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ABSTRACT

Following Konno [1], it is natural to ask: What is the Ito’s formula for the discrete time quantum walk on a graph dif-
ferent than Z, the set of integers? In this paper we answer the question for the discrete time quantum walk on Z°, the

square lattice.
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1. Introduction

Ito’s formula which is related to the Ito’s lemma is used
in stochastic calculus to find the differential of a function
of a particular type of stochastic process, and has a wide
range of applications. According to the author in [1], the
Ito’s formula for the random walk has been investigated
[2,3]. However, in the quantum walk case, the Ito’s for-
mulas are unknown. In [1] the author presents the Ito for-
mula for the one-dimensional discrete-time quantum walk
and gives some examples including Tanaka’s formula by
using the formula. Integrals for the quantum walk are
also discussed.

In the present paper new results on the Ito’s formula
for the discrete-time quantum walk on the square lattice
is given. This paper is organized as follows. In Section 2
we define the quantum walk on the square lattice, there
the dynamics of the walk in the Fourier picture is re-
corded in Lemma 1. In Section 3 we present an Ito’s
formula for the discrete-time quantum walk on the square
lattice as well as a Tanaka-type formula for the quantum
walk. In [4] the author of the present paper computed
some sojourn times of the Grover walk in two dimen-
sions. The Tanaka-type formula may be useful in com-
puting local time at the origin. Section 4 is devoted to the
conclusions, there two types of problems for further ex-
ploration is discussed. The first concerns integrals for the
quantum walk whilst the second concerns another rela-
tion on the Ito’s formula for the discrete-time quantum
walk on the square lattice.

2. Definitions

Recall that the discrete-time quantum walk is the quan-
tum analogue of the classical random walk with an addi-
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tional degree of freedom call chirality. In the two-di-
mensional setting on the square lattice, the chirality takes
values left, right, downward, and upward, and means the
direction of motion of the walker. At each time step, the
particle moves according to its chirality state. For exam-
ple, if the chirality state is upward, then the particle moves
one step up. Let us define

1 0 0 0

0 1 0 0
|L>: 0 > |R>: 0 > |D>: 1 ’and |U>: 0 ’

0 0 0 1

where L, R, D, U refer to the left, right, down, and up
chirality states respectively. The time evolution of the

quantum walk on Z* is determined by U®*, where

a b . .
U= c d eU(2), with a, b, ¢, d € C, where C is the

set of complex numbers. The unitarity of U gives |a|2 +
bl = |c|* +|d[* =1, ac+bd=0, c=-Ab, d=Aa,
where Z denotes complex conjugation, and A =detU =

ad —bc with |A| =1. We should remark that U®* is a

4 x 4 matrix which is also unitary. In order to define the
dynamics of the model we write

u® = P(—I,O) + Q(I,O) + R(O,_l) + S(o,l) , Where

a> ab ab b?
0O 0 0 O
P(—l 0) 4
’ 0O 0 0 O
0O 0 0 O
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o 0 0 0

0. = ac ad bc bd
OO0 0 0 o]
0 0 0 0]

[0 0 0 0]

A

©D " lac bc ad bd
0 0 0 0]

([0 0 0 0]

O 0 o0 o0

San=lo 0 0 0
¢ cd cd d*]

We should note thatPF_, ), Q, ), Rg_1y» S, repre-
sents the walker moves to the left, right, downward, and
upward directions respectively at position (X,Y) ateach
time step. Let the set of initial quibit states at the origin
for the quantum walk be given by

®={g=a|L)+B|R)+y|D)+A|U)eC":
o +1AF +[7" +12" =1}
={¢=T[a By Alec*:
o +18f +[7" +14f =1)

Let Z,(I,r,d,u) denote the sum of all paths starting
from the origin in the trajectory consisting of | steps left,
r steps right, d steps downwards, and U steps upwards.

