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ABSTRACT 

The definition of momentum operator in quantum mechanics has some foundational problems and needs to be improved. 
For example, the results are different in general by using momentum operator and kinetic operator to calculate micro- 
particle’s kinetic energy. In the curved coordinate systems, momentum operators can not be defined properly. When 
momentum operator is acted on non-eigen wave functions in coordinate space, the resulting non-eigen values are com- 
plex numbers in general. In this case, momentum operator is not the Hermitian operator again. The average values of 
momentum operator are complex numbers unless they are zero. The same problems exist for angle momentum operator. 
Universal momentum operator is proposed in this paper. Based on it, all problems above can be solved well. The logical 
foundation of quantum mechanics becomes more complete and the EPY momentum paradox can be eliminated tho- 
roughly. By considering the fact that there exist a difference between the theoretical value and the real value of mo- 
mentum, the concepts of auxiliary momentum and auxiliary angle momentum are introduced. The relation between 
auxiliary angle momentum and spin is deduced and the essence of micro-particle’s spin is revealed. In this way, the fact 
that spin gyro-magnetic ratio is two times of orbit gyro-magnetic ratio, as well as why the electrons of ground state 
without obit angle momentum do not fall into atomic nuclear can be explained well. The real reason that the Bell ine-
quality is not supported by experiments is revealed, which has nothing to do with whether or not hidden variables exist, 
as well as whether or not locality is violated in microcosmic processes. 
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1. Introduction 

Since quantum mechanics was established, its correct- 
ness has been well verified. But there exists serious con- 
troversy on its physical significance. Many people be- 
lieve that quantum mechanics has not been well ex- 
plained up to now days. However, the mathematical struc- 
ture of quantum mechanics is commonly considered com- 
plete and perfect. It seems difficult to add additional 
things to it. Is it true? It is pointed out in this paper that 
the definition of momentum operator of quantum me- 
chanics has several problems so that it should be im- 
proved.  

In this paper, we first prove that using kinetic energy 
operator and momentum operator to calculate micro- 
particle’s kinetic energies, the results are different. That 
is to say, kinetic energy operator and momentum Opera- 

tor are not one to one correspondence. Secondly, in the 
curved coordinate system, momentum operator can not 
be defined well though we can define kinetic energy 
operator well. That is to say, except in the rectangular 
coordinates, the definition of momentum operator is still 
an unsolved problem in quantum mechanics.  

With operators of quantum mechanics acting on the 
eigen functions, we obtain real eigen values. However, if 
operators act on the non-eigen functions, the results are 
complex numbers in general. We call theses complex 
numbers as non-eigen values. For non-eigen functions, 
the operators of quantum mechanics are not the Hermi- 
tian operators. In general, the average values of operators 
on non-eigen functions are complex number, unless they 
are zero.  

Because the non-eigen values of complex numbers are 
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meaningless in physics, the non-eigen functions have to 
be developed into the sum of the eigen functions of 
operators or the superposition of wave functions. The 
eigen function of momentum operator is the wave func- 
tion of free particle. Hence, a very fundamental question 
is raised. We have to consider a non-free particle, for ex- 
ample an electron in the ground state of hydrogen, as the 
sum of infinite numbers of free electrons with different 
momentums. This result is difficult in constructing a 
physical image, thought it is legal in mathematics. Be- 
sides, it violates the Pauli’s exclusion principle. It is dif- 
ficult for us to use it re-establishing energy levels and 
spectrum structure of hydrogen atoms.  

Besides, some operators of quantum mechanics have 
no proper eigen functions, for example, angle momentum 
operator ˆ

xL , ˆ
yL ˆ and zL

 

 in rectangular coordinate 
system. We can not develop arbitrary functions into the 
sum of their eigen functions. By acting them on arbitrary 
functions directly, we always obtain complex numbers. 
Can we say they are meaningless?  

The descriptions of quantum mechanics are indepen- 
dent on representations. In momentum representation, the 
positions of momentum operator and coordinate can be 
exchanged with each other. It is proved that when the 
non-eigen wave functions in coordinate space are trans- 
formed in momentum space for description, the problems 
of complex non-eigen value and complex average value 
of coordinate operator occurs, though the problem of 
complex non-eigen value of momentum operator dis- 
appear.  

In addition, there exists a famous problem of the EYP 
momentum paradox in quantum mechanics [1-3]. Be- 
cause it can not be solved well, someone even thought 
that the logical foundation of quantum mechanics was 
inconsistent. 

Because angle momentum operator is the vector pro- 
duct of coordinate operator and momentum operator, the 
problem also exists in the definition of angle momentum 
operator. For example, we can not define angle momen- 
tum operator in curved coordinate system well at present. 
The physical image and essence of micro-particle’s spin 
is still unclear at present.  

Therefore, the momentum operator of quantum me- 
chanics can not represent the real momentums of micro- 
particles. It needs to be improved. The concept of uni-
versal momentum operator is proposed to solve theses 
problems in this paper. 

Using universal momentum operator and kinetic opera- 
tor to calculate the kinetic energy, we can explain the 
problem of inconsistency as mentioned before. In curved 
coordinate system, we can define momentum operator 
rationally. When universal momentum operator is acted 
on arbitrary non-eigen wave functions, the non-eigen 
values are real numbers. In coordinate space, the average 

value of universal momentum is real number. The EYP 
momentum paradox can also be resolved thoroughly.  

After universal momentum operator is defined, we can 
define universal angle momentum operator. Because there 
is a difference between calculated value and real mo- 
mentum value, the concepts of auxiliary momentum and 
auxiliary angle momentum are introduced. The relation 
between auxiliary angle momentum and spin is revealed. 
It is proved that spin is related to the supplemental angle 
momentum of micro-particle which orbit angel momen- 
tum operator can not describe. The fact that spin gyro- 
magnetic ratio is two times of orbit gyro-magnetic ratio, 
as well as why the electron of ground state do not fall 
into atomic nuclear without orbit angle momentum can 
be explained well.  

By the clarification of spin’s essence, we can under- 
stand real reason why the Bell inequality is not supported 
by experiments. The misunderstanding of spin’s projec- 
tion leads to the Bell inequality. No any real angle mo- 
mentum can have same projections at different directions 
in real physical space. The formula   1A B a b  

 

 
does not hold in the deduction process of the Bell ine- 
quality. The result that the Bell inequality is not sup- 
ported by experiments has nothing to do with whether or 
not hidden variables exist. 

2. The Necessity and Possibility to Introduce  
Universal Momentum Operator in  
Quantum Mechanics 

2.1. Inconsistency in Calculating Kinetic  
Energy Using Momentum and Kinetic  
Operators  

The Hermitian operators are used to represent physical 
quantities in quantum mechanics. The result of Hermitian 
operator acting on eigen function is a real constant. Mo- 
mentum operator and its eigen function are  

 
ˆ    ,

i
Et

p i t Ae
 

    
p x

x         (1) 

We have   ˆ , ,p t t x p x p. The momentum  is 
a constant. However, more common situation is that 
wave functions are not the eigin functions of operators. 
In this case, we have  

       ˆ , , , ,p t i t t t     x x p x x      (2) 

 , tp x


 is a constant and we call it as the non-eigen 
value of momentum operator. If  x

 p x
 describes a sin-

gle particle, according to definition,  should re- 
present the momentum of particle. Because momentum is 
the function of coordinate, is it consistent with the un- 
certainty relation? Or is the function form of  p x  
meaningful? This problem involves the understanding of 
real meaning of the uncertainty relation. We will discuss 
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it in the end of this section.  
Because (2) is only a calculation formula of mathe- 

matics and the definitions of operator and wave function 
are alright, we should consider it is effective. We prove 
in this section that the results are different by using mo- 
mentum operator and kinetic energy operator to calculate 
the kinetic energies of micro-particles. Taking ground 
state wave functions of hydrogen atom 100  and linear 
harmonic oscillator 0  as examples, we have 

 

 

0

2 2

3/2
0

1

2

1

π
r a

x

r e
a




100

0 0

, ,

x N e
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






         (3) 

Here  2 2me0a    and m   0ain which  is 

the Bohr first orbit radius of hydrogen atom and   is 
the angle frequency of harmonic oscillator. When mo- 
mentum operator is acted on 100 , we get 

0
1 100 3/2

00

1
0

1
ˆ

π
r a i

p i e
a ra

i

a r

100 1 100   p

 p r

 
     

 







r

r
p

(4) 

It is obvious that 1  can not be the momentum of 
electron in ground state hydrogen atom. Despite  p r1  
is an imaginary number, if it is electron’s momentum, the 
kinetic energy should be  

2
1

1 2

p
T

m
  

2 4

2 2
02 2

me

ma
 




100

         (5) 

It indicates that kinetic energy is a negative number. 
Of cause, this is impossible. If kinetic operator is acted 
on the wave function  , we obtain  

2
2

100 2

2

1002 2

2

100 12
00

1ˆ
sin2

1

sin

1 2

2

T r
r rmr

T
m a ra


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  
   


 

 

        


  
 

    
 





  (6) 

Therefore, the kinetic energy of electron in ground state 
hydrogen atom is 

 
2

1E U r
r
 

E
 U r

E

0

2 4

1 2 2
00

1 2

2 2

me e
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 
      

 




   (7) 

(7) is obviously different from (5). (7) is just the formula 
of energy conservation, in which 1  is the total energy 
of ground state electron and  is potential energy. 

According to (5), we have 1 1T , i.e., electron’s ki-
netic is equal to its total energy, so (5) is wrong. 

