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ABSTRACT 

In this paper a new approach to construction of iterative methods of bilateral approximations of eigenvalue is proposed 
and investigated. The conditions on initial approximation, which ensure the convergence of iterative processes, are ob- 
tained. 
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1. Introduction 

Many theoretical and applied problems of mathematical 
physics, mechanics and engineering sciences lead to ei- 
genvalue problems. The class of self-adjoint eigenvalue 
problems, perhaps the most important class of problems 
because numerous problems that occur in practice belong 
to this class. However, the eigenvalue problems that are 
important in practice, very rarely can be solved in a 
closed form, as a rule one must use numerical methods to 
solve them. Most numerical methods simply provide 
approximations to eigenvalues, but they do not make it 
possible to state how far the calculated eigenvalue is 
from the true one. Since the self-adjoint eigenvalue 
problem can have only real eigenvalues, the problem of 
obtaining approximations and corresponding error esti- 
mations of approximation accuracy is equivalent to the 
determination of upper and lower bounds for the eigen- 
values. 

Large interest in the eigenvalue bounds, take not only 
mathematicians, but also physicists, chemists, and engi- 
neers and it has many reasons. We name at least two of 
them here: 

1) Lower bounds for eigenvalues are necessary in or- 
der to compare predictions of physical theories with ex- 
perimental results; fine structure corrections in quantum 
mechanical problems. 
2) The knowledge of boundaries for eigenvalues makes 

it possible in many cases to estimate the reliability of 
iterative approximation, that is at every step of iterative 
process to obtain the comfortable a posteriori estimate of 
error calculations. 

For a large class of problems, good upper bounds for 

positive eigenvalues can be determined relatively easy by 
means of the Rayleigh-Ritz procedure. To estimate the 
accuracy of approximations, which are obtained by the 
Rayleigh-Ritz method, it is important to know at least 
rough approximations from below. Basically, there are 
three classes of methods for calculation the lower bounds 
for eigenvalues (disregarding the methods with a very 
limited scope of application): 

1) The methods based on inclusion theorem. 
2) The method of intermediate problems. 
3) The Fichera method. 
The methods based on inclusion theorems go back to 

G. Temple [1], L. Collatz [2], and N.J. Lehmann [3,4]. 
For these methods we need of rough a priori information 
on the localization of one of the eigenvalues, for example, 
we need to know: ——the lower bound of  2l 2   aanndd  
   2, , ,A l 1   D A   ,,  tthheenn  
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
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In this direction we should note the work of A. V. 
Knyazev [5,6], B. N. Parlett [7], Behnke H. [8,9], Mar- 
morino M.G. [10]. 

The method of intermediate problems was proposed by 
A. Weinstein [11]. Later on the method has been refined 
by N. Bazly, D. W. Fox, C. Beattie, and others (see [12- 
14] and the bibliography in [10,14,15]). For this method 
one needs the eigenvectors of a neighbouring eigenvalue 
problem in a closed form. The essence of the method of 
intermediate problems is as follows: along with the self- 
adjoint operator A  whose eigenvalues are sought, the 
operator  0A  with known eigenvalues and eigenvectors, 
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and such that the operator (0)A A  is positive, is con- 
sidered. (0)A  is called a basic operator. Its range pro- 
bably lies below the spectrum of the operator A . Once 
the basic operator is selected, by means of the finite per- 
turbation nA  a monotonous sequence of intermediate 
operators n

 n  0A A A   spectra of which approximate 
the spectrum of operator A  from below is constructed. 

The method, different from the method of intermediate 
problems was proposed by G. Fichera [16]. This method 
does not require constructing a base operator with a 
known spectrum, but has a narrower scope of application. 
It is applied to the operator A , the inverse to which is a 
compact operator, and the problem Gu u ,,  wwhheerree  

,1G A ,  1  ,,

1

  is solved. Then 

 
1 1

n  11\       . 

This paper presents a new approach to construction the 
methods and algorithms of bilateral approximations of 
eigenvalues for nonlinear (with respect to spectral pa- 
rameter) eigenvalue problems, wich have supra-linear 
speed of convergence. This approach does not use the 
concepts and apparatus of interval analysis (see, e.g. [20, 
21]). 

The idea of the approach proposed is that for a con- 
tinuous monotone in a neighborhood of simple zero 

 ,a b   function  : ,f a b R , which describes the 
nonlinear equation some auxiliary function  : ,g a b R  
that has the same zero as the function f  and such nec- 
essary properties that allow one to build the iterative 
processes which give monotonous bilateral (alternating 
or including) approximations to the root of a nonlinear 
equation [17-19] is constructed and investigated. 