For time n=l+r+d+u, and position Xx=-l+r
y =—d +U, we have
E,(I,r,d,u)

ph er R S4 p'n- an—l Rn-1 gUn-i ph an R S

>

lj.rj.dj.u;j

where the summation is taken over all integers |, isTis d. is

>0 satisfying Z|i=|, ani’i:r, Zn:di:
i=1

i=1 =1

n
DU =u,and I;+r+d;+u; =1. We should note that

i=1
the definition implies we can write

Epa(Lrdu)=PE (1-1r,d,u)+QE, (I,r-1d,u)
RE,(Lr,d-Lu)+SE, (I,r,d,u-1)

The probability that the quantum walker is in position
(X,y) at time n starting from the origin with ¢ ed is
defined by P(X,=xY,=y)=|2(,r.d,u)g| , where
n=l+r+d+u , x:—l+r , and y=—-d+u . The
probability amplitude ¥, (x,y) at position (X,y) at
time n is given by
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¥o(xy)= X

je{L,R,D,U}

So, P(X,=xY,=y)= > [¥i(xy)

je{L,R,D,U}

Yi(xy)i)=2,(lr.d,u)é.

. From

now on we consider the Fourier transform of ¥, (X,Y).
By definition
¥, (% Y)=Quo¥n(X-LYy)+ R

+S(‘P(y)

The Fourier transform of \P;’(x,y) (i=LR,D,U),

1,0)1Pn (X+1’ y)
o Fo(xy+1)

thatis, W) (&) is given by
i (&m)= Y " Wwl(x,y), from which it follows
X,yeZ
that
d d *l X—i7
.[J‘ 5 77 ¢ ]yq'”(ffﬂ)
Put
WL (&)
VR (én
‘Pn (5977)_ ~ D( ) )
¥y (&)
P (&)
then ¥ (&)= Y ey (xy) and ¥, (xy)=
X,yeZ
[ d‘): d’7 —|§x |7]y\IJ F
155 R
Y. (xy)= Quo¥ ) (x= 1y)+P ¥, (x+1y)
+ Sy ¥n (6 Y =1)+ R, W (x,y+1) ’

for (£,7)e[-n,n)x[-n,), we obtain the following
Lemma 1: Forany n=0,12,

W (&n)=U(&n)®, (&n).
Here U (&,77) is given by
U(&m)=e™ Plig* e“fQ(LO) +e Ro) +e"78(0,l)

= Diag (e“f,eif,e“”,e"’)u

Note that

‘iIO (5’77): €C4’

N R ™ R

+ |7/|2 +|/1|2 =1. In terms of ¥, (&,7)
it follows by induction on n from Lemma 1 that
Y, (&m)=U (é,n)” ¥, (&,7) . Note that

where |oz|2 +|,3|2
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déd _, X—i d —| x—i
206, =%, =)=l = § 9287000 o )| 59060 (e )
where * means the adjoint operator. Write B, = { n —(n _1) ,n'—l,n’},
[J‘ I (zli (;;7 —|§x myU (f 77) 0(5’77)J Q = B”H’ Qn’ — B:,ur]’
, w, =(w,(0)=0,w,(1),w,(2), ,w,(n)eQ,,

= [T STe ey &)

- -7

P(X,=xY,=Y)

=¥,y
th dé: dﬂ |§X+|’IY ’ '
en, _URMM U (&,n)" ¥, (&)
JISESTemy (s ¥y (60)

2n 27‘C

Since U (&,7) is a power of n, in order to calculate
P(Xn =XY, = y) it is usual practice to diagonalize the
matrix U (&,77). We should note that U (&',n') is also

a power of n by the adjoint operation.

3. Ito-Type Formulas for the Discrete-Time
Quantum Walk on the Square Lattice

Let

B, ={-n,—(n-1), ,n-1Ln},
(a)
f (W, (Mm+1,m))=f(w,, (mm))=
1
2
f (Wn’n, (m,m’+1))— f (wn,n,(m,m’))
1
2
(b)
. , 1 0t ,
f(wnn(n n))—f( (O,n)) Em:o{f(w ( m)+l)—f(
+%r:_;{f (W, (m,m")+1)=2F (w, , (m,
f(w,, (n.n"))= f(w,,(n0)) —%zo{f (W, (mm)+1) = f
+%:0{ f (W, (M,m)+1)-2f(w, , (m,
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1 e (1)~ (o (m00) 1)