If momentum operator is acted on the wave function 
  of linear harmonic oscillator, we obtain 

     2
0 0 0

2

p̂ x i x x p x

p i x

   



  

 





p

       (8) 

Momentum  is also an imaginary number. Based 
on it, particle’s kinetic energy is  

2 2 4 2 2 2

2 2 2

p x m x
T

m m

 
    


         (9) 

It means that particle’s kinetic energy is a negative 
number which can not be true. Acting kinetic operator on 
it, we have 

 

   

 

2 2

0 02

2 2
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0
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2 d

2 2
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 
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 

 
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   
 

   







E

   (10) 

Here 0  is the energy of ground state harmonic os- 
cillator and  U x

 T U x 

 is potential energy. It is obvious that 
the calculating results of two methods are different. Ac- 
cording to (9), we have  which is certainly 
wrong. In fact, this problem exists commonly in quantum 
mechanics. Kinetic operator and momentum operator do 
not have one-to-one correspondence, so that we can not 
determine the non-eigen values of momentum operator 
uniquely. Because kinetic operator is aright, we have to 
improve momentum operator to make it consistent with 
kinetic operator.  

2.2. The Difficulty to Define Momentum  
Operator in Curved Coordinate System  

In the current quantum mechanics, the definition of mo- 
mentum operator in curved coordinate system is an un- 
solved problem [4]. Several definitions were proposed, 
but none of them is proper. If we claim that three partial 
quantities of momentum operator are commutative each 
other, the definition should be 

ˆ ˆ ˆ      rp i p i p i
r  


 
 

     
  
  

p̂ p̂

    (11) 

However, it is easy to prove that r  and   are not 
the Hermitian operators. Their non-eigen values are ima- 
ginary numbers in general. Most fatal is that we can not 
construct correct kinetic operator based on (11). In clas-
sical mechanics, the Hamiltonian of free particles in 
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spherical coordinate system is  

2 21 1

2 r
2

2 2 2

1

sin
H T p p

m
  


p

r r 
  


   (12) 

According to the correspondence principle between 
classical mechanics and quantum mechanics, by consi- 
dering the definition (11), the kinetic operator of quan-
tum mechanics is 

2 2 2

2 2 2

1ˆ
2

T
m r r

2

2 2 2

1

sinr  

 

  
     


    (13) 

However, the kinetic operator of quantum mechanics 
in spherical reference system is actually 

2
2

2

2

2 2

1ˆ
sin2

1

sin

T r
r rmr

sin
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  
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 

        


  



  (14) 

(13) and (14) are obviously different. Another defini- 
tion of momentum operator is [5] 

1

2

r r

ctg

ˆ

ˆ

ˆ

rp i

p i

p i









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

 

 
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
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           (15) 

Substitute (15) in (12), we get 

2
2

2

2 2

2 2 2

1ˆ
sin2

1 1 sin

sin 4sin

T r
r rmr

sin
  

  
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D


  

        
 

   



  (16) 

We see that (16) has one item more than (14), so (15) 
is improper too.  

The covariant differential operator i  in differential 
geometry was also suggested to define momentum opera- 
tor in the curved coordinate reference system [6]. The 
action forms of operator  on scalar iD   and vector 

jV  are individually  

i

i j

D

DV


i

k
j ij k

i

q

V V
q

 



 


2d d dij
i j

           (17) 

By considering the metric s g q q , we have 

1

2
ij ij ijk ij

ij
i i i

g g g
g

q q q

   
       

          (18) 

According to this definition, the kinetic operator in 
curved coordinate reference system can be written as  

2 2
ˆ

2
ij k

ij
i j k

T g
m q q q

  
        



D

p̂ p̂

        (19) 

In spherical coordinate reference system, (19) is just 
(14). But this result was also criticized to have inconsis- 
tent for scalar and vector fields [7]. Meanwhile, accord- 
ing to (17), the result of i  acting on scalar field is (15). 
Therefore, the non-eigen values and average values of 
operators r  and   may still be complex numbers. 
All problems existing in the Descartes coordinate system 
would appear in the spherical coordinate system.  

2.3. The Problems of Complex Number  
Non-Eigen Values of Momentum Operator 

The Hermitian operators are used to describe physical 
quantities in quantum mechanics. The eigen values of the 
Hermitian operators are real numbers. But the premise is 
that the operators should be acted on eigen wave func- 
tions. However, we have seen many situations in quan- 
tum mechanics that wave functions are not the eigen 
functions of operators. For example, only the wave func- 
tion of free particle is the eigen function of momentum 
operator. All other non-free particle’s functions are not 
the eigen function of momentum operator. In the coordi- 
nate space, when momentum operator is acted on non- 
eigen functions, the obtained result, called as non-eigen 
values, are complex numbers in general. The average 
values of momentum operator in coordinate space are 
also complex numbers. These results are irrational and 
can not be accepted in physics, unless the average values 
are zero.  

 Let both , t x  , t x

ˆ

 and  be arbitrary wave 
functions in coordinate spaces, according to the defini- 
tion of quantum mechanics, if F  satisfies following 
relation 

   

    

3

3

ˆ, , d

ˆ , ,  d

t F t

F t t

 

 










x x x

x x x

   ˆ , ,

         (20) 

we call it the Hermitian operator. The eigen equation of 
the Hermitian operator is F t F t x x . It is 
easy to prove that the eigen value F  is a real constant 
We have 

   
   

3

3

ˆ, , d

, ,  d

t F t

t t

 

 








x x x

F x x x
        (21) 
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  F̂ t
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 


 


F x

 
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By considering (20), we get F F 
  , i.e., F  is a  

real number. In this case, the average value F̂  of opera- 

tor is also a real number. We have 
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Suppose the action result of operator on the non-eigen 
function is  

     , , ,F̂ t t tx x

ˆ

 x F         (24) 

We call it as the non-eigen equation of operator F  
and  as the non-eigen value of operator. It is 
easy to prove that if wave function is not eigen function 
of operator, non-eigen value 
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 may be a complex 
number. In this case, operator will no longer be Hermi- 
tian. We have 
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In which the probability density  
 is a real number. Obviously, 

if  is a complex number, (25) and (26) are not 
equal to each other, so that (20) can not be satisfied. So 
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F̂  is not the Hermitian operator. Because  is a 
complex number, the average value  
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is also a complex number too. Because the average value 
of operator in quantum mechanics is measurable quantity, 
complex average value is meaningless in physics, unless 
it is equal to zero.  

Let’s discuss the average values of momentum opera- 
tor in momentum space. The wave functions  , t x
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The Fourier transformation and its inverse transforma- 
tio

 

1
, , it t e 



  p'x p

n of non-eigen value of operator are  

    3
3 2

d
2π 


1

, , it t e


 p xF x f p p       (29) 

 
 

  3
3 2

1
, , d

2π

it t e


 



  


p xf p F x x      (30) 

Substitute formulas above in (27), we obtain the ave- 
rage value of operator on non-eigen function in momen- 
tum space.  

 
     

 
   

 

 
     

( )
3

3 3 3 3

3

3 3 3

3 3
3

, , ,
2π

d d d d

1
, ,

2π

d d d

1
, , ,  d d

2π

i
p t t t e

t t

t t t

 





 

    





 

 



     

  















p p p xp f p p

x p p p

f p p

p p p p p p

f p p p p p p

(31) 

If 

1
F̂ 

 , tF x  is a complex number,  , tf p  is also a 
co lex num r to th

x Values of  
ace 

On t - 

mp ber too. Therefore, simila e situation 
in coordinate space, the average values of momentum 
operator in momentum space is also a complex number 
which is meaningless in physics. 

2.4. The Problems of Comple
Coordinate Operator in Momentum Sp

he other hand, the positions of coordinate and mo
mentum exchanges each other when we describe physical 
processes in momentum space. It is proved below that in 
momentum space, the problem of imaginary non-eigen 
value of momentum operator disappears, but the problem 
of imaginary non-eigen value of coordinate operator 
emerges. In momentum space, coordinate operator be-
comes ˆ ~ px i  . When it is acted on the wave function 
in momentum space, we have 

   ˆ , ,p    , ,x t i t   p p t tx p p      (32) 

Similar to non-eigen value of momentum 
co

operator in 
ordinate space,  , tx p  is a complex number in ge- 

neral. So the average alue of coordinate operator in mo- 
mentum space is a c x number. We have  

 v
omple
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     

 
    3

3

1
, , d

2π
t t 

x p p p
    (33) 

Here  , t p  is a real number. However, in coordinate 
space, the average value of coordinate operator is a real 

r. The

uantum Mechanics  

do n

3
3

1
ˆ , , , d

(2π )
x p t t p t  

x p p

numbe  problem of imaginary average value is 
transformed from coordinate space to momentum space. 
The problem exists still, unless (33) is equal to zero.  

All of these problems indicate that the definition of 
momentum operator in quantum mechanics should be 
revised. The revised momentum operator should have 
real non-eigen values. The average values of momentum 
operator and coordinate operator should be real numbers 
no matter whether in coordinate representation or in mo- 
mentum representation. Using momentum operator and 
kinetic operator to calculate the kinetic energies of mi- 
cro-particles, the results should be consistent. If they are 
not, we should have reasonable explanation. Only when 
these are done, we can say that the definition of momen- 
tum operator is complete.  

As mentioned before, when the non-eigen values of 
operator are complex numbers, the operator is not the 
Hermitian operator any more. In fact, someone had seen 
this problem and demanded that the operators in quantum 
mechanics should be self-adjoint operators [8]. In fact, in 
his famous book “the principles of quantum mechanics”, 
Dirac only used real operator, instead of the Hermitian 
operator. From the angle of mathematics, the relation be- 
tween the self-adjoint operator and the Hermitian opera- 
tor is subtle. We do not discuss it in this paper. From the 
angle of physics, self-adjoint operator can be considered 
as one which has the complete set of eigen functions [9], 
so that its eigen values are certainly real numbers. But 
the Hermitian operator has no such restriction. The pro- 
blem is that this restriction condition would greatly ef- 
fects the universality of operator and can not be satis- 
fied actually. For example, for all non-particle’s wave 
functions, momentum operator is not the one with self- 
adjoint. However, we can prove that although we can not 
make momentum operators self-adjoint, we can make its 
non-eigen functions to be real by redefinition. 

