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ABSTRACT 

Let  be the class of polynomials  of degree n and  a family of operators that map  into itself. For 

, we investigate the dependence of  
nP

nB

 P z nB nP

B

     1

1

n
R

B P Rz B P rz B P rz
r

  
                    

 

on the maximum modulus of  on  P z 1z   for arbitrary real or complex numbers  ,   with 1  , 1   

and , and present certain sharp operator preserving inequalities between polynomials. >R r 1
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1. Introduction to the Statement of Results 

Let  denote the space of all complex polynomials 

0

 nP z
  n j

jP z a z
j

   of degree n. If , then con- 
cerning the estimate of the maximum of 

nP P
 P z  on the 

unit circle 1z   and the estimate of the maximum of 
 P z  on a larger circle 1z R  , we have  

   1max maxz zP z n P z   1         (1) 

and  

   1max max .n
z R zP z R P z   1       (2) 

Inequality (1) is an immediate consequence of S. Bern- 
stein’s theorem (see [1-3]) on the derivative of a trigo- 
nometric polynomial. Inequality (2) is a simple deduction 
from the maximum modulus principle (see [4, p. 346] or 
[5, p. 158]). If we restrict ourselves to the class of poly- 
nomials n  having no zero in P P 1z  , then (1) and 
(2) can be replaced by  

   1max max
2z z

n
P z P z   1        (3) 

and  

   1 1

1
max max .

2

n

z R z

R
P z P z  


     (4) 

Inequality (3) was conjectured by Erdös and later veri- 
fied by Lax [6]. Ankeny and Rivlin [7] used Inequality (3) 

to prove Inequality (4). 
As a compact generalization of Inequalities (1) and (2), 

Aziz and Rather [8] have shown that if , then for 
every real or complex number 

nP P
  with 1  ,  

and 
> 1R

1z  , 

     1max .
nn

zP Rz P z R z P z        (5) 

The result is sharp. 
As a corresponding compact generalization of Ine- 

qualities (3) and (4), they [8] have also shown that if 

nP P , and   0P z   for 1z  , then for every real or 
complex number   with 1  , ,  1R 

   

   1

1
1 max

2

nn
z

P Rz P z

R z P z



  



   
   (6) 

for 1z  . The result is sharp and equality in (6) holds 
for   nP z az b  , 1a b  . 

Consider an operator B which carries a polynomial 

nP P  into  

     

 

0 1

2

2

2 1!

,
2 2!

P znz
B P z P z

P znz

 



        
   

 

       (7) 

where 0 , 1  and 2  are such that all the zeros of  

Copyright © 2012 SciRes.                                                                                  AM 



N. A. RATHER  ET  AL. 558 

      2
0 1 2,1 ,2u z C n z C n z           (8) 

lie in the half plane  

2 .z z n                  (9) 

As a generalization of the Inequalities (1) and (2), Q.I. 
Rahman [9] proved that if nP P , then for 1z  , 

   1max .n
zB P z B z P z

            (10) 

and if  for   0P z  1z  , then for 1z  , 

     0 1

1
max .

2
n

zB P z B z P z 
        (11) 

(see [9], Inequality (5.2) and (5.3)). 
In this paper, we consider a problem of investigating 

the dependence of   

     1

1

n
R

B P Rz B P rz B P rz
r

  
                    

 

on the maximum modulus of  P z  on 1z   for arbi- 
trary real or complex numbers  ,   with 1  , 1   
and , and develop a unified method for arriving 
at these results. In this direction we first present the fol- 
lowing interesting result which is compact generalization 
of the Inequalities (1), (2), (5) and (10). 

>R r 1

Theorem 1. If n, then for arbitrary real or com-
plex numbers 

P P
  and   with 1  , 1    

and 
> 1R r 

1z  , 

     

   1

, , ,

, , , maxn n n
z

B P Rz R r B P rz

R R r r B z P z

  

   

      

    
  (12) 

where  

  1
, , , .

1

n
R

R r
r

     
         



.

 

The result is best possible and equality in (12) holds 
for    ; 0nP z z  

Remark 1. For 0,   from Inequality (12), we have 
for , nP P 1  , 1z   and   1,R r 

   

 1max .n n n
z

B P Rz B P rz

R r B z P z



 

      

    
     (13) 

Remark 2. For 0   and 0  , Inequality (12) 
reduces to 

   

 
1

1

max

max .

n n
z

n n
z

B P Rz R B z P z

B R z P z





     

   
 

nP P , 1z 

   (14) 

for  and , which contains Inequa- 
lity (1 ecial case. 

Remark 3. For 

> 1R
0) as a sp

, Inequality (12) yields, 0 

   

 1

1

1r  

1
max

1
n n n

z

B P rz

R
R r B z P z

r
 


   

         

  (15) 

for 

n
R

B P Rz       

1, 1z R r    and 1  . 

0 2 0    If we choose in (12) and noting that all 
the zeros of    defined byu z  (8) lie in the half plane (9), 

et: 
 

we g
P PCorollary 1. If n , then for all real or complex 

numbers   an  d   with 1  , 1  , > 1R r   and 
1z  , 

     
   1

1

, , ,

, , , max .
nn

RP Rz rP rz

n R r

  

   

 

 
 (16) 

n
z

R r

R r z P z

 

where  , , ,R r    
lt is sharp and equ

is defined as in Theorem 1. The 
resu ality in (16) holds for   nzP z  , 

0.   
For the case    z P z , from (12) we obatin 

for all real or complex numbers 
B P 

  and   wi ht  1  , 
1  , > 1R r   and 1z  , 

     
   1

, , ,

, max .
n

z

R r P

R R r

  

  
(17

Inequality (17) is equivalent to the Inequality (5) for 

, ,n n

P Rz rz

r z P z 


  ) 

1z   and 0  . For 0   and 0 
ecial case. 

