
Vol.3, No.4, 545-556 (2012)                                                             Agricultural Sciences 
http://dx.doi.org/10.4236/as.2012.34065  

Diffusion models for the description of seedless 
grape drying using analytical and numerical  
solutions 

Wilton Pereira da Silva*, Cleide Maria Diniz Pereira da Silva e Silva, Jürgen Wolfgang Precker, 
Josivanda Palmeira Gomes, Pedro Luiz Nascimento, Laerson Duarte da Silva 

 

Federal University of Campina Grande, Campina Grande, Brazil; *Corresponding Author: wiltonps@uol.com.br  
 
Received 20 March 2012; revised 26 April 2012; accepted 2 May 2012 

ABSTRACT 

This article compares diffusion models used to 
describe seedless grape drying at low tempera-
ture. The models were analyzed, assuming the 
following characteristics of the drying process: 
boundary conditions of the first and the third 
kind; constant and variable volume, V; constant 
and variable effective mass diffusivity, D; con- 
stant convective mass transfer coefficient, h. 
Solutions of the diffusion equation (analytical 
and numerical) were used to determine D and h 
for experimental data of seedless grape drying. 
Comparison of simulations of drying kinetics 
indicates that the best model should consider: 1) 
shrinkage; 2) convective boundary condition; 3) 
variable effective mass diffusivity. For the ana- 
lyzed experimental dataset, the best function to 
represent the effective mass diffusivity is a hy- 
perbolic cosine. In this case, the statistical in- 
dicators of the simulation can be considered 
excellent (the determination coefficient is R2 = 
0.9999 and the chi-square is χ2 = 3.241 × 10–4). 
 
Keywords: Optimization; Convective Boundary 
Condition; Diffusion Model; Finite Volume Method 

1. INTRODUCTION 

After harvest, the time of fruit conservation under 
natural conditions is limited to only a few days. Grapes, 
for instance, belong to the most perishable fruits. They 
are very susceptible to microbial decay and moisture loss. 
In general, two mechanisms are used to prolong the con- 
suming time of grapes: cooling and drying. In the second 
case, the life time of the product is much higher than in 
the first case, beyond resulting in a food very appreciated 
in several parts of the world: raisins. The drying process  

of grapes under natural conditions [1] is generally slow 
due to the resistance of its skin. In order to increase the 
drying rate, commonly a pretreatment is accomplished 
before drying. Several pretreatment techniques involving 
the use of chemical additives are described in the litera-
ture [2-6]. However, the demand for natural foods, with-
out adding chemicals, is increasing in many parts of the 
world. Therefore, alternatives to chemical additives are 
used as pretreatment for the production of raisins, for 
instance: abrasion method [7] and dipping in hot water [6, 
8]. 

For describing the drying process, a mathematical 
model must be used. Several drying models are available 
in the literature: empirical models [1-5], and diffusion 
models, which are very common to describe drying ki- 
netics of grapes [1,3,4-9]. In order to describe the drying 
kinetics through a diffusion model, the initial and bound- 
ary conditions must be known. In general, the appropri- 
ate boundary condition is of the third kind [6,7,9], but the 
first kind one is also found in several research works [1, 
3-6,8], especially if some pretreatment is used before the 
drying process. For some products, like rice, drying does 
not substantially reduce the volume of the product and 
the shrinkage can be discarded [10,11]. However, in prod- 
ucts such as banana [12] and grape [6,8], the shrinkage is 
so significant that its effect should not be discarded. But 
if shrinkage is taken into account, its effect on the diffu- 
sivity should also be considered: the effective mass dif- 
fusivity should have a variable value throughout the 
process [6,8]. 

If a diffusion model is used to describe the drying of a 
product, the diffusion equation must be solved. Some 
research works present analytical solutions for the diffu- 
sion equation, particularly if the boundary condition is of 
the first kind [1,3-7]. If an analytical solution is proposed 
for the boundary condition of the third kind, the series 
which represents the solution is normally expressed by  
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only the first term, and the process parameters are deter- 
mined by regression [13,14]. However, this procedure 
only works well with experimental data referring to Fou- 
rier numbers grater than 0.2. For the boundary condition 
of the third kind, numerical solutions are frequently 
found in the literature, if the complete drying kinetic 
must be studied [9,15-20]. 