Within this approach, the algorithms of bilateral ana- 
logues of Newton’s method for finding the eigenvalues 
of nonlinear spectral problems are constructed and justi- 
fied. The conditions on the initial approximations which 
provide the alternate approximations to the eigenvalue 
from two sides and ensure the convergence of iterative 
process, are obtained. 

2. Statement of the Problem and Some 
Preliminary Results 

We consider the nonlinear eigenvalue problem 

  0y D ,                 (1) 

where  D  is a square matrix of order , all ele- n
ments of which are sufficiently smooth (at least twice 
continuously differentiable) functions of the parameter 

R , ny R . Eigenvalues sought for solutions of the 
determinant equation  

  0f  det  D  .           (2) 

To determine the isolated eigenvalue of matrix we 

propose and justify the Newton-type iterative processes 
that give the alternate approximations to the root of the 
Equation (2), i.e. 

0 2 2 2 1
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
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     (3) 
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  
  
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
 

and the including monotonous bilateral approximations 
to the root, i.e. 

0 1 2 2

1 0

m m    
 

      
  

  


     (4) 

without revealing in so doing the determinant  det D . 
This means that the left hand side of Equation (2) in ex- 
plicit form is not set, but the algorithm of finding the 
functions  f   and thein derivatives  f   and 

 f   at a fixed value of the parameter  , using the 
LU-decomposition of the matrix  D  is proposed. This 
algorithm is based on the fact that the matrix  D  of 
the order , in which at any given value mn    the 
principal minors of all orders from 1 to  1n   differ 
from zero, by LU-decomposition can be written as 

       D L U , 

where  L  is the lower triangular matrix with single 
diagonal elements, and  U  is the upper triangular 
matrix. Then  

       
1

det det
n

ii
i

f u  


 L U   

Since the elements of a square matrix  D  (and, 
therefore, the matrix  U ) are differentiable function, 
with respect to  , then for any   we obtain that 

     
1 1,

nn
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k i i k

f v u  
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1 1,

1 1, 1, ,
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where    i i i iv u   and    i i i iw v   are the 
elements of matrices  V  and  W  in such de- 
compositions 

,

= ,

= + ,

= + 2 +

D LU

B MU LV

C NU MV LW

           (5) 

whence we obtain 
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      (6) 

The elements of matrices in the decompositions (5) 
can be calculated using the corresponding recurrent rela- 
tions written out in [22] (see also [23,24]). 

So, not knowing the explicit dependence  f   on 
 , for any fixed   we can find the value of  f   
and its derivatives. Therefore, for solving (2) we can use 
the methods that apply the derivatives, in particular, to 
construct the Newton-type methods, which give the bila- 
teral approximation to the solution. This requires further 
study of the function  f  , which are realized later in 
the work. 

Further, we demand  f   to be a three times con- 
tinuously differentiable function of real variable. By   
we denote an accurate simple root of Equation (2) (  f   
=0), in some neighborhood of which such behavior of 
function  f   is possible. 

1). Function  f   is convex ( ) and its 
derivative is . 

  0f  
  0 
 f

f
2). Function   is concave ( ) and its 

derivative is . 
  0f  

  0 
 f

f
3). Function   is convex ( ) and its 

derivative is . 
  0f  

  0 
 f

f
4). Function   is concave ( ) and its 

derivative is . 
  0f  

  0 f

3. Auxiliary Function and Its Properties 

Along with  f   we consider also a function 

     z f f   , 

which obviously has the same zeros as the function 
 f  . It is easy to verify that  z   is twice con- 

stinuously differentiable at the point of   for which 
the relation 

  1z   ,      z f f         

is satisfied and which has the following properties. 
Theorem 3.1. Let   be a simple real root of Equa- 

tion (2) in some neighborhood  of which for the func- 
tion 

U
 f   one of the conditions (A)-(D) is satisfied. 

Then there is a neighborhood of the root U , in 
which: 

U 

1) when the condition (A) or (D) is satisfied, the func- 
tion      z f f  

2) when the condition (B) or (C) is satisfied, the func- 
tion      z f f    is a concave and monotoni- 
cally increasing function, its derivative  and it 
monotonically decreases. 

  0z  

Proof. Let  f   be a decreasing and convex with 
respect to   on U function, that is,   0f    and 

  0f    (the case (A)). 
Since the function 

     
  2

f f
s

f

 








 

at the point    is equal to zero, then because of 
continuity of  s   there is such neighborhood of the 
root 

   :U         , 

in which 

     
  2 1

f f
s q

f

 





  


. 

It follows that in the neighborhood  U   the 
function is   0z   , since 

     
  2

1
f f

z
f

 





  


.             (7) 

Now from the mean value theorem, applied to differen- 
tiable functions  z   on the interval    , U    
we obtain 

       z z z       ,  ,   , 

whence it follows that the function  z   is an in- 
creasing one. 