It is proved below that though we can not make mo- 
mentum operators is self-adjoint one, we can introduce 
universal momentum operators to make their non-eigen 
values be real numbers. 

2.5. The Problems Caused by Non-Commutation  
of Operators in Q

As well know that momentum operator and coordinate 
ot commutate with ˆ[ , ]x p i  . Let x x   x  and 

e the averages of 

coordinate and momentum, we have so-called uncer- 
tainty relation： 

    2x p x x p p               (34) 

According to current understanding, (34) means that 
coordinates and momentums of micro-partic
determined simultaneously. If it is true, the function rela- 
tio

ˆp p  , in wh  p ich x  and p  ar

le can not be 

n  p x  is meaningless.  
However,  p x  in (2) is only the result of mathe- 

matical calculation. Because the definitions of operator 
and wa unction have no prve f oblems, how can we con- 
si lt meader the resu ningless? According to (2), as long as 
we know the concrete form of wave function, we know 
the momentum. It is unnecessary for us to measure mo- 
mentum. How can we think that the coordinate and mo- 
mentum of micro-particle can not be determined simul- 
taneously? We need to discuss the real meaning of the 
uncertainty relation in brief.  

Firstly, the wave function  ,x t  describes the pro- 
bability of a particle appears at the point x  at moment 
t . Therefore, x  is the accurate value of particle’s coor- 
di value o

or
nate in theory. It is not the f measurement, for 

measurements always have error. Theref e, x x  is 
e difference between particle’s theoretical coordinate 

and average coordinate. It is not the measurements error 
of coordinate. In fact, it is actually the fluctuatio co- 
ordinate about average value as that defined in classical 
statistics physics. Similarly, 

th

n of 

p p  is also the difference 
between particle’s accurate momentum and average 
momentum, or the fluctuation of momentum about the 
average value. It is not the rements error of mo- 
mentum. According to classical theory, fluctuation is also 
uncertainty. But this uncertainty is due to statistics, hav- 
ing nothing to do with measurement. In this meaning, (34) 
is not the uncertainty relation for a single particle recog- 
nized in the current quantum mechanics.  

Secondly, the strict uncertain relation in quantum me- 
chanics is  

measu

　　

      
2

2 22 2

   

2 2

2 22 2

4
or

2
x x p p   


   (35) 

In the formula (35), 

x p x x p p      


2x , 
2 2p̂  and x , 2p  are the 

average values, not the values for a single event. There- 
fore, (35) represents the product of mean square errors of 
co m e ordinates and momentu s. It is th result of statistical 
average over a large number’s of events. For a single 
event, we may have 2x p    , 2x p     and 

0x p   . Merely, their statistical average satisfies 
(35).  

In fact, because (35 lues, ) only contains average va
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doe ot cs n ontain x  and p , its forms and meaning is 
completely different from (34). In the current quantum 
m

c
echanics, (35) is simplified into (34), then the uncer- 

tainty relation is de lared. This is improper. It is also the 
misunderstanding to consider the uncertainty relation as 
the foundational principle of quantum mechanics for (35) 
is only the deduced result of quantum mechanics. 

On the other hand, according to quantum mechanics, 
time and micro-particle’s coordinates can be determined 
simultaneously. The definition of velocity is d dtV x . 
A

doing mea

um. In t

ined. Let’s discuss the commutation relation 
be

s long as we determine particle’s coordinates at differ- 
ent moments, we can determine particle’s velocity and 
momentum mp V  by calculation without - 
surements. The more accurate the measurement of parti- 
cle’s coordinate, the more accurate the particle’s velocity 
and moment his meaning, where is the uncertain 
relation? 

This kind of paradox exists commonly in quantum 
mechanics and the problem is more serious than what we 
have imag

tween coordinate and kinetic energy operator. The 
kinetic energy operator is 

2 2
2ˆˆ

2

p
T

m
   


            (36) 

2m

Acting on the wave function of a single non-free parti- 
cle, we obtain 

       
2

2ˆ , , , ,T t t T t t     


x x x x     (37) 
2m

It is easy t prov at T̂  and x  are commutative 
with  

 

o e th

 
   

   
2

2, 0
2

t
m
 


x

 (38) 

According to the understanding of quantum mechanics, 
the kinetic energy and coordinate of micro-particle can 
be determined simultaneously, so it is meaningful to 
w

ˆ, ,T t  



x x

ˆ ˆ, ,

ˆ ˆ, ,

T t T t

T t T t

 

  

   

  

x x x x

x x x x x

rite micro-particle’s kinetic energy as  ,T T t x . 
According to (36), we can naturally obtain particle’s  

momentum    , 2 ,p t mT tx x  after its kinetic energy 

is known. In fact, the kinetic operator and momentum 
tative with operator are commu

2
2ˆˆ ˆ ˆ, , 0

2
p T p p

m
       


         (39) 

So kinetic energy and momentum can be determined 
simultaneously. Because micro-particle’s kinetic energy 

is the function of coordinates, if coordinat
we can determine its kinetic energy. Af
determine its momentum. That is to say, we can deter- 
m

es are known, 
ter that, we can 

ine particle’s momentum by determining its coordinate. 
We consider particle’s energy operator again. Acting 

the operator on the non-eigen wave function of a single 
particle, we get: 

       ˆ , , , ,E t i t E t t  
t


 x x x x     (40) 



It is easy to see that Ê  commutates with x̂ , p̂  and 
T̂ , so particle’s energy, kinetic and potential energy can 
be determined simultaneously. For a particle in statio
state, we have certain energy 

nary 

   
2

E U
m

 
x

x             (41) 

Here 

2p

 U x  is potential energy. As long as particle’s 
coordinates are known, we know its kinetic energy, po- 
tential energy and momentum without
ments. However, on the other han
energy operator and potential operator do not commutate 
in l, we 

 direct measure- 
d, because kinetic 

 genera have 

       

   2 0
2

U
m


2
2

2

ˆ, ,
2

U r T U
m

 
         

  r r

For example, for hydrogen atom, we have  





r r r

    (42) 

 U r q r   and get  
     2 2 1 0U r q r q      r .  

According to the current understanding, electron’s ki- 
netic energy and potential energy could not be deter- 
m um tunnel 
effect), (41) b ess. ver, (41) is also 

un

ined simultaneously (this is so-called quant
ecomes meaningl Howe

ntumdeduced based the principle of qua  mechanics, how 
can we say it is meaningless? If it is true, how can we 
have the fine structure of hydrogen atom spectrum? In 
fact, (41) is the formula of energy conservation. If it does 
not hold, all theories and experiments of quantum me- 
chanics become meaningless!  

In essence, quantum mechanics is a statistical theory 
which involves a large number of micro-processes. Quan- 
tum measurement process always involves a large num-
ber of micro-particles. Once statistical average is consi- 
dered, many problems do no exist any more. Our current 

derstanding on quantum mechanics may have same 
foundational error. The standard explanation of quantum 
mechanics should have some essential changes.  

We will discuss the real meaning of the uncertainty 
relation and the explanation of quantum mechanics fur- 
ther in another paper. In this paper, we mainly discuss 
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the definition of universal momentum operator. We do 
not consider the restriction of the uncertainty relation 
ag

e
be 
ei- 
i- 

cle. f non-free 

ain and think that it is meaningful to act operators on 
non-eigen wave functions directly. In operator equation 

     ˆ , , ,t t t p x p x x , p(x,t) represent microparti- 
cle’s momentum at time t  and position x .  

2.6. The Fourier’s Series of Non-Eigen Wave  
Functions of Momentum Operator 

According to quantum m chanics, if the wave functions 
are not the eigen functions of operators, they should 
developed into the eigen functions of operators. The 
gen function of momentum operator is that of free part

For the stationary state wave functions o
particles, we have 

      3
3 2

1

1
 d

(2π )

k
i i

k
k

A e e 
  



   


p x p x

x p p p     

(43) 

This is actually the Fourier’s transformation of wave 
function which is legal in mathematics. It can be con
dered as the principle of superposition principle of 
function in quantum mechanics.  

If   x  describe a single particles, for example, 
el

mber of free electrons 
wi ffere

o complex non-eigen values. If we 
ca

si- 
wave 

an 
ectron in the ground state of hydrogen atom, it repre- 

sents the momentum distribution of an electron in hy- 
drogen atom [10]. But it does not mean that a non-free 
electron is equivalent to infinite nu

th di nt momentums and energies. This is impossi- 
ble in physics. In fact, there are only two electrons with 
opposite spins in the ground states of hydrogen. If (43) 
describes the hydrogen atom of ground state, it violates 
the Pauli’s exclusion principle. It is impossible for us to 
use so many free electrons with different energies to 
construct hydrogen atom’s energy levels and the spec- 
trum structures. 

The reason we write the wave function of a single par- 
ticle in the form of (43) is due to the definition of mo- 
mentum operator which is only effective to free particles. 
It is ineffective when it is acted on the wave functions of 
non-free particles due t

n find proper momentum operator to describer non-free 
particle’s momentums, it is unnecessary for us always to 
write the wave function of a single non-free particles in 
the superposition form of free particle’s wave functions. 
In fact, the eigen function of kinetic energy operator is 
also the wave function of free particle. We do not need to 
write arbitrary wave function as the form of (43) for ki- 
netic operator. The reason is just that when kinetic opera- 
tor is acted on arbitrary wave functions, the results are 
always real numbers.  