In order to use the aforementioned solutions for the 
description of seedless grape drying, the process pa- 
rameters must be known. These parameters can be deter- 
mined through optimization processes, normally by using 
the inverse method [21,22]. Once the process parameters 
are known, the simulation of the drying kinetics can be 
performed, and the moisture content can be determined 
at an instant t in any position r within the grape. 

Since several models are available in the literature to 
describe the drying of grapes, this article investigates 
what is the most appropriate one. To this end, five diffu-
sion models, involving the aspects discussed above, were 
used to describe seedless grape drying. Then, the results 
for each model were compared with each other and the 
best model was determined. 

2. MATERIAL AND METHODS 

The solutions of the diffusion equation to describe 
seedless grape drying presupposes the following hypoth- 
eses: 1) grapes are considered as spheres; 2) grapes are 
considered as homogeneous and isotropic; 3) the mois- 
ture distribution inside the grapes must present radial 
symmetry and must be initially uniform; 4) the convec- 
tive mass transfer coefficient is constant; 5) diffusion is 
the only mass transport mechanism inside the grapes. 

2.1. Diffusion Equation and Boundary  
Condition 

Given the hypotheses above, the one-dimensional 
moisture diffusion equation can be written in spherical 
coordinates as 

2
2

M 1 M
r D

t r rr

      

           (1) 

where M is the moisture content (db), r defines the posi-
tion inside the sphere (m), D is the effective mass diffu-
sivity (m·s–1), and t is the time (s). 

The boundary condition of the third kind may be ex-
pressed by the equation: 

 b eqb
b

M M MD h
r

  


        (2) 

where h is the convective mass transfer coefficient (m·s–1), 

bM

eqM
 is the moisture content at the boundary (db), and 
 is the equilibrium moisture content (db). 

2.2. Analytical Solution 

The analytical solution presented in this article refers 
to a spherical geometry governed by Eqs.1 and 2, where 
a constant value for the effective mass diffusivity D is 
assumed. For a sphere with radius R and an initial mois-
ture content M0, the solution M(r,t) of Eq.1 with bound-
ary condition given by Eq.2 is [23,24]: 
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where n  are roots of a characteristic equation to be 
defined later. In Eq.3, M(r,t) is the moisture content (dry 
basis) at the position r from the centre of the sphere at 
time t. 

The average value of the moisture content at time t is 
defined by  

1
M(t) = M(r,t) dV

V           (5) 

The solution of the diffusion equation for the average 
value M(t)  of a spherical body is obtained by substi- 
tuting Eq.3 into Eq.5, and the result is: 
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where 
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Here, Bi is the Biot number given by 

hR
Bi

D
                    (8) 

and n  are the roots of the characteristic equation for 
the sphere 

n

n
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tan
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If only the experimental data corresponding to a Fou- 
rier number Fo = Dt/R2 > 0.2 are analyzed, the drying 
kinetic is well described by the first term of the sum in 
Eq.6 [14]. Using the dimensionless moisture content, 

eq
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
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Eq.6 reduces for this situation to 

1A t
1X(t) B e             (11) 
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where  is given by Eq.7, with n = 1, and  1B

2
1 1 2

D
A

R
              (12) 

Then, the parameters B1 and A1 can be determined by 
fit Eq.11 to experimental data. By substitution of Eq.9 
into Eq.7, with n = 1, a transcendental equation is ob-
tained, and the root 1 , corresponding to n = 1, can be 
determined. Thus, the Biot number is also determined 
through Eq.9, and the effective mass diffusivity by 
Eq.12. Once Bi and D are known, Eq.8 can be used to 
calculate the convective mass transfer coefficient, h. 

2.3. Numerical Solution 

Eq.1 was also numerically solved by using the finite 
volume method with fully implicit formulation [20,25]. 
Figure 1 presents the uniform one-dimensional mesh of 
the corresponding sphere. The control volumes have a 
thickness  (m) and the control volume number “i” 
has a nodal point “P”. 

Δr

Integration of Eq.1 over space ( ) and time (Δ ) 
gives the following result for the control volume P: 

2
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   (13) 

where the superscript “0” means “former time t” and its 
absence means “current time t + t”. The indexes “P”, 
“e” and “w” refer, respectively, to the nodal point, and 
east and west interfaces of the control volume. 

