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ABSTRACT 

In this paper, we will establish some oscillation criteria for the higher order linear dynamic equation on time scale in 
term of the coefficients and the graininess function. We illustrate our results with an example. 
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1. Introduction 

Since Stefen Hilger formed the definition of derivatives 
and integrals on time scales, several authors has ex- 
pounded on various aspects of the new theory, see the 
papers by Agarwal et al. [1] and the references cited 
therein.  

A book on the subject of time scale, i.e., measure 
chain, by Bohner and Peterson [2] summarize and organ- 
izes much of time scale calculus on time scale and refer- 
ences given therein.  

A time scale   is an arbitrary closed subset reals, 
and the cases when this tie sale is equal to the reals or to 
the integers represent the classical theories of differential 
and of difference equations.  

In recent years there has been much research activity 
concerning the oscillation and non-oscillation of solution 
of some differential equations on time scales,we refer the 
reader to the few papers [3-7].  

In [4], the authors considered the second order dy-
namic equation  

          0,p t x t q t x t
    

and some sufficient conditions for oscillation of all solu- 
tion on unbounded time scales are given. But, the oscilla- 
tion criteria are not considered the impulsive influence. It 
is rarely about the oscillation of higher order impulsive 
dynamic equations on time scales.  

In this paper we shall consider the following linear 
higher order impulsive dynamic equation 
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Throughout the remainder of the paper, we assume 
that, for each 1, 2, ,k    the points of impulses k  are 
right dense (rd for short). In order to define the solutions 
of the problem (1), we introduce the following space  
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Definition 1. A function  
is said to be a solution of (1), if it satisfies  

  1\ , ,iy PC AC t   

x

      0
n

x t p t x t  

1,2, ,k  

   ( )i ii
k k k

 a.e. on , and 

for each  satisfies the impulsive condition 

 \ , 1, 2,kt k  

x t a x t    and the initial conditions  0 0x t x  , 

 0 0

i i

x t x   . 

Before doing so, let us first recall that a solution of (1) 
is a nontrivial real function  x t


 satisfying Equation (1) 

for . A solution t a x t

 ,xt

 of (1) is said to be oscilla- 
tory if it is neither eventually positive nor eventually 
negative, otherwise it is non-oscillatory. Equation (1) is 
said to be oscillatory if all its solutions are oscillatory. 
Our attention is restricted to those solutions of (1) which 
exist on some half line  and satisfy  

  0sup : 0x t t t   for any .xt t  

2. Preliminaries  

A time scale  is an arbitrary non-empty closed subset 
of the real numbers . Since we are interested in oscil- 
latory behavior, we suppose that the time scale under 
consideration is not bounded above, i.e., it is a time scale 
interval of the form . On any time scale we define 
the forward and backward jump operators by  




 ,a 

      : inf : , : sup : .t s s t t s s        t
t

 (2) 

A point t is said to be left-dense if , right-dense 
if  left scattered if , and right-scat- 
tered if  The graininess 
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For a function  (the range  of may ac-
tually be replaced by any Banach space), the (delta) de-
rivative is defined by  
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A function  : ,f a b    is said to be re-continuous 
at each right-dense point and if there exists a finite left 
limit in all left-dense points, and f is said to be differen- 
tiable if its derivative exists, the derivative and the shift 
operator   are related by the formula  

, where : .f f f f f              (4) 

We will make use of the following product and quo- 
tient rules for the derivative of the product fg and the 
quotient f/g of two differentiable functions f and g  
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The integration by parts formula reads  

           

    .

b

a

b

a

f t g t t f b g b f a g a

f t g t t





  

 




    (7) 

Remark 1. We note that if , then    t t  , 
  0t  ,    f t f t   and (1) becomes the higher 

order differential equation  
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3. Main Results 

In the following, we will prove some lemmas, which will 
be useful for establishing oscillation criteria . 

Lemma 1. Let  and . Then  , rdy f C p 
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which on simplification gives the estimate (10) for 
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Applying induction we have, for any natural number 
m,  
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The proof of Lemma 5 is completed. 
Remark 2. If  x t  is an eventually negative solution 

of (1),we have conclusions similar to Lemma 4 and 
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By Corollary 2, we know that every solution of (22) is 
oscillatory. 
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