In fact, for some operators of quantum mechanics, we 

can not find proper eigen functions, for example, angle 
momentum operator ˆ

xL , ˆ
yL  and ˆ

zL  in the rectangu- 
lar coordinate system. Because they have no proper eigen 
functions, we can not developed arbitrary functions into 
th

 T

 
op  numbers, we need to redefine the mo- 

sian 
nti- 

ties 

e sum of their eigen functions. Acted them on arbitrary 
functions directly, we always obtain complex numbers. 
Can we say they are meaningless? he universal mo- 
mentum and angle momentum operators proposed in this 
paper can solve these problems well. 

3. The Definition of Universal Momentum  
Operator 

3.1. The Definition of Universal Momentum  
Operator in Coordinate Space 

In order to make all non-eigen values of momentum
erator be real

mentum operator of quantum mechanics. In the Carte
coordinate reference system, we write the partial qua

of universal momentum operator as  

   p̂ i G Q
x  


 
     

 x x        (44) 

In which 1, 2,3   is the index of partial quantities, 
 Q x  is real number with its form  to be decided. 
 G x  is complex number in general to satisfy

ing relation  
 follow- 

     G
x 






x x            (45) 

For the purpose of universality, the functions here can 
be both the st

x

ationary state  n x  and the superpose- 
tion state of  n x . If we want to connect  Q x  

be stationary state with particle’s momentum, it should 
  x . By solving the motion equation of quantum 

m
inate t

n

echanics, we can obtain the concrete forms of wave 
functions, so we can determ he forms of  G x  
based on (44). B ting universal momentum o r 
on common wave functions and considering (45), we 

the non eigne equation and the non-eigen values 
of real numbers  

y ac perato

obtain 

     p̂ Q  x x x            (46) 

The average values of universal momentum operator 
are also real numbers  

   
     

3ˆ ˆ d

d

d

p p

Q

 



 

 









 x x x

x x x x

x x x

      (47) 

If 

    3Q








3

  x  is the eigen function of momentum operator, 

Copyright © 2012 SciRes.                                                                                 JMP 



X. C. MEI, P. YU 459

we take 

    Q p  
ip

G 
   x   

(44) becomes the current definition of the Hermitian 
W


x       (48) 

operator. e now discuss the concrete forms of  Q x  
below. According to (44), the ki tor of micro- 
particles is 

netic opera

3
2

1

23
2 2

2
1

2

1
2

2

m

G
G G

m x xx





 

  





   
         

    (49) 

2

1ˆ ˆ

2 2

T p

Q
Q i Q G Q

x x


   
 



 
        





However, practical kinetic operator should be actually 

2 2 23

2
12 2m m

2T̂
x 




 
         (50) 

By comparing (49) with (50) and considering (45), we 
ge

   

t 

3
2 2

1

2G Q
G Q i

x x
 

 
  

    
       

  

t into imaginary and real parts and write it as  

0


    (51) 

B
i

ecause  G x  is known complex number, we sepa- 
rate 

     G a  ib x x x           (52) 

Substituting it in (51), and dividing the equation into 
im real paaginary and rts again, we obtain two formulas 

3
2 2 2 2a  

1

0a b Q
x   

 

        
         (53) 

3

1

2 0
b Q

a b
x x
 

 

Th ree 

  

   
        

         (54) 

ere are th  Q x  needs to be de
we o  two Equations (53) and (54). Therefore, 
one  can be a . Let 

termined, but 
nly have

of them rbitrary  p x  be the partial 
mom  of partic n decide its va
kinetic operator on stationary state wave 
have 

entum le, we ca lue by acting 
function and 

 
2 221 ˆ

2 2

2

n
n

n n

p
T T

m m

p mT

2x


 

 


 


   




x

   (55) 

Let 



   3 3Q px x  and substitute it in (53) and (54), 
we can  1Q x  and  2Q x . In general,  determine 

 1p x and  2p x are different from  1Q x  and  2Q x . 
We assume 

     
     

1 1 1

2 2 2

p Q g

p Q g

 

 

x x x

x x x
         (56) 

 1g x  and  x2g  are known due to the fact that 
 1Q x ,  2Q x ,  1p x  and  2p  are known.  

this way, w rmine the concrete form of un  
momentum o

x In
e dete iversal
perator (44) and explain why the results are 

not the same when we use kinetic operat
tum operator to calculate the kinetic en
particles. By consider (55), we have 

or and momen- 
ergy of micro- 

 ˆ

 
 

1 1
1

1 1 1

1 1 1ˆ

n n

n n

n n

p i G Q
x

Q p g

p g p

 

 

 

 
  


    

  

 

 x

     (57) 

 

 
 

2 2 2
2

2 2 2

2 2 2

ˆ

ˆ

n n

n n

n n

p i G Q
x

Q p g

p g p


 

 

 


   

 
    

  

 

 x

     (58) 

 3 3 3
3

3 3

3 3

ˆ

ˆ

n n

n n

n n

p i G Q
x

Q p

p p

 

 
 

  
        
 



 x

     (59) 

In this way, all non-eigen values of universal momen- 
tum operator are real numbers, but two of them are not 
real momentums of micro-particles. Using universal mo- 
mentum operator and kinetic operator to calculate parti- 
cle’s kinetic energy, the results may be differe
to that three partial quantities of universal momentum 
operator do not commute with each other.  

nt. It is due 

If micro-particles moves in two dimensional spaces, 
both  1Q x  and  2Q x  are determined just by two 
Equations (53) and (54). Meanwhile,  1p x  and  2p x  
are determined by kinetic operators. The relations be- 
tween them are still shown in (56). If particles move in 
one dimensional space, only one  Q x  needs to be 
determined, but we still have two Equations (53) and (54) 
as follows 

2 2 2 2 0 2 0
a b Q

a b Q
x x x

     ab              
  ) 

Therefore, 

  (60

 Q x  is not unique, unless two equations 
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are compatible. From both equations, tain  we ob

2 22 0ab b a
x x x
        

     (61) 

The formula has infinite solutions. The simplest 
0a  have  and Q b  . That is to say, 

G  im

b a   

one is 
, so we  G ib

ag is a purely inary number. In the case, universal 
momentum operator is  

   p̂ i ib x b x
x

      
 

  

So uation can no
m

 we can define proper kinetic 
operator. 

According this kind of definition, unive
tum operator is not the Hermitian operator
ever, as discussed before, the restriction of Hermitian 
op

     p̂ b x p x g x   

 in general sit s, we t define proper 
omentum operator in one dimensional space in quan- 

tum mechanics, though

     (62) 

rsal momen- 
 again. How- 

erator is neither necessary nor possible for non-eigen 
functions. Most important is that the non-eigen values 
and average values of operator should be real numbers. 
Only in this way, the descriptions of physical processes 
can be consistent in different representations. The uni- 
versal momentum operator can do it.  

Although the deductions above are based on the wave 
function of single particle, we can also do it for multi- 
particle’s functions. We do not discuss it here. According 
to (44), the commutation relations between coordinate 
and momentum operators are unchanged with 

   , ˆ ,  x p x i g   

  
         x

,  

x

x i i
x






   
 

    
 

   (63) 

As discussed before, the non-commutation

p x

 of opera- 
tors does not mean the uncertain of physical quantities 
simultaneously.  

3.2. The Average Values of Universal  
Momentum Operator 

The average value of universal momentum operator is a 
real number. According to (57)-(59), we have  

  
 

  
3

d

d

p  


  x x x x

x
    (64) 

Th f equal sign is the real 

   g    x x x

e first item on the right side o

3p̂


average of particle’s momentum. By transforming into 
momentum space, we have  

        
 

 

 
      

 

 

 

        

9/2

3 3 3 3

3 3
3 2

2π

d d d d

1

d

1
d d

2π

ie

p g

  

   

   



 

   







p p p x x p p p

p

p p p p p p p

 (65) 

The result is similar to (41). 

3.3. The Definition of Universal Coordinate  
Operator in Momentum Space 

As mentioned above, the average value of coordinate 
operator in momentum space is a complex number. So 
the coordinate operator in momentum space shoul
be revised. Similar to (44), we define the universal
di

3 2

3 3 3

2π

d d

p g   



   

     


p p p p

p p p p p

1
p̂ p g     p p p p

d also 
 coor- 

nate operator x̂  and momentum operator p̂  in 
momentum space as  

  x̂ i R x
p  

 
   
 p p

       (66) 

p̂ p


 

 


Here  x p  is a real number and  R p  is a com-
plex number in general to satisfy following equation 


p

     R



 p            (67) 

Here 


p p

  p  is the wave function in mom
The relation between 

entum space. 
  p  and   x  i

transform with 



s the Fourier 


 

  3

We can determine 

3/2

1
d

2π

i

e 


  



p x
p x x       (68) 

 R p  based o
have 

n (67). Thus, we 

         

 

x̂ i R x
p

x

 




  
 

    


p p p p p
  (69) 

 



p p

Therefore, the results that universal coord
tors are acted on the non-eigen wave functions are real 
nu ue

ors over non-eigen functions are also real numbers. 
We have 

inate opera-

mbers. The average val s of universal coordinate 
operat

         
   

3 3

3

ˆ ˆ d d

d

x x x

x

  



   



  



 


p p p p p p

p p p

p
 (70) 

The Fourier transform of ( )x p  is 
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 
 

3
3 2

1
d

2π

i

x x e 

 
  



p x
p x         (71) 

By considering (68) and (71), we transform (70) into 
coordinate space for description and obtain 

 
     

 
     

 
   2

d d
2π

x    
x x x x x

3 3 3
3

3 3 3
2

3 3

1
ˆ d d d d

d d d
2π

1

i

x x e

x

 



 

  

    





   

        









p x x x
x x p x x x

x x x x x x x x

      (72) 

The result is similar (41) and (65).  