Discretizing Eq.2 gives 
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and therefore 
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where the subscript b refers to the boundary. 
For an internal control volume (control volume from 2 

up to N – 1), Eq.13 results in: 
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For the control volume 1, due to the symmetry condi-
tion (flux zero at the centre), Eq.13 becomes:  

p P e EA M A M B              (18) 

 

Figure 1. (a) Uniform mesh: N control volumes with thickness 
Δr; (b) Control volume P and its neighbors to west (W) and to 
east (E). 
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For the control volume N (boundary), the combination 
of Eqs.13 and 14 results in: 
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Considering the numerical solution, the system of 
Eqs.16, 18 and 20 can be solved for each time step, for 
instance, by the TDMA method (Press et al., 1996). Note 
that the coefficients A are calculated only once if the 
effective mass diffusivity D is constant, whereas B is 
calculated in each time step because its value depends on 

, the moisture content of the control volume P at the 
beginning of each time step. Otherwise, if the effective 
mass diffusivity is variable, the coefficients A also must 
be calculated in each time step, due to the nonlinearities 
caused by the variation of D. In this case, errors due to 
these nonlinearities can be eliminated by adequate time 
refinement. As the volume of the fruit is variable during 
the process, the position r of each nodal point must be 
recalculated in each time step. Once  is numeri- 
cally determined, the moisture content Mb (at the bound- 
ary) can be calculated from Eq.15 at a given time t.  

0
PM

M(r,t)

The average value of M at a given time t may be cal- 
culated by Eq.5, written in the discretized form [20]: 
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where Vj are the volumes of the control volume “j” (m3) 
and 

N

j
j

V V                  (23) 

is the volume of the sphere (m3). 

2.4. Effective Mass Diffusivity 

In case of the numerical solution, the process parame-
ter D may be calculated at nodal points from an appro-
priate relation between D and the moisture content M (or 
dimensionless moisture content X): 

D f (M,a,b)              (24) 

where “a” and “b” are parameters which fit the numerical 
solution to the experimental data, and they are deter-
mined by optimization. 

At the interfaces between control volumes, for exam-
ple “e” (Figure 1), a harmonic mean given by the fol-
lowing expression must be used to determine  [20, 
25]: 

eD

E P
e

E P

2D D
D

D D



           (25) 

which is valid for uniform grids. Note that Eq.25 is also 
valid for a constant effective mass diffusivity, with a 
value D. In this case, , ; and Eq.25 
becomes . 

ED D pD D
eD D

2.5. Optimization 

The expression for the chi-square involving the fit of a 
simulated curve to the experimental data was used as 
objective function, and is given by [26,27] 

 
pN

22 exp sim
i i 2

i 1 i

1
χ M M
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          (26) 

where  is the moisture content measured at the 
experimental point “i” (db),  is the correspondent 
simulated moisture content (db), Np is the number of 
experimental points, 

exp
iM

sim
iM

2
i1   is the statistical weight re-

ferring to the point “i”. If the statistical weights are not 
known, they are set equal to 1. In Eq.26, the chi-square 
depends on , which depends on D and h. If h can 
be considered as constant and the effective mass diffu-
sivity is given by Eq.24, the parameters a, b and h can be 
determined through the minimization of the objective 
function, which can be accomplished in cycles involving 
the following steps: 

sim
iM

Step 1. Inform the initial values for the parameters “a”, 
“b” and “h”. Solve the diffusion equation and determine 

the chi-square; 
Step 2. Inform the value for the correction of “h”; 
Step 3. Correct the parameter “h”, keeping the para- 

meters “a” and “b” constant. Solve the diffusion equation 
and calculate the chi-square; 

Step 4. Compare the last calculated value of the chi- 
square with the previous one. If the last value is smaller, 
return to the Step 2; otherwise, decrease the last correc-
tion of the value of “h” and proceed with step 5; 

Step 5. Inform the value for the correction of “a”; 
Step 6. Correct the parameter “a”, keeping the para- 

meters “b” and “h” constant. Solve the diffusion equation 
and calculate the chi-square; 

