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ABSTRACT 

In this paper, we present a new family of iterative methods for solving nonlinear equations. It is proved that the order of 
convergence of this family is five. Two functions and two derivative evaluations should be computed per iteration. To 
demonstrate convergence properties of the proposed family of methods, some numerical examples are given. Further 
numerical comparisons are made with several other existing fifth-order methods.  
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1. Introduction 

In this study, we consider the iterative methods to finding 
a simple root of a nonlinear equation , say   0f x   , 
such that we have  but .    0f     0 f

Newton’s method is one of the best known and proba-
bly the most used method for solving the above problem, 
giving by 
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 1 .n
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n

f x
x x

f x  


              (1) 

In recent years, a lot of effort has been devoted to pre-
sent some new modifications of the Newton method 
[1-4].  

This paper is structured as follows: In Section 2, we 
consider a general iterative scheme, analyze it to present 
a family of fifth-order methods. Then we show that it 
contains several know fifth-order methods. Section 3 is 
devoted to numerical comparisons between the results 
obtained in this work and some known iterative methods. 
Finally, conclusions are stated in the last section. 

2. Development of Method and Convergence 
Analysis 

Motivated and inspired by the recent activities in this 
direction, in this paper, we are also concerned with de-
veloping high-order methods. 

Our approach is based on fifth-order method defined 
in [5] as: 
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Throughout the rest of this paper  is defined by 
(3).  

ny

The iterative scheme (2) can be viewed as a special 
case of the following general iterative scheme 
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So, the main idea of present paper is to determine the 
necessary conditions for the two-dimensional function 

 ,H u v , such that the iterative methods defined by (4) 
have the fifth-order of convergence. 

Now, for the iterative scheme (4), we have the follow-
ing convergence results. 

Theorem 1. Let I   be a simple root of a suffi-
ciently differentiable function  on an open 
interval which contains 

:f I 
0x  as a close initial approxima-

tion to  . 
If  ,H u v  satisfies the conditions 

n

f x ff x f y

 
   

  

 1,0 0,uH   

x
 (2) 

   1,0 1, 1,0 0,v uuH H   
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   1,0 0, 1,0 1,uuu uvH H    

      5
1,0 1,0 0, 1,0 .

2vv uuuu uuvH H H    

then the method defined by (4) is of order at least five. 
Proof. Let   be a simple zero of f. Consider the it-

eration function F defined by 
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We employ the symbolic computation of the Maple 
package to compute the Taylor expansion of  nF x  
around .x   We find after simplifying that 
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It can be easily verified that if 

 1,0 0,uH    1,0 1,vH      (4)  1,0 0.uuH 

To be satisfied, then .  1 2 0K K 
Substituting of (4) into 3K , leads to 
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This can be vanished, for 

   1,0 0, 1,0 1.uuu uvH H         (5) 

Setting (4), (5) in 4K , it turns to 
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So, the proof is complete if we have 
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The main point that should be mentioned here is that 
the order of Newton’s method is improved three units 
with additional evaluations of the one function and one 
derivative. So the order of convergence and computa-

tional efficiency of the method are greatly improved. 
Family (4) with some special choices for  H u  leads 

to the some known fifth-order methods, as follows. 
Case 1. For the function H giving by  
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we obtain the fifth-order scheme (2). 
Case 2. For the function H, as 
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in (4), a fifth-order method is obtained which has been 
introduced by Ham et al. [6] . 

Case 3. For the function H giving by  
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fifth-order methods which have been introduced by Fang 
et al. in [7] is obtained. 

Case 4. For the function H giving by  

  213 7 5
, ,

4 2 4
H u v u u v

     
 

and 

  21 1 1
, ,

4 2 4
H u v u u v

     
 

we respectively obtain the following fifth-order methods 
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which have been proposed by Biazar et al. in [8]. 
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For obtaining a more general family, let’s consider the 
function H, as  

 
2

2
,

1 1

a bu d ev fv
H u v

cu
.

gv hv

  


  
          (6) 

It can easily be shown that  , H u v  satisfies the con-
ditions of Theorem 1, when 
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Substituting (7) in (6), yields to  
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where g, h are real parameters that can be freely chosen.  
If we take ,  in (8), we obtain the fol-

lowing fifth-order method 
0g  1h 
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If we take ,  in (8), we obtain the fol-
lowing fifth-order method 
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Per iteration in the methods defined by (4) requires 
two function and two first derivative evaluations. If we 
consider the definition of efficiency index [9] as r p , 
where p is the order of the method and r is the number of 
functional evaluations per iteration required by the me- 
thod, we have that the iteration formula defined by (9) 
and (10) has the efficiency index equal to 4 5 1.5874 , 
which is better than the one of Newton’s method 

2 1.4142 . 

3. Numerical Examples 

In this section, some numerical test of some various root- 
finding methods as well as our new methods and New-
ton’s method are presented. Compared methods were 
Newton’s method (1) (NM), Fang’s method (2) (FM), the 
Grau et al. method (GM) [10] defined by 
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the method of Kou et al. (KM) [11] defined by  
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with the new presented methods by Equations (9) (BGM1) 
and (10) (BGM2), introduced in this contribution. All 
computations were done using Maple with 128 digit 
floating point arithmetics (Digits = 128). Displayed in 
Table 1 are the number of iterations and functional 
evaluations required such that   1510nf x  . The fol-
lowing functions [11,12], are used for the comparison. 
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The results presented in Table 1 show that for the 
functions we tested, the new methods introduced in this 
contribution need reduce the number of iterations and  
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