3.4. The Definition of Universal Momentum  
Operator in Spherical Coordinate System  

Based on the definition of universal momentum in the 
Descartes coordinate system, we can define universal mo- 
mentum operator in spherical coordinate system. Similar 
to (44), we define 

3

2π

1



1
p̂ i G Q

      r r rr r
           (73) 

 

ˆ
2

ctg
p i G Q  



      

           (74
 

) 

p̂ i G Q  
 

     
              (75) 

Here  , ,rQ r   ,   , ,Q r    and  , ,Q r    are  

real numbers, and  , ,rG r   ,  ,G r ,  and  

 , ,G r    are complex numbers which satisfy follow- 
ing relations 

1

ct

r r

G

g

2

rG

G

 






 


 

    
  






        (76) 

(71)-(73) on general non-eigen wave func- 
tions, we get non-eigen values of real numbers with 

ˆ

ˆ

ˆ

r rp Q

p Q

p Q
 

 



By acting 

 

 
 
 





       

ine the concrete forms of rQ , Q

        (77) 

Now let’s determ   
and Q . Substitute (73)-(75) into (12), we get 

2 1 1 2
2

2 2 2

2 2 2 2 2

2

ˆ

sin
sin2 sin

2 2

2
2 2 2

r r
r r r

r r
r r r

T

r
r rmr

G
Q Q Q G G G

r r r

G

QQ G
i Q G Q Q

r r r

  







    

2
2

2

cos
2

4sin

GG
G ctg G G

r


  

2G



 




 
  

       

 



            
            


         





  
         



 

2 2 2
Q

G ctg G Q Q G Q
     




 



 
       

(78) 

By considering (13) and (76), we get 

2 2 2

2
2 2 2 2

2

cos

4sin

0

r

r
r

r

Q Q Q

GGG
G G G

r

QQQ
i

r

 


 




 

 

 

 
          

        





  (79) 

r r rG a ib

G a ib

G a ib

We take 



  

  


 
 

              (80) 

By substituting (80) into (79) and dividing it into 
imaginary part and real part, we have 

2 2
rQ Q 2 2 2 2 2 2

2
2 2

2

cos
0

4sin

r
r r

aa
Q a b a b

r

a
a b


 


 


 






        
 

     


 (81) 



2 2 2r
r ra b a b a b

r

Q Q Q


   

0r r r

bbb

r r r

 
        

   


 

       

  (82) 

We have three Q  but only have two Equation
and (82), so we Q

s (81) 

  can be chosen arbitrary. By solving 
the motion question of quantum mechanics, we know the 
form of wave functions. Let rp , p  and p   are the 
partial momentum of a particle. Their forms can be de- 
termined by following formulas 

22
2

2

1 1ˆ
2 2

r
r r n n

n n

p
T T r

m r r mr
 

 
        


  (83) 
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22

2

1 1ˆ sin
2 2sinr n n

n n

p
T T

m mr


   
   

       
 

  (84) 




22 2

2

1 1ˆ
2 sinr n

n n

p
T T

m r 2 2 2n m


  
 


   


 (85) 

 

Let Q p   and substitute it in (81) and (82), 
determ rQ  and Q

we can 
ine  . In gene rp  and pral,   are 

differe rQ  and nt from Q . We 

r r rp Q g

p Q g

p Q

let 

  

 

 
 


            

rp , 

  (86) 

Because p , rQ  and Q  are known, rg  and 
g  are known to So (63) as 

n np p 

o. can be written 

 
 

ˆ

ˆ

r r n

n n

p p g

p p g  

ˆ

r n 

 
 

            (87) 

The non-eigen values of universa
ˆ rp  and p̂

 



l momentum operator 

  do not represent real momentums of mi- 
cro-particle too. In this e al
m
sam  opera- 
tor in other curved coordinate systems.  

4. The Definition of Universal A
Momentum Operator and the Essence of  
Micro-Particle’s Spin 

4.1 D

tums are unob- 
e angle 

ne
dir  angle momentum opera- 

gen values 
e s too. The 

way, w  define univers  mo- 
entum operator in spherical coordinate system. By the 

e method, we can define universal momentum

ngle  

. The efinition of Universal Angle  
Momentum Operator 

In quantum mechanics, angle momentum operator is re- 
lated to momentum operator with relation ˆ ˆ ˆL r p  . If 
we think that micro-particle’s momen
servable so that its values are unimportant, th
momentum of micro-particles are related to atomic mag- 

tic moment and the magnetic moments are measurable 
ectly. It is obvious that when

tors act on general wave function, their non-ei
and average values may be complex numb r
angel momentum operators in the Descartes coordinate 
system is  

ˆ

ˆ

ˆ

x

y

z

L i z y
y z

L i x z
z x

L i y x
x y

  
     

       
  

     







            (88) 

By introducing spherical coordinate, (88) can also be 
written as 

ˆ sin cos

ˆ cos si

ˆ

x

y

z

L i ctg

L i ctg

L i

  
 

n  
 



  
    

  
    

      (89) 
 


 








In which ˆ
zL  is the eigen operator of stationary wave 

function nlm  of hydrogen atom with eigen values m , 
but ˆ

xL  and ˆ
yL  are not. Their non-eigen values and 

average values are complex numbers in general. The 
square of angle momentum operators is the eigen opera- 
tor of angle momentum, we have 

 2 2 2 2 2

2
2

2 2

ˆ

1 1
sin

sin sin

x y zL L L L


    

   

            

Acting L  on nlm




  (90) 

2ˆ  , we get real eigen values  

 2 2 1L l l  . In order to make the non-eigen values of  
ˆ

xL  and ˆ
yL  real numbers, we should refine they. Based 

on (44), universal angle operators are 

ˆ
x y z y zL i z G y G zQ yQ

y z

                  
  (91) 

ˆ
y z x z xL i x G z G xQ zQ

z x

                     
  (92) 

ˆ
z x y x yx y  

L i y
 

   G x G yQ xQ
         
  

  (93) 

Here Q  is determined by (53) and (54) with z zQ p . 
By acting universal angle operators on common no
eigen wave function, we get  

n- 

 
 

ˆ
x n y z n

y y z n

L zQ yQ

z p g yp

  

    
          (94) 



 
 

ˆ
y n z x n

z x x n

L xQ zQ

xp z p g

  

    
           (95) 



 
 

ˆ
z n x y n

 x x y

L yQ xQ

y p g

 

y nx p g 

 

    
     (96) 

   g x  and p x  are also determined by (55) and 
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(56). In this way, the non-eigen values and average va- 
lues of universal angle momentum opera
bers. We do not discuss the forms of universal angle 
momentum operators in curved coordinate reference sys- 
tems here.  

4.2. Auxiliary Momentum and Auxiliary Angle  
Momentum 

We use the square of mome  operator 
struct the motion equation of ntum mechanics but use 
ˆ ˆr p  to construct angle mo ntum, in quantum me- 

tors are real um- 

ntum
 qua

me

2p̂  to con- 

chanics. So the kinetic energy T  and angle momentum 
L  are not one-to-one correspondent. In fact, according 
to quantum mechanics, the kinetic energy of electron in 
ground state hydrogen atom is not zero but its angle 
momentum is zero. This state can not exist stationary. 
The angle m  

Figure 1. Auxiliary angle momentum, spin and magnetic 
moment. 

4.3. The Essence of Micro-Particle’s Spin  

In order to explain the fine structure of light spectrum, 
we assume that electron has a spin Ŝ . The projections 
of spin can only take two values 

omentum should exist for electron moving 
to 

 
valu  using momentum operator and real 

an

auxil

around atomic nuclear, otherwise electron would fall in
nuclear. By considering the error between calculated

es of momentum
values, auxiliary momentum and auxiliary gle mo- 
mentum are introduced. By establishing relation between 

iary angle momentum and spin, the essence of mi- 
cro-particle’s spin can be revealed. 

Let 0p̂  represents universal momentum operator, 0p  
represents its value with 0 0p̂  p . It has been proved 
before that 0p  is still not real momentum of micro- 
particle. Let p̂  represent real momentum operator and 
p  represent real momentum with p̂  p . ˆhp  re- 

present auxiliary momentum operator and hp  repre-
sents auxiliary momentum with ˆh hp  p . Their rela-
tion is  

0ˆ ˆ ˆhp p p                 (97) 

Let 

2S    at arbitrary 
direction in space. Spin seems an angle momentum but 
not real. Sometimes, we consider spin as that electron 
rotates around itself symmetry axis. But the calculation 
shows that if it is true, the tangential speed of electron’s 
surface would be 137 times more than light’s speed [11]. 

 quantum mechanics has been fully developed, 
. 
le mo-

0 0
ˆ ˆ ˆ

ˆ
h h

L r p

L

 

 
                (98) 

Here 0L̂  i  angle momentum operator in current 
antum mechanics and ˆ

hL  is supple tum 
operator. The real angle momentum operator ˆ

ˆ ˆr p

s
qu mental momen

pJ  is 

ˆ ˆ ˆ ˆ ˆ ˆ 0 0
ˆ ˆ

p h hJ r p r p p            (99) L L 

The relations among them ar
Auxiliary angl omentum ˆ

hL  is related to spin S . 
W iscuss th lation below and p  that spin is 
related to the partial angle momentum of micro-particle 
which current momentum opera
establishing the relation between them, the essence of 
spin can be explained well.  

e shown in Figure 1. 
ˆe m

eir ree d rove

tor can not describe. By 

It is difficult to understand the concept of micro-parti- 
cle’s spin from the point of view of classical mechanics. 
Although
the essence of spin is still an enigma at present day
In quantum mechanics, spin is considered as ang

mentum actually. However, angle momentum is a kind of 
vector. So it is an unreasonable thing for spin vector to 
only take two projection values 2  at ar bitrary direc- 
tion in space. In real physical space, such vector can not 
exist. The projection of a vector with mode 1 at any  
direction can only be cos  with values 1- 1 . Be- 
cause spin is always coupled with magnetic field, the 
correct understanding should be that if we take z  axis 
as the direction of magnetic field, the projections of spin 
at z  axis direction take two values 2 . At other 
directions, spin’s projection should be related to cos . 
We will see below that it is just due to the hypothesis that 
t

tic fie

he projections of spin can only take two values, the Bell 
inequality can not be correct.  