Step 7. Compare the last calculated value of the chi- 
square with the previous one. If the last value is smaller, 
return to Step 5; otherwise, decrease the last correction of 
the value of “a” and proceed with step 8; 

Step 8. Inform the value for the correction of “b”; 
Step 9. Correct the parameter “b”, keeping the para- 

meters “a” and “h” constant. Solve the diffusion equation 
and calculate the chi-square; 

Step 10. Compare the last calculated value of the chi- 
square with the previous one. If the last value is smaller, 
return to the step 8; otherwise, decrease the last correc- 
tion of the value of “b” and proceed with Step 11; 

Step 11. Begin a new cycle going back to step 2 until 
the stipulated convergence for the parameters “a”, “b” 
and “h” is reached. 

In each cycle, the value of the correction of each pa- 
rameter can be initially modest, compatible with the tol- 
erance of convergence imposed to the problem. Then, for 
a given cycle, in each return to Step 2, 5 or 8, the value 
of the new correction can be multiplied by the factor 2. If 
the initially informed modest correction does not mini- 
mize the objective function, its value can be multiplied 
by the factor –1 in the next cycle. Note that the Steps 8, 9 
and 10 are not necessary when the effective mass diffu- 
sivity is supposed to be constant. Initial values for the 
parameters can be estimated through values obtained 
from similar products available in the literature, or 
through empirical correlations. 

2.6. Software 

The software used to determine h and D through nu- 
merical solution was developed in an Intel Pentium IV 
computer with 1 GB RAM. The program was compiled 
in Compaq Visual Fortran (CVF) 6.6.0 Professional Edi-
tion, using the programming option QuickWin Applica-
tion, in a Windows XP platform. The developed software 
was also used to draw contour plots at specified times, 
showing the moisture content distribution within the 
sphere which represents the grape. Besides these charac- 
teristics, the software also draws the numerically simu- 
lated curve, which was fitted to the experimental data. 
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The statistical indicators used in the analyses of the ob- 
tained results were chi-square 2 , and determination 
coefficient R2 [26,27]. LAB Fit Curve Fitting Software V. 
7.2.48 (http://zeus.df.ufcg.edu.br/labfit) was used for the 
statistical treatment of the data. 

2.7. Experimental Data 

Experimental data obtained by Esmaiili et al. [6] for 
the drying of seedless sultana grapes (Vitis vinifera L.) 
with hot air are explored in the present paper. In order to 
increase the skin’s permeability to moisture, a pretreat-
ment to be described in the following was used. The 
grapes were dipped for 15 s in hot water at 95˚C. The 
temperature of the drying air was 50˚C, its relative hu-
midity was 10%, and its velocity was kept at 1.5 m·s–1. 
The mean radius of the grapes was 6.65 × 10−3 m at the 
beginning of the process, the initial moisture content was 
3.25 (db), and the equilibrium moisture content was 0.17 
(db). During the drying process, the radius decreased 
according to the experimentally obtained expression 

1/33r 6.65 10 0.197 0.804 X(t)
           (27) 

in which r is obtained in meter. 
The dimensionless moisture content data were digi-

tized by using xyExtract Digitizer from  
http://zeus.df.ufcg.edu.br/labfit/index_xyExtract.htm.  

3. RESULTS AND DISCUSSION 

Five analytical and numerical models were analyzed to 
describe drying of seedless grapes, and the results are 
reported. In each numerical simulation, the domain was 
divided into 100 control volumes. In order to get an idea 
about the dispersion of the experimental points in rela- 
tion to the corresponding simulated values, the following 
expression was used to define the error at a point “i”: 

exp sim
i iiError X X           (28) 

3.1. Model 1: Constant Volume and  
Diffusivity with Equilibrium Boundary  
Condition 

In model 1, the effective mass diffusivity was deter-
mined by the optimization algorithm proposed in Section 
2.5, coupled to the numerical solution presented in Sec-
tion 2. The mass transfer coefficient was kept constant at 
h = 1 × 10+10 m·s–1, which corresponds to a boundary 
condition of the first kind. In this case, the objective 
function has a single minimum, as noted by Silva et al. 
[21], and the optimization algorithm is not sensitive to 
the initial value of D. For the experimental data of seed-
less grape drying, for example, using several signifi-
cantly different initial values of D, and imposing the 

relative tolerance of 1 × 10–4 with 1000 time steps, the 
optimization delivers the same value for the effective 
mass diffusivity, as can be seen in Table 1. 

