t =

Thus by the assumption of the theorem we have that P
is a contraction mapping. Then in view of Banach fixed
point theorem, P has a unique fixed point which corre-
sponds to the univalent solution (Theorem 3.1) of Equa-
tion (1). Hence the proof.

The next result shows the integral means of univalent
solutions of problem (1).

Theorem 3.3. Let u,(z), u,(z) be two analytic
univalent solutions for the Equation (1) satisfying the
assumptions of Lemma 2.2 with p(z):=u,(z) and

q(z)=u,(z) then

(re“’ )‘,,

p(rei")‘” d6, u>0,0<r<l.

0
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Proof. Setting f (z):=h(z,u.v,), 9(z)=h(zu,.v,),

Lemma 2.2 implies that (z)~< p(z). Hence in view of
Lemma 1.2, we obtain the result.
Example 3.1. Consider the fractional problem

1/2
DZI/ZU(Z):U(Z)J’_IZ U(Z)’ (5)
10
where u:U —-U and k(z,lfu(z)):linu(z). We
observe that ¥ =u(z)+1)%u(z) and ¥ =2.13 and
e e2)+ll]
r(3/2)T(3/2)

=0.52,

where p(z):% and p(z)=1. Thus in view of Theo-

rem 3.1, the problem (5) has a solution in the unit disk.
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