According to current quantum mechanics, magnetic 
moment caused by spin in magne ld is  

s

e

mc
μ S                (100) 
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Magnetic moment caused  angle momentu 0 by m L  is 

0 02

e

mc
μ L              (101) 

I  atomic physics, the ratio that atomic gnetic mo- 
ment divided by angle momentum is called as
gyro-magnetic ratio. According to (101), we have the 
ratio 

 

n ma
 orbit 

 0 0 2L e mc  . However, according to (100), 
we have 0 0s 2S e mc L   . So spin gyro-magnetic 
ratio is two times of orbit gyro-magnetic ratio. It indi-
cates that spin is not normal angle momentum. Let μ  
represent total magnetic momen
magnetic field, as shown in Figu

t of charged particle in 
re 1, magnetic moment 

μ  precesses around total angle momentum J , so μ  
 considered as an immeasurable quantity in current is

theory. What can be measured directly is the partial 
quantity g  of μ  at the direction of angle momentum 
J . We have 

2g

e
gJ

mc
              (102) 

Here g  or. Let is the Lande fact pJ  represent new 
total angle momentum after auxiliary angle momentum is 
considered, suppose that the relation between pJ  and 
J  is 

p gJ J                 (103) 

The formula above gives the Lande factor a new 
physical meaning. In this way, magnetic moment of par- 
ticle becomes 

2 2p p g

e e
g

mc
J J

mc
 μ μ         (104) 

By introducing new total angle mentum  mo pJ , the 
on mdirecti  of magnetic moment is the sa e as pJ . We do 

not need the assumption that μ  precesses around angle 
total momentum pJ  again. In experiments, pa ticle’s 
angle momentum can not be observed directly. What can 

done is m

r

be agnetic moment. We obtain angle momen- 
tum through measurement of m
So int

 between auxiliary angle momentum and 
spin is discussed below. Because the mo
are restrained on a plane in center force

agnetic moment actually. 
roducing new total angle momentum does not 

cause inconsistent. Inversely, angle momentum theory of 
micro-particle becomes more rational.  

The relation
tions of objects 
 fields, we sup- 

pose that pS , J , pJ , 0L  and hL  are located on a 
plane. As shown in Figure 1, we have following relations 

2 2 2
0 02 cosS J L JL              (105) 

2 2 2
0 02 cosh p pL J L J L              (106) 

2 2 2
0 2 cosp h p hL J L J L             (107) 

2 2 2
0 2 cosL J S JS              (108) 

From (103), (105) and (106), we get 

   2 2 2
01 1hL g g J g L gS            (109) 

From (107) and (108), we obtain 

 
   

2 2 2
02 1

cos
g J L S


  


1/22gS2 2

02 1 + 1J g g J g L   
   (110)

 
 

We know the values of J , S  an
tum mechanics. The Lande factor 

d 0L  from quan- 
g  can be obtained 

from experiment. So hL  and   can
based on (109) and (110). For example, when 0 0L

 be determined 
 , 

2g J S , we have 2hL S and  and 0  . In 
this case, L  is just the angle momentum of electron in 
gr  say, for ground 
state hydrogen atom with 0 0L l  , it is j
momentum 2hL S

h

ound state hydrogen atom. That is to
ust angle 

  which ensures ele
mo out falling into it. In 
th ed by auxiliary angle 
momentum is  

ctron’s stable 
tion around atomic nuclear with

is case, the magnetic moment caus

2h h

e e

mc mc
 μ L S           (111) 

o
in

In this way, we explain that spin gyro-magnetic ratio is 
two times of orbit gyro-magnetic ratio. It indicates that 

hL  is real angle momentum, in stead of spin. We should 
consider S  as a kind of quantum number. Based n it, 
we can obta  real angle momentums of micro-particles. 
As shown in Figure 1, we have relation 

 0 0p hg   J L S           (112) 

In fact, in quantum mechanics, we use the Pauli equa- 
tions to describe the Zeeman effects of spectrum splits in 
magnetic fields. T

L L

he equations are  

  
2

2
1 1

ˆ
2 2 z

eH
U r L

c
 1 1E   

 
    
     (113) 

   
2

2
2 2 2 2

ˆ
2 2 z

eH
U r L E

c
   

 
     
    (114) 

In the f mulas, we have  or  1 1
ˆ

zL m      and 
   2 2

ˆ 1zL m     . It means that the partial quan- 
tity of angle momentums at z  axis direction is   
actually. The reason to write the projec
direction of space as 

tion of spin at any 
2S    is only for 

m
of mathe- 

atical convenience. Speaking correctly, we should con- 
sider 2S    as a kind of quantum number based on 
it we can obtain correct angle momentums of micro-par- 
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ticles. 
In general situations 0 0L  , the angle mome

micro-pa omes complex. For example, for the 
2P  and 2/32D  of hydrogen atom

g to d (110), we obtain 

ntum of 
rticles bec

1/2 , 2P
 (109) an

states 
cordin

2/3 , ac- 

1 2 0

2 3 0

2

2

3
0.87 125 44 0.74

2

3 3
2 :  2 2

2

15
 1.94 23 36 2.60

p

h

L L S

J J

P g L L S

J J





  

   

   

   







  

 

  

, , , ,

, , ;

, , , ,

, , , ;

 (115) 

2 3 0

2

4 2 15 3
2 :  6

5 2

15
 1.94 135 2

h

p

D g L L S

J J

   

   

 

 

, , , ,

, , ,

3
2 :  2

3

4

5

.82 .
2

h

p

P g 




In this way, we reveal the essence of micro-particle’s 
spin. Spin is not real angle momentum though it related 
to angle momentum. Due to the incompleteness of angle 
momentum operator in quantum mechanics, we introduce 
the concept of spin. The quantities of S , L  and hL , 
are only useful tools. By eans of these  we ca
struct real an me

m
ntum

, n con- 
gle mo  pJ  of micro-particles. 

Auxiliary angl ntue mome m hL  

angle m

do t appear auto- 
matically in quant m s. By means of it, the re- 
lation betwee al total ntum 

es no

me
um echanic

n re o pJ  and 
ma omgnetic m ent gμ  

agnetic 
becom

mo
es no
e

rm
nt precesse

al. We do not need 
e that m s around to assum m pJ . 

We ha onlyve  a real angle momentum pJ  for micro- 
particle. 

is 

be

n

5. The Real Reason That Bell Inequality Is  
Not Supported by Experiments 

5.1. The Deduction of the Bell Inequality 

Based on the clarification of spin’s essence, we can ex- 
plain why the Bell inequality not supported by experi- 
ments. It is due to the misunderstanding of the spin’s 
projections of micro-particles. 

Let’s first descri  the deduction process of the Bell 
inequality briefly [12]. Suppose there is a system com- 
posed of two particles with opposites spi  2  indi- 
vidually, so the total spin of system is zero. Spin operator 
is ̂  and we take 2 a as unite. Let A  represent the 

, 

b

at 

spin’s measurement value of particle 1 at a  direction
B  represent the spin’s measurement value of particle 2 

b  direction. The average value a bA B  of associ- 
ation operator   1 2

ˆ ˆˆ ˆ ˆ ˆ ˆE a b a b      is  

 
 

1 2
ˆˆ ˆ ˆa b

ˆˆ

ˆˆ ˆ

a bA B E a b

E a b



 

   

  

           (116) 

  

The wave function of the system is 

      1

2
A B A B             (117) 

By substituting (117) in (116), the calculating result of 
qua um mechanics is  nt  

 ˆˆ ˆE a b a b
ˆ              (118) 

When ˆâ b



 , we have  ˆˆ 1E a b    . Suppose that  

there exists hidden variable   which m
nistic motion possible for micro-particle. The ensemble 
distribution function of hidden variable is 

akes determi- 

    which 
is normalized with  

 d 1                 (119) 

The average value of association operator on the en- 
semble function of hidden variable is  

 ˆˆE a b      da bA B         (120) 

If theory is localized one without
ta  meas ut particle 1 o

  
 interaction at dis- 

nce, the urement abo nly depends on 
  and a , having nothing to o with b . Meanwhile, 
the measurement about partic  2 also depends on 

ˆˆ  d
le   

and b̂ , having nothing to do with â . So for arbitrary 
â  and b̂ , we have 

    a b aA B A B  b             (121) 

Because two particles have opposites spins, when â  
and b̂  are at the same directions, according to (118), we 
have  ˆ ˆ 1E a a    . It means 

        or   a a a aA B A B    1      (122) 

Let ĉ  be another direction vector, because of  

    1a bA B    , we have 

   

  

ˆˆ ˆ ˆ

a b

E a b E a c

A B

 

       
        

da c

a b a b a

A B

A B A B A

    

    dcB

         1 da b a cA B A B

    



   
 

ause of 

   

         
(123) 

Bec

  

 

    1B  a bA , from (123) we get 
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   

     1 dA B

 ˆˆ

a c

b

ˆˆ ˆ ˆ

1

E a b E a c

E a

 



               

  

 

(124) 

Let â , b̂  and ĉ  are vectors on the same surface. 
The a gles between d b̂  is , between b̂

also n  is 120 . Ac
quant m ve 



n
ĉ

ing t

â  an
, betwee

echanic

60

ĉ
 

 
- and 

cord
 is 

o 
60

um 
â  and 

s we ha

   ˆ ˆˆ ˆ coE a b E b c      s60 1 2  ,. 