Consider now the behavior of function  z   in the 
neighborhood  U  , taking into account its image (7). 
For any    and    we obtain, respectively, 
the inequalities 

       
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   
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 
 
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 


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       (8) 
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f f
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f f
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 


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
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  



 

since   0f    for    and for      0f   . 
From the inequalities (8) it follows that in the neigh- 
borhood  U U    the derivative  z   is increas- 

  is a convex and monotoni- 
cally increasing function, its derivative  and it 
increases monotonically; 

  0z  
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ing, and, consequently, the function  z   is convex in 
this neighborhood of the root. 

Similar statements about the function  z   and its 
derivatives we obtain also for the cases (B), (C) and (D). 
But unlike the cases (A) and (D), in the cases (B) and (C) 
the function  z   is concave. The theorem is proved. 

Thus, Theorem 3.1 determines the properties of func- 
tion  z  , and Figure 1 illustrates its behavior depends 
on the properties of function f   in some neigh- 
borhood of the root  . 

4. Bilateral Analogues of Newton Method 

Using the properties of functions  z  , we construct 
the sequence  m  which has the property (3). 

For the cases (A) and (D) iterative process can be re- 
written in the form 
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and for the cases (B) and (C) as 
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 (10) 

 * *
00,1, 2, , ,m       . 

Justification of bilateral convergence of iterative proc- 
esses provide the following theorems. 

Theorem 4.1. Let   be a simple real root of Equa-
tion (2) and let in some neighborhood of the root 

   :U        , 
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Figure 1. Behavior of the functions f(λ) and z(λ) in the 
neighborhood of a simple real root λ* of functions f(λ). 

in which 
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for three times continuously differentiable function  f   
that describes the Equation (2.2), the condition (A) or (D) 
be satisfied, and for the function      z f f    
the inequalities  
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In addition, let the conditions 
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be satisfied, where 
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Then the iterative process (9), beginning with  
 0 ,      , convergence to solution   from both 

sides 
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and for the errors from the left and from the right the es- 
timations 
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are fulfilled, respectively. 
Theorem 4.2. Let   be a simple real root of equa- 

tion (2) and let in some neighborhood of the root 

   :U         , 

in which 

   
 

1
f f

q
f

 



 


 

for three times continuously differentiable function    
that describes the Equation (2), the condition (B) or (C) 
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to be satisfied, and for the function      z f f    
the inequalities  

  1
0

1
N

z 



 for  0 ,      , 

 
 

1

1 2

2z

z M







 for  1 ,       

be satisfied, where 

 
 

 
 2 2min , max

U U
m z M z

    
 

  
    , 

   
 1 2

,
max 1

z z
N

z   

 

    


 


. 

In addition, let the conditions 
1
32

2 1
0 02

2 1

1
1

2

M M
q

m m
  

  
 

 , 

1
32

1 2
1 12

1 2

1
1

2

M M
q

m m
  

  
 

  

be satisfied, where 

 
 

 
 1 1min , max

U U
m f M f

    
 

  
  



 

Then the iterative process (10), beginning with 
0 ,      , convergence to the solution   from 

both sides 

0 2 2 2 1 3 1,m m     
               

and for the errors from the left hand and from the right 
hand the estimation  

4 1
2 0 0

m

m q       , 4 1
2 1 1 1

m

m q   
    . 

are fulfilled, respectively. 
Remark. Two different iterative processes (9) and (10) 

were used above to justify the alternate approximation in 
the ideal case, when the behavior of functions  f   is 
known or easily investigates. Then alternate approxima- 
tions come from . 0n 

In practice, you can use any one of them for all cases 
(A)-(D) and regardless of which side (left or right from 
the root  ) the initial approximation 0  is and the al- 
gorithm adapts itself to bilateral approximations but then 
alternate approximations appear at least with 1n  . 

5. Algorithm of Alternate Approximations 
and Numerical Results 

To test the proposed iterative processes consider the model 
eigenvalue problem with quadratic dependence on the 
parameter 

  2    0 1 2D A A A ,         (11) 

where 

1.00 0.17 0.25 0.54

0.47 1.00 0.67 0.32

0.11 0.35 1.00 0.74

0.55 0.43 0.36 1.00

 
  
  
 
 

0A , 

0.22 0.02 0.12 0.14

0.02 0.14 0.04 0.06

0.12 0.04 0.28 0.08

0.14 0.06 0.08 0.26

 
  
 
 

 

1A , 

3.04759 2.18791 1.94490 2.82430

2.65007 2.47248 2.35152 2.10538

0.74566 0.64236 1.31178 0.18524

4.05001 3.06319 2.81219 3.77944

    
     
    
 
    

2A . 

The eigenvalues will be found as solutions of the de- 
terminant equation 

   det 0f   D . 