Wn’ = (Wn’ (0) = 0’ Wn’ (1)9 Wn’ (2)9

Vo = (Wn (1)’Wn (2)_Wn (1)’ Wy (I’])—Wn (n_l))
(W (1D, W (2) =W, (1), W, () =W (0= 1)),
( [ (e (), 1, (v (2), L1, (vn(n))),

Uy =y (Y D) 1y (v @), (v (M),
where 1,(x) indicates the indicator function for a set A.
w, (m), w,(m'+1)—w,(m') e
{—1,1} . From now on we consider the quantum walk on

Q,, =B xB". To do so let w,,,

Vn.,n’ =V, XV, un,n’

9Wn’(n')) € Qn’ °

Vi

u,

Note that w, (m+1)—

=W, xW, €Q .,
, and noting that

o (mom') e (=11} x {-1,1}
A(m,m +1) L (Mmom) e (=11} x{-11},
a direct computation gives the followmg.

Proposition 2: Let f:Z* >C .
(0,1, ,n—1} and m'e{0,1,

=u, xU,
W, (m+1,m") —w,

as well as w,

For any me
,N'—1} we have

%{f (W, (mm')+1)— £ (w, , (m, m’)—l)}(wn}n, (m+1,m")—w, , (m,m"))

+—{f (W, (M) +1) =2 F (w, , (m,m")+f (w, (m,m’)—l)}

w, . (m,m’+1)

- Wn,n’ (m9 m,))

+—{ F (W, (m,m')+1)=2F (w, , (m,m")+f (w,,, (m,m’)—l)}

w, . (m, m’)—l)}(wn_n, (m+1L,m)-w, (m, m’))

m')+ f(w, (m,m')—l)}

w(mm'+1)—w,

Wn‘n,(m,m')—l)}( o (M)

m')+ f (W, (m,m')—l)}
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Proof: (b) can easily been seen by summing the ex-
pressions in (a) from 0 to n—1, with respect to the indi-
ces m and m’ to get the first and second expressions re-
spectively. In particular, it is easy to see that the right-
hand side of the expressions in (b) have been left in terms
of the sigma notation, where the sum over the appro-
priate indices run from 0 to n-1. After summing the
expressions in (a) from 0 to n—1, with respect to the
indices m and m’, the left hand side becomes a telescop-
ing sum, that is, the sum collapses to just two terms as
can been seen in the left hand side of the expressions in

(b). To see the expressions in a), for example the first one,

let w,, (m+Lm)-w, . (mm)=1, then after some
algebra we get
RHS = f (w, , (m,m’)+1)— f (w,, (m,m)),

however we have let

W, (m+1Lm)-w,  (mm)=1,
$0

W, (m+Lm)=w, , (mm') +1,

RHS = f (w, , (m,m’)+1)— f(w, . (m,m"))

= (W, (m+1,m))= f (w,, (mm’))’
and the proof is finished.
We should remark that the expressions in part (A) of
Proposition 2 is the Ito formulas for the discrete-time
quantum walk on the square lattice.

Put

k=u,(n)2"" +u, (n=1)2"2 +---+u,(2)2" +u,(1)2°,
and
K'=u, (n)2" " +u, (n"=1)2" 2 +-+u,(2)2" +u, (1)2°,
and let

P Wk = ngk) ® ngg’) >

where
ngk> = Pv‘nk)(n) R,,gk)(z) Pvgkm) , and PW;’M is defined in a

similar way, then from Proposition 2 we immediately
obtain the following.

Theorem 3: Let f :Z*> — C . For any

Eh;lswehave me{0,l, ,n-1} and m'e{0,l, ,n'—1} we have,
a
> kzo {1 (s (me L) 1 (Wt (mam )} P,
;kzo Zkzo (W52 (mm)+1)= £ (Wt (m, )= 1)} (5 (m-+ 1) =Wl (. )P
;2:201 zkn,z_ol{f(W(kk)(m’m')“)—”(Wi.krirk“(m,m’)+f(W‘”)(m m’)-1)[P m
zlii:{f( 0 )= (w5 (m )} B
;22(;:101{ (W (mum') +1) = £ (Wi (m,m’) - 1)}( WS (m,m’ + 1)~ Wi (m, m) )P 0
+%2ko”kol{ (W (m,m) 1) = 2 F (WS (m,m') + £ (WS (m,m') - 1)} 00
(b) .
5wy
:%Zg kolmzlmzl{ (W (m,m'y +1) £ (W (m,m') 1)}( W (M +1,m) - wis (m,m') )P m
+%2n§fzn_lnln (W () 1) =2l )+ £ (w (momy—1)lP -