Despite of the fact that the last initial value of D is 5 × 
105 times greater than the first, the same effective mass 
diffusivity was obtained in all optimizations. This is con- 
sistent with the results of Silva et al. [21], which ob- 
served that there is a single value for the diffusivity that 
minimizes the objective function for the boundary condi- 
tion of the first kind. The drying simulation considering 
constant volume and diffusivity for the boundary condi- 
tion of the first kind is shown in Figure 2. 

The statistical indicators of this simulation are: 
2 28.56 10    and . Using Eq.28, each 

error can be calculated. The graph of the error distribu- 
tion is shown in Figure 3, which also shows the possibi- 
lity to fit a polynomial of degree 5 to the errors. 

2R 0.989 0

Figure 3 shows that this model presents a biased fit, 
with a high value for the average error, once the expected 
value is zero, and therefore the model should be dis- 
carded as an option to describe the drying kinetics of 
seedless grapes for the experimental conditions investi- 
gated in this paper. 
 
Table 1. Effective mass diffusivity obtained through optimiza- 
tion for the boundary condition of the first kind considering 
constant volume. 

Initial value (m2·s–1) Result D (m2·s–1) 

1 × 10–16 2.781 × 10–11 

1 × 10–15 2.781 × 10–11 

5 × 10–13 2.781 × 10–11 

5 × 10–11 2.781 × 10–11 

 

 

Figure 2. Simulation supposing Dirichlet boundary condition, 
with constant volume and diffusivity (model 1). 
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Figure 3. Error distribution for model 1: (a) Average error: 9.77 
× 10−3; (b) Fit of a polynomial of degree 5 to the errors: R2 = 
0.9924. 

3.2. Model 2: Constant Diffusivity, Variable  
Volume with Equilibrium Boundary  
Condition  

Using the numerical solution presented in this paper 
and imposing a relative tolerance of 1 × 10–4 for the 
convergence of the effective mass diffusivity, with the 
time of drying divided into 1000 steps, 11D 1.987 10   
m2·s–1 is obtained from model 2. A simulation using this 
value for D results in the graph shown in Figure 4. 

The statistical indicators for model 2 are:  
2 23.30 10    and . For this simulation, 

again using Eq.28, each error can be calculated. The  

2R 0.9947

 

Figure 4. Simulation for the Dirichlet boundary condition, with 
variable volume and constant effective diffusivity (model 2). 
 
graph of the error distribution is shown in Figure 5, 
which also shows the possibility to fit a polynomial of 
degree 5 to the errors. 

Model 2 also delivers a biased fit for the error distri- 
bution, with a high value for the average error. Com- 
parison with model 1 indicates that the inclusion of the 
shrinkage has improved the results, but as can be ob- 
served, the equilibrium boundary condition is not really 
adequate to describe the drying kinetics of seedless grapes 
for the experimental data analyzed in this article. 

3.3. Model 3: Constant Volume and  
Diffusivity with Convective Boundary  
Condition 

For this model, the analytical solution presented in this 
paper was explored. In order to guarantee Fo > 0.2, 
Eq.11 was fitted to the experimental data without the 
first points, giving B1 = 0.8792, A1 = 9.822 × 10–6 s–1, 
and consequently 1 2.471  , Bi = 4.115, D = 7.11 × 
10–11 m2·s–1, h = 4.40 × 10–8 m·s–1. A graph of this fit is 
shown in Figure 6(a), while Figure 6(b) shows the dry- 
ing simulation including all experimental data points. 

The error distribution is shown in Figure 7(a), to- 
gether with the average value of the errors, while Figure 
7(b) shows the fit of a polynomial of degree 5 to the er- 
rors. 

Figure 7 shows that model 3 also yields a biased fit of 
the error distribution, with a high value for the average 
error. The advantage of this model is its simplicity, but it 
does not consider the strong shrinkage of the grapes. In 
addition, the first experimental points cannot be properly 
described by the model. On the other hand, the obtained 
results can be used as initial values for other optimization 
processes. 
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Figure 5. Error distribution for model 2: (a) average error: 9.35 
× 10–3; (b) fit of a polynomial of degree 5 to the errors: R2 = 
0.9848. 