To this end we use the iterative process of alternate 
approximations (9), which is represented in equivalent 
form by replacing the function value and its derivatives 
at the required points by relations (6), which are obtained 
as a result of LU-decomposition of the matrix  D  
(5). As a result, the iterative process (9) takes the form 

2

2 1 2
1 1

2 2 2 1
1

,

1 ,

n n
kk kk kk

m m
k kkk kk kk

n
kk

m m
k kk

v v w

u u u

v

u

 

 


 

 


                  


 


 


  (12) 

0,1, 2,m   , 

where  are the elements of matrix  
and  in the decompositions (5) at the fixed 2m

, ,kk kk kku v w ,U V
W   , 

and ,kk kku v  are the elements of matrix  in this 
decompositions (5) at the fixed 

,U V

2 1m   . 
Thus, the algorithm can be written in the following. 
Algorithm. 
Step 1. Set the initial approximation 0  to the s -th 

eigenvalue of the problem (2.15). 
Step 2. for m = 0,1,2, ··· to achieve the accuracy do 
Step 3. if m is even. 
Step 4. Compute the values  from the de- 

compositions (5) at 
, ,kk kk kku v w

2m  . 
Step 5. Compute the approximation to the eigenvalue 

2 1m   by (12). 
Step 6. go to Step 10. 
Step 7. if m is odd. 
Step 8. Compute the values ,kk kku v  from the decom- 
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positions (5) at 2 1m   . 
Step 9. Compute the approximation to the eigenvalue 

2 2m   by (12). 
Step 10. end for m. 
For numerous initial approximations all the eigen- 

values of problem (11) were calculated. They fully coin- 
cide with the eigenvalues obtained by the usual Newton’s 
method. But the advantage of the algorithm is, in par- 
ticular, that they give the bilateral approximations. It can 
be seen, having considered the Table 1 which shows the 
results of calculations for four eigenvalues. The first co- 
lumn shows the number of eigenvalue, the second shows 
the number of iterations, the third and fifth the obtained 
approximations are indicated, respectively, of the left 
hand and of the right hand, to the s -th eigenvalue at 
each iteration, including the initial approximation. The 
value of the s-th eigenvalue is given in the fourth column. 
Calculations were carried out to within . 610 

The table shows that for the 1st and 2nd eigenvalues 
for the iterative process we obtain bilateral alternating 
approximations of the form 

1 3 6 4 25 7     

2 4 6

0         , 

and for the 7th eigenvalue of the form 

0 7 5 3 1     

0m 

2 4

         , 

beginning with . For the 8th eigenvalue we have 
obtained the also bilateral approximations similar as for 
the 7th one, but the alternating approximations come 
from , i.e. 1m 

5 3 1 0           . 

6. Conclusions 

Approbation of constructed algorithms on model pro- 
blems shows their reliability and efficiency, and also 
advantages in comparison with the usual Newton’s me- 
thod in the sense that at every step of iterative process we 
obtain two-sided estimates of the desired solution, and 
hence at each step we obtain comfortable a posteriori 
error estimates . 

The proposed approach can be applied to the linear 
eigenvalue problems with respect to the spectral parame- 
ter, moreover if it is compared with existing approaches 
for obtaining lower bounds of eigenvalues of self-adjoint 
spectral problems, the approach in contrast to: 
 The methods based on inclusion theorems (Temple, 

Krylov-Bogolyubov), does not require knowledge of 
the lower border of the following eigenvalue (assum- 
ing that the eigenvalues are arranged in ascending 
order), 

 The method of intermediate problems and its various 
modifications does not require construction of a basic 
operator with known eigenvalues so that the differ-  

Table 1. Bilateral approximations of the eigenvalues of the 
problem (11). 

2.322749   
s  m  

2 1m   2m  

 0  1  2.247743 2.5  0  

1 1  3   2.321394 2.344590  2  

 2  5   2.322749 2.322754  4  

 3  2.322749  6  

0.796707   
s  m  

2 1m   2m  

 0  1   0.753785 0.9  0  

2 1  3   0.782327 0.844609  2  

 2  5   0.796646 0.799239  4  

 3  7   0.796707 0.796707  6  

2.635389    
s  m  

2m  2 1m   

8 0  0   –2.5  –2.577248  1  

 1  2   –2.647351 –2.634985  3  

 3  4   –2.635390 –2.635389  5  

1.223471    
s  m  

2m  2 1m   

 0  0   –1.4 –1.150079  1  

7 1  2   –1.279845 –1.210666  3  

 2  4   –1.224385 –1.223467  5  

 3  6   –1.223471 –1.223471  7  

 
ence between self-adjoint operator of the original prob- 
lem and the base one was a positive operator, and 
constraction of finite-dimentional perturbation of basic 
operator , 

 Fikera method and its modifications, does not require 
that the inverse to the original operator was compact 
operator and its construction. 
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