D r%z{f( WO (m,m') +1) -
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{f( Wi (m,m') 1) =2 F (W (m,m) + f (Wl (m,m") - 1)} W)

( wi (m,m’) - 1)}( Wi (m+1,m') = wiO (m,m') )P, 0

nn
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We should remark that when we consider
Pl > Pe [0,1] , Q(LO) —>Qe [0,1] ,

R )—>re[0,1] and S,

(0,1

—)SE[OI]

with p+q+r+s=1, where p, g, I, S corresponds to the
probabilities of the walker moving left, right, down, and
up in a random walk, then Theorem 3 is the correspond-
ing result for the random walk on the square lattice
which is not symmetric. If p=q=r=s=1/4, then the
results corresponds to the simple symmetric random walk
on the square lattice.

f( wk (m, m)+1) Zf( (k")(mm))

Next we present a Tanaka-type formula for the dis-
-crete-time quantum walk on the square lattice.
From first expression in part (A) of Theorem 3, we put
f (Wﬁ‘fr;‘f') (m+1,m’))= o (m+1,m’)|,

f (Wi (mm")) =0

for any K,
(Wi (m,m')+1) = £ (Wi (m,m’)-1)
2
= sgn(wf]'fr;f") (m,m’))

where sgn(-) denotes the sign function,

( wie (m,m") - 1)

2

I{o'( (kk)(m m))

Making a similar substitution in the second expression in part (A) of Theorem 3, we get the Tanaka-type formula for the

discrete-time quantum walk on the square lattice as follows.

Corollary 4:

22 )
@

"1 2"

kK’ kK’ k.k" k. k'
0 (me+1,m)| P k) Z ngn(w( H(m,m)) (W (1, m) = w5 (mm)P

nn

k,k"
+ 20 2 b (Wi (mm) P
k=0 k'=0

2" 2" 2" 2"

T

(b)

2" 12" -

Z

k=0 k'=0

Recall to compute P(X, =X,Y, =y) it is necessary
to diagonalize U (&,77) since it is a power of n in the
expression for P(X, =xY, =y). Next we give a for-
mula that slightly expands U (&,7)" making use of
Theorem 3.

Let

|§w|(1k,;!<v)(n’,n)+i77wgk,;!<') (n',n)

( (kk)(n n))

k,k" k.k' k.k’
(kk) z Z Sgn( ( n )(mam,)>(wr(1,n’ )(m+17m')_wr(1,n )(m m )) kk)

(W m.m)R

and f(Wf"fr;'f')(O,n’)):l for any k, k’, and n’, then the
LHS of the first expression in part (b) of Theorem 3 be-

comes
2" 2"

Z z {eww ) n)+|r]W ) (n',n)

1} P e =U(&7)" -U"
k=0 k'=0 n,n

As for the RHS of the first expression in part (b) of
Theorem 3, we can write the first term as

%Z {f( Wi (m,m)+1) = F (wis (m,m’)— 1)}(w<”>(m+1m) Wi (m,m") )P g
k=0 k'=0 m=0m'=0
2"-1 2" 1 n-1 n'’-1
:% n nZ:{eI§W<kk>(mm)+mw " m)( e (§+q))}(w(kk)(m+1m) Wi (m,m") )P, (0
k=0 k'=0 m=0m'=0

{elfw(k K )(m m )+|r7w(k K )(m ,m) }(

Wl (m+1,m) —wi (m,m)P .,

Similarly, we can show that the second term on the RHS of the first expression in part (b) of Theorem 3, can be writ-

ten as

1 2"-1 2" 1 -l 0=l

2k0k0

:(Cos(§+77) )221 , z

Copyright © 2012 SciRes.