3.4. Model 4: Constant Diffusivity, Variable  
Volume with Convective Boundary  
Condition  

An initial value of D which is two or three times 
greater than the effective mass diffusivity obtained from 
model 1, generally produces satisfactory results for the 
simultaneous determination of D and h. This greater ini-
tial value of D compensates the resistance to the flux at 
the boundary. 

Although model 1 is not adequate for the description 
of the drying kinetics of seedless grapes for the experi- 
mental conditions investigated in this paper, as discussed  

 

Figure 6. Model 3: (a) Fit of Eq.11 to experimental data (Fo > 
0.2); (b) Simulation considering all points. 
 
in section 3.1, it can be used for the estimation of an ini- 
tial value of h by imposing values of the Biot number as 
4, 3, 2 or 1 (much lower values than 100, corresponding 
to the equilibrium boundary condition) in Eq.8. For ex- 
ample, an estimated initial value of D = 5.5 × 10–11 
m2·s–1 together with an imposed value Bi = 2 leads to an 
estimation of h = 1.7 × 10–8 m·s–1 for the initial value of 
the mass transfer coefficient. Performing the optimiza-
tion process, with a relative tolerance for the parameters 
of 1 × 10–4, and 1000 time steps, the following results are 
obtained: D = 2.89 × 10–11 m2·s–1 and h = 8.05 × 10–8.  
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Figure 7. Error distribution for model 3: (a) Average error: 
1.4970 × 10–2; (b) Fit of a polynomial of degree 5 to the errors: 
R2 = 0.9963. 
 
m·s–1, with 2 = 3.848 × 10–3 and R2 = 0.9983. These 
results are much better than those obtained from models 
1, 2 and 3. The graph for the moisture content versus 
time is shown in Figure 8. 

The error distribution for model 4 is shown in Figure 
9(a), together with the average value of the errors, while 
Figure 9(b) shows the fit of a polynomial of degree 5 to 
the errors. 

Although model 4 presents better results than models 
1, 2 and 3, Figure 9 shows that the average error for this 
model is large, and the fit still is biased. In fact, the strong 
shrinkage which occurred during the drying changes the 
internal structure of the grapes, and this alteration modi- 
fies the effective mass diffusivity of the product. Thus,  

 

Figure 8. Simulation for the Cauchy boundary condi-
tion, with variable volume and constant effective dif-
fusivity (model 4). 

 

 

Figure 9. Error distribution for model 4: (a) Average 
error: 2.44 × 10–3; (b) Fit of a polynomial of degree 5 
to the errors: R2 = 0.9704. 
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models which include a variable effective mass diffusiv-
ity should yield better results for the description of the 
drying kinetics of seedless grapes. 

 

3.5. Model 5: Variable Diffusivity and Volume 
with Convective Boundary Condition  

An inspection of the final part of the graph given in 
Figure 8 indicates that the value of the effective mass 
diffusivity should be slightly smaller than the constant 
value obtained from model 4. This fact suggests that a 
variable diffusivity can produce better results than a con- 
stant value for this parameter. This observation was also 
made by Silva et al. [28], studying the drying process of 
bananas. Thus, several optimization processes were ac- 
complished, with the time of drying divided into 2000 
steps, supposing different expressions for the effective 
mass diffusivity D as a function of the local dimension- 
less moisture content X(r,t). The results obtained for se- 
veral functions expressing D(X) are summarized in Ta- 
ble 2. 

Figure 10. Best functions obtained for the effective 
mass diffusivity as function of the local dimension- 
less moisture content (model 5). 

 

 

The three expressions of D as a function of X giving 
the best results are presented in Figure 10. The three 
functions for the effective mass diffusivity show almost 
the same behavior for the dimensionless moisture content 
between 0 and 0.6.  

It is interesting to observe in Figure 10 that the func- 
tions 1, 2 and 3 are almost constant until the value 0.6 for 
the local dimensionless moisture content. On the other 
hand, Figure 11 shows the simulation of the drying ki- 
netic using the function 1 to represent effective mass 
diffusivity. 