 ˆ ˆE a c   

Let    ˆ ˆˆ ˆE a b E a b    

cos

  and substitute it into (124), 
get absurd result 

120 1 2 . 

however, we 1 1 2 . It means that 
t coin the result of 

chanics (118). Since the Bell inequality is advanced, 
many experiments are completed. Most of them support 
qu m e

 t d riab e
ipt s ons

5.2. The Real Reason That the Bell Inequality Is  
Not Supported by Experiments  

After the Bell inequality was established ts of ex- 
pe nts were completed.

ays 1 . However, this kind of vector can 

(124) can no cide with quantum me- 

antu  m chanics, not support the Bell inequality. So 
physicists do not think hat hid en va les exist. Th  
determined descr ions of micro-particle  are c idered 
impossible. 

, a lo
rime  Most of them support quan- 

tum mechanics does not support the Bell inequality. So 
according to current point of view, hidden variables do 
not exist and the deterministic descriptions of micro- 
particles are considered impossible.  

Based on discussion above, we can say that real rea- 
sons to make the Bell inequality impossible is the mis- 
understanding of spin’s projection. According to current 
understanding, the projections of spin at arbitrary direc- 
tions are alw
not exist in physical space. Suppose vector  

x y zA A A  A i j k  with mode A , if the projection of 
A  at direction k  is  A , the projections at direc- 

 chose z axis as the 
di

tions i  and j  can only be zero. No any physical vec- 
tor can have same projections at different directions in real 
space.  

In fact, spin is always coupled with magnetic field 
when we construct the interaction Hamiltonian. The cor-
rect understanding of spin is that if we

rection of magnetic field, the projection of spin at z 
axis direction of is 2 . That is to say, the projection 
of spin at the direction of magnetic field is 2 , rather 
than at arbitrary direction! Speaking strictly, in quan- 
tum mechanics, sp is coupled with magnetic field in the 
value of 

in 
2 . If the direction of magnetic

between spin d magnetic field is 
rtain. At other direct , we can not observe the 

physic l affec ons of spin. In fact, in current quantum 
mechanics, matrix operators are used to describe spin 
with 

 field is cer-  

tain, the coupling an
ce  ions

a ti

0 1 0 1 0
ˆ ˆ ˆ

1 0 0 0 1x y z

i

i
  

     
            

  (125) 

By acting them on spin wave functions 1 2 1 2   
and 1 2 1 2   , we have 

ˆ ˆ1 2 1 2   1 2 1 2 0

ˆ ˆ1 2 1 2   1 2 1 2 0

x x 

 

  

x x    
    (126) 

ˆ ˆ1 2 1 2   1/ 2 1 2 0

ˆ ˆ1 2 1 2    1 2 1 2 0

y y

y y

i

i

 

 

    

  
    (127) 

ˆ ˆ1 2 1 2    1 2 1 2 1

ˆ ˆ1 2 1 2    1 2 1 2 1

z z

z z

 

 

 

      
  (128) 

Therefore, only (128) is the eigen equation of spin 
operator ˆ z  with eigen values 1 . ˆ y  and ˆ z  are

1/2

 
not the eigen operators of   and 1/2 nd do no

 certain eigen val  we can not think particle’s 
spins have same projection values 1  at arbitrary 
tions. Because the square of spin operator is 

 a t 
have ues. So

direc-

   
2 2

2 2 2 2 23
1

4 4x y zS s s       
      (129) 

so the value of spin is actually 

 3 1
1    

2 2
S s s s            (130) 

It is more proper to consider S  and s  as a kind of 
quantum n mber, in stead of spin a le momentum itself. 
In light of mathematics stric ly, as a p tical physical 
quantity, the projection of spin operator at â  direction 
is ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

u ng
t rac

x x y y z za a a a          . e projection at z 
direction should be ˆ ˆ

Th

z za  . According to quantum me- 
chanics, we have  

0
ˆ ˆ

0

ˆ ˆ
0

0

x
x x

0

x

y

ˆ ˆ
0

y y
y

a
a

a

ia
a

ia

a





 
   


   

 
 



         (131) 

z
z z

z

a
a

    
 

Here 

 
 

xa , ya  and za  are the projections of unit vector 
â  at x , y  and z  axis directions. We hav  e
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sin cos

sin

cos

sin
x

ya

z

a

a

 
                (132) 









So the formula (131) means that the projections of spin 
operator at arbitrary direction take the values between 
1- 1 er than 1 . When calculatin
values o 1ˆ â

, rath
f 

g the average 
   about the wave functio

 
n of a single par- 

ticle, we have 

1

1

1ˆ ˆ cos

z

za a

1

ˆ ˆ cos

ˆ ˆ cos

ˆ ˆ cos

z

z

a a

a a

a a

    

    

   

  

 

  

    

    

   
  

   
    (133) 

1

1

ˆ ˆ sin

ˆ ˆ sin cos sin sin

x y

x y

a a ia

a a ia i

cos sin sini      

      
 

 

   

    
(134) 

A



Based on (133) and (134), we get (118). However, in 
the deduction of the Bell inequality, we let  

   1a bB    . It means that the projection of elec- 
tron’s spin at arbitrary direction can only take 1 . This 
result is different from (131)-(1 d can not be rea- 
lized in real physical space. So it is inevitable that the 
Bell inequality can not be supposed by experiments. The 
Bell inequality is a misunderstanding of m
having nothing to do with hidden hypotheses
coincides with quantum mechanics, nor coincides with 
classical mechanics and any logic of mathematics and 
physics.  

In fact, according to this paper, spin is not real p
cal quantity which can be determined directly. What can 
be 

34) an

athematics, 
. It neither 

hysic- 

done in experiments is magnetic moment. Magnetic 
moment is related with angle momentum directly. Ac- 
cording to (112), the projection of auxiliary angle mo- 
mentum at α direction is 

   0 01 1
2h g g g g         


L a L a S a L a  (135) 

The eigen values of 2
0L̂  is   21l l   . Suppose that 

the angle between 0L  and a  is  , (135) becomes 

   2 1 1 cos
2h g l l g      L a


     (136) 

Take 2  as unit, let 0  , for the electron at 1/22P  
state, we have 1.64h   L a  or 0.27 . For the elec- 
tron at 2/32P  state, we have 2.27h  L a  or  

0.39h   L a . For the electron at 2/32D  state, we have 
1.78h   L a  or 0.10 . For the ground electron with 

0l  , we have h  L a 2 2  1  L a . Let S , so h

~h aAL a  and L ˆ ~h bb B , we have     1a bA B     

In fact, E. P. Wigner had posed a proof of the Bell i
quality which did not depend on hidden variable
But it still base is that the 

 w
io lity 

has nothing to do with hidden variables. The violatio
the Bell inequality also has nothing to do with
not hidden variables exist.  

zation Corr on of

Most experim
are re zation
the d Bell ine these proce

tion valu idered to be 1

in general.  

ne- 
s [13]. 

d on the hypothes projections of 
spin at arbitrary direction of space ere 1 . From this 
result we see again that the deduct n of Bell inequa

n of 
 whether or 

5.3. The Polari elati  Photon and  
the Bell Inequality  

ents for the verification of Bell inequality 
lated to polari  correlation of photons [14]. In 
eduction of quality for sses, 

photon’s polariza es are cons  . 
When a photon passes through a polarize, its polarization 
value is considered to be 1 . When a photon does not 
pass, its polarization value is considered to be –1 [15]. 
The deduced Bell inequality can not be supported by 
experiments. The reason is the same as the projections of 
spin. In fact, light’s polarization is macro-concept. It is 
meaningless to talk about polarization about a single 
photon. We can only discuss light’s polarization from the 
macro-viewpoint of statistical average.  

trom beam of polarization light 

 di

We know in classical optics that the polarization direc- 
tion of light is defined as the vibration direction of elec- 

agnetic field. When a 
passes through polarizer, the vibration direction of elec- 
tromagnetic field is changed. For example, when a beam 
of polarization light passes through calcite, it becomes 
two lights named e light and o light. Their vibration - 
rections are different from original one. If we must de- 
fine the concept of polarization for a single photon, we 
can only consider its polarization direction as the direc- 
tion of electromagnetic field. When a photon pass through 
a polarizer with an angle  , the vibration direction of 
electromagnetic field turns an angle  . In this case, we 
should think that photon’s polarization becomes cos . 
That is to say, even in classical optics, for photons which 
pass through polarizer, their polarization is considered as 
cos , in stead of 1  in general. For photons which are 
reflected without passing through polarizer, their polari-
zation values depend on the angle of reflection, in stead 
of 1  in general. In fact, in quantum mechanics, when 
calculating polarization correlation of photons, we use 
some formulas similar to (126)-(128) which are related to 
the direction angle   of polarization. It is impossible 
for photons always to have polarization values 1  or 

1  under arbitrary situation.  
Because photon’s polarization values are always taken 

1 , the mistake is the same as made for particle’s spin 
when we deduct the Bell ine uality of photon’s polariza-
tions correlation. It is also inevitable that this kind of Bell 

q
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inequality can not be supported by experiments. There-
fore, the violation of Bell inequality of photon’s polari-
zations correlation also has nothing to do with hidden 

les. 

6. The Elimination of EPY Momentum  
P radox in Quantum Mechanics 

The momentum paradox of Einstein-Pauli-Yukawa is a 
confusing problem in quantum mechanics. Based on the 
definition of universal momentum operator in this paper, 
we can eliminate it. Let’s first repeat this problem We 

cuss a micro-particle’s motio

variab

a

. 
dis
tra

n in the infinite potential 
p of one dimension with form 

   
 

0 a x a
U x

x a

  
  

      (137) 

By solving the motion equation of quantum mechanics,
we obtain particle’s energy 

 

22 2 2π npn 

138) 
2 28

π

nE
mma

n
p

 




         (

2n a

Here m  is particle’s mass. In the region a x a   , 
wave function is 

 

1 π
cos

2

n x
n odd

aa
x

  
1 π

sin
2

n n x
n ev

aa
 


    (139) 

en

In the region x a , 0n   . The wave function of 
ground state can be written as 

   1 1/ /ip x ip xe     (140) 

By acting mome

1

1 π 1
cos

2 2

x
x e

aa a
  

ntum operator p̂  
we obtain two egei

di d x  on (140), 
n values 1p . The result indicates 

that the wave fu nsidered as the overlap 
ms  

nction can be co
of two wave functions with different momentu

 1 π 2p a    . So Einstein, Pauli and Yukawa thought 
that the particles in the state has only two inde- 

de ome
ground 

 1p  and 1ppen nt m ntum   with probability 1 2  
. 