— eigwr(]'fﬁ!(')(m’,m’)+ir]wr(]'fn'!(')(m’,m)

ZZZ{f( Wi (m,m) 1) =2 F (W (m,m) + f (wl (m,m") - 1)} (et

W)
nn
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So the RHS of the first expression in part (b) of Theorem 3 becomes

2"—1 2" 1 -1 -l

sin€ +m) > 222{ oo ””}( W (m e+ 1,m) -

= 0 m=0

1 n'-1

+(cos(§+77) )

f M” =

Now equating the expression immediately

"1 2"l -l -l

1<1 fw(k'k')(m’,m')+iqw(k'!<v)(m',m) k k
U (59 77)” = U " +1 Sln(§ =+ 77) { 1eW n n,n } (

"1 2"'—1 n-1 n'-1

+eos(e+n)-1) 2 kZ pID I T
0

= '=0 m=0 m'=0

Repeating the argument immediately

we also get
. R 2" 2" 1 Iétw(kk)
U =U" +isin ey, 3 55 e
k=0 k'=0 =0

+(cos(§+77) )Z 2 r:Z:: S

So from the expressions immediately

Corollary 5:
"1 2" 1 n=1 n'-1
U(&,m" =U" +isin(& +1) Z
k=0 k'=0 m=0m'=0
—1 2" =1 n-1 n'-1
+(cos(&+m)- ) 33
k=0 k'=0 m=0m'=0

"1 2" 1 -l 0=l

U,n)"=ut +isin(§+77)z
=

-1 n-1 n'-1

+(cos(§+77) ) Z Z e|gw(kk)(m i) ' mo

4. Concluding Remarks

In this paper we have shown the Ito’s formula for the
discrete-time quantum walk on the square lattice and as a
consequence obtained a Tanaka-type formula for the
quantum walk. The relation to the simple random walk
on the square lattice has also been clarified in the biased
and unbiased case. Following the author in [1] it is an
interesting problem to clarify the relation between

r (F)= an_:f<w(kk)) () and J.[fdynn If f is

f (W, (M+1,m" +1)) = f (w, . (m,m"))

:%{f(wn,n,(m,mlﬂ)u)_ f (W (mom=1)=1)}(
+%{f(wn’n,(m+1,m’)+1)— f(
+%{f(wn,n,(m,m'+1)+1)+ f (W, (mm'=1)—1)—4f (

Copyright © 2012 SciRes.

1n- o (KK e (kKD

|§wr(m, )(m ,m )+|r]w:"n, )(m ,m) P
Z Z € WK
0 m=0 0

m’,m)+inws

— éw(k“(m m)+|17w X (m',m)
Z P

{e|z§w(k ) (m',m )+I7]W(k )

{el§wnn (m',m )+I77W

W, (m,m’'+1)—

w, . (m,m’))+ f (

k,k’
WO mm)P

nn

nn

above to U(&,7)" —U", we get

(m+1,m) —w (m,m") )P A

nn

above to the LHS and RHS of the second expression in part (b) of Theorem 3,

(K (o
(m’m)}( (kk>(m m'+1)— (kk)(m m)) Wkt

(kK
Wo

above we have the following.

(m’,m>}( Wi (m+1,m") —wi (m, m)) W)

k") (KK
i& nn (m' m)+|17w (m’,m)

w(kK)
n,n’

(kk '
<m~m>}( <kk>(m m+1)— W"k)(m m)) o)

Wo
(kk)

a function of two variables, f(x,y). It is well known

that Af = f, Ax+ f Ay, exploiting this relation another

Ito formula for the discrete-time quantum walk on the
square lattice is the following. We record as a conjecture,
therefore one of the future interesting problems is to ver-
ify or refute the following.

Conjecture 6:

Let f:Z>—>C . For any me{0,l,
e, {0,1, ,n'—1} we have

,n—1} and

w, , (m,m’))

w, o (m-1,m’) —1)} (W, (M+1,m")=w, , (m,m"))

W, (m+1,m")+1)— f (

Wnﬂn,(m—l,m')—l)}
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