For function 1, the effective mass diffusivity varies 
from 3.04 × 10–11 (dimensionless moisture content equal 
to 0) to 9.36 × 10–10 m2·s–1 (dimensionless moisture con- 
tent equal to 1), while the convective mass transfer coef-
ficient is 3.56 × 10–8 m·s–1. For model 5, using function 1, 
the statistical indicators of the simulation were 2    

Figure 11. Simulation for the Cauchy boundary condi-
tion, with variable volume, and the expression for the 
effective mass diffusivity given by function 1 in Table 
2 (model 5). 

 
Table 2. Expressions for the effective mass diffusivity as a function of the local dimensionless moisture content considering variable 
volume. 

 Function a b (m2·s–1) × 1011 h (m·s–1) × 108 2 × 104 R2 

1 b cosh(aX2) 4.12 3.04 3.56 3.24 0.9999 

2 b exp(aX2) 2.46 2.57 4.01 6.59 0.9997 

3 b cosh(aX) 2.55 2.42 4.37 8.13 0.9996 

4 aX2 + b 9.03 × 10–11 2.35 4.59 8.96 0.9996 

5 b exp(aX) 1.82 1.89 4.54 11.24 0.9995 

6 aX + b 4.99 × 10–11 1.79 5.19 12.27 0.9994 
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43.241 10  and . The error distribution is 

shown in Figure 12. 

2R 0.9999

In Figure 12, it can be observed that the average error 
is very close to zero; and the error distribution is much 
less biased than those for the other models. For model 5, 

the spatial distribution of moisture at specified times can 
be seen in Figure 13. 

Information about the dimensionless moisture content 
distribution inside the grape is necessary for the descrip- 
tion of its drying because it allows analyzing the internal 

 

     

Figure 12. Error distribution for model 5: (a) Average error: 2.68 × 10–5; (b) Fit of a polynomial of degree 5 to the errors: R2 = 0.6821. 
 

      
(a)                                            (b) 

       
(c)                                      (d) 

Figure 13. Contour plots (no scale) showing the radial distribution of moisture at the instants: (a) 
13510 s; (b) 26320 s; (c) 41250 s; (d) 59740 s. 
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stresses during the process. The knowledge of these 
stresses is important because they may damage the pro- 
duct during the drying process.  

4. CONCLUSIONS 

An analysis of the all results indicates that the liquid 
diffusion model well describes drying of seedless grapes, 
with pretreatment through dipping in hot water, using air 
in low temperatures. 

Models 1 and 2 do not produce good results, indicat- 
ing that the boundary condition of the first kind should 
be discarded in a rigorous description of the drying ki- 
netics of seedless grapes under the experimental condi- 
tions described in this article. 

Although the analytical solution of the diffusion equa- 
tion with boundary condition of the third kind is an al- 
ternative to describe seedless grape drying, such solution 
does not include the strong effect of the shrinkage. Thus, 
the third model should also be discarded for the descrip- 
tion of the drying kinetics of seedless grapes. Neverthe- 
less, this model can be useful to generate initial values 
for some optimization process, especially involving nu- 
merical solutions. 

Model 4 includes the effect of shrinkage, while main- 
taining the effective mass diffusivity as constant. The 
results are reasonable, but a closer analysis shows that 
the effective mass diffusivity should be lower than the 
obtained value at the final part of the drying process. 
This suggests that the change of the internal structure 
caused by shrinkage also affects the effective mass diffu- 
sivity. 

A better model for the description of seedless grape 
drying, with pretreatment through dipping in hot water, 
must include: 1) shrinkage, 2) convective boundary con-
dition, and 3) variable effective mass diffusivity. The 
best result was obtained supposing an expression for the 
effective mass diffusivity, which increases with the local 
dimensionless moisture content. For the analyzed ex- 
perimental data, the effective mass diffusivity is best 
represented by function 1 given in Table 2. In this case, 
the statistical indicators of the simulation can be consi- 
dered excellent.  

In order to compare the results, the model 5 character-
ized in the last paragraph provides a chi-square which is 
about 264 times smaller than the chi-square obtained for 
the model 1. in addition the error distribution for model 5 
can be considered random. 
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