On the other hand, by substituting (140) in
wave function in momentum space is 

individually
 (68), the 

  1 1( )
1

1
d

2 2π

a
k i p p x

a

e e x
a

  



     


p ( )

3 2

2 23 2
1

cosπ

2

i p p

ap

p pa







 (141) 

omentum is The possibility distribution of m

     
 

23
2

1 1 3 22 2
1

cosπ

2

ap
P p p

a p p
 




      (142) 

It is not the distribution of two momentums 1p  with 
probability 1 2  indi ually. s is the so-called E  
momentum pa

vid Thi PY
radox is caused. Because this paradox can 

no
 mechanics was 

inconsistent [16]. 
The problem is that according to discussion above, we 

can not define rational momentum operator for q
mechanics in the situation of one dimension. If 
current momentum operator on wave functions (139) or 
(140), the obtained non-eigen value is an imaginary 
nu

 

t be solved up to now days, some persons even thought 
that the logical foundation of quantum

uantum 
we act 

mber. We have 

 

   

1 1/ /1
1 1ˆ

2
π π

ip x ip xp
p x e e

a
x

i tg x p x



 

 

 

 


1 1 13/2 22 aa

 

   (143) 

1 3/2

π π

22

x
p x i tg

aa



          (144) 

According to discussion before, we can not find a 
proper momentum operator for micro-particle which moves 
in one dimensional space. That is to say, in one dimen-
sional infinite trap, particle’s momentums can not be 

1p . 
Some one proposed the explanation of boundary con- 

dition trying to eliminate EPY paradox [6]. According to 
this explanation, when (139) is written in the form of 
(140), 1e  is the normalized wave function in a box, 
rather than the wave function of free particle in the re- 
gion without boundary. The restriction of boun
dition would produce a great influence on the nature of 
wave functions. If 

ip x 

dary con- 

1ip xe   are the wave functions with 
infinite boundary, after they are transformed in momen- 
tum space, the wave functions should be the   function 
with 

 

  

1 1

1

( ) ( )1
d

2 2π
i p p x i p p xe e x

a




  



   

 
  
 

   

1 1( ) ( )

1 1

1 1

1 1

1
lim d

2 2π

sin sinπ
lim

2 π π

π

2

i p p x i p p x

a
a

a

e e x
a

p p a p p a

a p p p p

p p p p
a

 
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




  
a



  
 

  



p

 
   

     

  


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

(145) 
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It represents two ntums which is the same with 
the result in coordinate space. But if particles are located 
in infinite trap with the restriction of boundary condition, 
(145) can

mome

 not hold.  
This kind of explanation has its reason but has not 

touch the essence. Because (138) is the wave function in 
coordinate space, the definition of momentum operator 
of quantum mechanics is unrelated to boundary condition, 
no matter whether boundary conditions are finite or infi- 
nite, the actions of momentum operator on wave fu
are effect and certain. In fact, the boundary conditions 
have been considered when we solve the motion equation 
of quantum mechanics. That is to say, the influence of 
boundary condition has been contained in the wave func- 
tions. So it is unnecessary for us to consider boundary 
condition. When we act momentum operator on wave 
function, the result we get is what it should be. By acting 
p̂

nction 

i    on wave function (140), we can only get 1p . 
It indicates that we only have two discrete momentums. 
The EPY momentum paradox has not eliminated really 
by considering boundary condition. 

According this paper, though (140) represents the 
wave function in coordinate space, the momentum opera- 
tor is not di d x  , so particle’s momentum is not  p  
in infinite trap. Because the Fourier transform of (68) is a 
pure mathematical one, its result is undisputed. Therefore, 
the momentum distribution (142) is correct. We see again 
that thought we can have rational definition of kinetic 
energy operator, we may not find proper momentum 
operator to match with kinetic energy operator some- 
times. 

7. Conclusions 

According to current quantum mechanics, when the opera- 
tor is acted on non-eigen function, non-eiegn values and 
average values of momentum operator are complex num- 
bers in general. In theses cases, momentum operator is no 
longer the Hermitian operator. Though we can make the 
average values real numbers in momentum representa-
tion, it lea consistency of coordinate space  
momentum space. Using momentum operator and kinetic 
operator to calculate momentum of micro-particles, the 
results may be different. It means that kinetic operator 
and momentum operator of quantum mechanics are not 
one-to-one correspondence. Besides momentum operator, 
other operators in quantum mechanics, just as angle mo-
mentum
problem

ds to in and

 operator, also have the same problems. These 
s have not caused the attention of physicists at 

e these problems involve the ration-

ntum mechanics. 
Th

echanics,” 1996. 

[9] J. M. Domingos and M. H. Caldeira, “Self-Adjiontness of 
Momentum O oordinates,” Foun- 
dation of Phys , pp. 147-154.  
doi:10.1007/BF00729971

present day. Becaus
ality of logical foundation of quantum mechanics, we 
should treat them seriously.  

By introducing the concept of universal momentum 
operator, all of these problems can be solved well. Under 

the premises of ensuring kinetic operator to be invariable, 
non-eigen values and average values of universal mo- 
mentum operator are real numbers. In this way, the de- 
scription of physical processes can be equivalent really in 
coordinate representation and momentum representation. 
For eigen wave function, universal momentum operator 
restores to the current Hermitian operator. For general 
situations, universal operator is not the Hermitian opera- 
tor because it is unnecessary. The most important thing 
in physics is that the average values of operator should 
be real numbers. Using universal momentum operator 
and kinetic operator to calculate micro-particle’s kinetic 
energy, the results are still different, but we can get con- 
sistent result through proper method. Only in this way, 
we can reach logical consistency for qua

e problems of momentum operator’s definition in the 
curved coordinate reference systems can be solved well. 

Therefore, we need to introduce the concept of auxi- 
liary momentum and auxiliary angle momentum. The 
relation between auxiliary angle momentum and spin is 
deduced and the essence of micro-particle’s spin is re- 
vealed. Spin is related to auxiliary angle momentum of 
micro-particle which angle momentum operator can not 
describe. We understand real reason why the Bell ine- 
quality is not supported by experiments. It is due to the 
misunderstanding of spin’s projections and photon’s po- 
larizations. No any real angle momentum can have same 
projections at different directions in real physical space. 
The violation of the Bell inequality has nothing to do 
with whether or not the hidden variables exist actually. In 
this way, the EPY momentum paradox can also be 
eliminated thoroughly. The logical foundation of quan- 
tum mechanics becomes more perfect. 

REFERENCES 
[1] A. Einstein, “Science Paper Presented to Max Born, on 

His Retirement from the Tait Chair of Natural Philosopby 
in the University of Edinburgh,” 1953. 

[2] W. Pauli, “Pauli Lecture on Physics,” MIT Press, Cam-
bridge, 1973. 

[3] H. Yukawa, “Quantum Mechanics,” 2nd Edition, YanBo, 
Bookshop, Tokyo, 1978. 

[4] X. L. Ge, “Quantization of Canonical Coordinates,” 2001. 

[5] Y. B. Zhang, “Momentum Operator and Kinetic Operator 
in Curved Coordinates,” 1988. 

[6] Z. Xu, “Discuss on Canonical Operators,” 1991. 

[7] C. B. Liang, “Quantization of Classical Systems,” Jour-
nal of Beijing Normal University, Vol. l, 1994, p. 67. 

[8] H. Guang, “Foundation of Quantum M

perators in Generalized C
ics, Vol. 14, No. 2, 1984

 

Copyright © 2012 SciRes.                                                                                 JMP 



X. C. MEI, P. YU 

Copyright © 2012 SciRes.                                                                                 JMP 

470 

, p. 544.  

[10] M. Vos and I. McCarthy, “Electron-Momentum Spec-
troscopy and the Measurement of Orbits,” American 
Journal of Physics, Vol. 65, No. 6, 1997
doi:10.1119/1.18586 

[11] Y. D. Zhang, “Quantum Mechnics,”, 2008. 

s of Modern Physics, Vol
[12] J. S. Bell, “On the Problem of Hidden Variables in Quan-

tum Mechanics,” Review . 38, 
No. 3, 1966, pp. 447-452. 

[13] E. P. Wigner, “Survival and the Bomb; Methods of Civil 
Defense,” American Journal of Physics, Vol. 38, No. 11, 
1970, p. 1367. doi:10.1119/1.1976129 

[14] J. F. Clauser, M. A. Horne, A. Shimony and R. A
“Proposed Experimen

. Holt, 
t to Test Local Hidden-Variable 

15, 1969, Theories,” Physical Review Letters, Vol. 23, No. 
pp. 880-884. doi:10.1103/PhysRevLett.23.880 

[15] S. J. Freedman and J. F. Clauser, “Experimental Test of 
Local Hidden-Variable Theories,” Physical Review Let-
ters, Vol. 28, No. 14, 1973, pp. 938-941.  
doi:10.1103/PhysRevLett.28.938 

[16] Z. Y. Tao, “An Question on the Foundation of Quantum 
Mechanics,” Academic Journal of Photons, Vol. 26, 1997, 
p. 769. 

 
 

http://dx.doi.org/10.1119/1.1976129
http://dx.doi.org/10.1119/1.1976129