, Ine
(17) includ

quality 
es Inequality (2) as a sp

Next we use Theorem 1 to prove the following result. 
Theorem 2. If nP P , then for arbitrary real or com- 

plex numbers   and   with 1  , 1  , > 1R r   
and 1z , 

     
     

 
    0 1

, , ,B P Rz r B P rz       

, , ,

, , ,

1 , , , max

n n n

z

R

B Q Rz R r B Q rz

R R r r B z

R r P z



  

  

    

       

    

 

     (18) 

where    1nQ z z P z  and  , , ,R r    is defined 

as in Theorem 1. 
The result is sharp and equality in (18) holds for 
 P z nz , 0.   

eoRemark 4. Th ncl ell known 
po

rem 2 i udes some w

inequa
([8], Inequa with 

lynomial inequalities as special cases. For example, 
lity (18) reduces to a result due to Q. I. Rahman 

lity (5.2)  and 0  ). Also for 0 
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0  , Inequality (18) gives  

       

   0 1max ,z P 

(19) 

for 

1n n n

B P Rz B P rz B Q Rz B Q rz

R r B z z

 

 

                

    
 

1  , > 1R r   and 1z  . 
If we take 0 2 0    

 2. If P P
in (18), we get: 

Corollary then for all real or com
numbers 

n , plex 
  and   with 1  , 1  , > 1R r   and 

1z  ,  

    
    
   1

1

, ,

,

, , , max .
nn n

z

R r

z r rQ r

n R R r r z P z





   




 

where 

,

, ,

RP Rz rP rz

RQ R R z

 

 

 

   (20) 

 , , ,R r    
result is sharp 

is defined as in Theorem 1
and equality in (20) holds for 

. The 
 P z zn , 

0.   
For 1 2 0    and 1  , 0  , Theorem 2 in- 

Inequality (12) can be sharpened if we restrict our- 
selves to the class of polynomials 

cludes o A. Aziz and Rather [2] as a special 
case. 

a result due t

nP  having no 
zeros in 

P
1z  . In this direction we next prove the fol- 

lowing result which is a compact g zation of the 
In

for 

enerali
equalities (3), (4) and (6). 
Theorem 3. If nP P  and  P z  0 1z  , then 

for arbitr eal or complex numbers ary r   and   with 
1  , 1  , > 1R r   and 1z  ,  

    

 
    0 1

, ,

1
, , n

B P Rz R r rz

R r z

    



,

,
2

1 , , , max

n n

z

B P

R r B

R r P z

  

 

    

 

  

 

    (21) 

where  , , ,R r    
result is sharp 

1.nz   
ark 5. Inequa

is defined as in Theore
and equality in (21) holds for  

lity (11) is a special case of the Ine- 
(21) for 

m 1. The 

 P z
Rem

quality 0   and 0  . If we choose 0   

2 0   in (21) and note that all the zeros of  u z
, it f

 de- 
ollows fined by

that if 
 (8) li f pl ned by (9)e in the hal ane defi

nP P  and   0P z   for 1z  , then for 1z  , 
1R r   and 1  , 1  , 

     

   1

1

, , ,

2
nn n

RP Rz R r rP rz

R r r

   


) 

, , , max .z

n
R z P z   


 (22

Setting 0   

   

 1

1

1

1

1
max

2 1
z z

r
    

n

n
nn n

z

R
RP Rz rP rz

r

n R
R r P



 


     

 
  (23) 

for 1z  , > 1R r   and 1  . 

in (22), we obtain for nP P , 

Taking 0    in (22), we obtain for nP P , 
1z   and > 1R ,  

   11
1max ,

2

nn
z

n
P Rz R z P z


       (24) 

h in p lar gi uality (3). 
oosing 

whic articu ves Ineq
Next ch 1 2 0    in (21), we imme y 

r 
diatel

get fo 1z  > 1R r   and 1  , 1  , , 

     

 
   1

, , ,

1

, max

n

P Rz R r P rz

R r

  





    (25) 

which is a compact generalization of the Inequalities (3), 
(4) and (6). The result is sharp and equality in (25) holds 
for 

, , ,
2

n nR R r r z   

1 , , ,z P z   

  nP z az b  , 1.a b    
If we put 0   in (25), we get the following result. 
Corollary 3. If nP P , and for   0P z   1z  , 

then for every real or complex number   with 1  , 
> 1R r   and 1z  ,  

   

   1max z

P Rz rz

r z






) 

A poly

1
.

nn
  (26

1
2

nR P z    

nomial n

P

P P  is said to be self-inversive if  

 where    1nQ z z P z   P z Q z . It is known [6,  

10] that if nP P  is a self-inversive polynomial, then  

   1 1max max .
2

fi the followi

z z

n
P z P z         (27) 

Here nally, we 
self-inversive ials  

 4. If 

establish ng result for 
 polynom

Theorem nP P  is a self-inversive polynomial, 
then for arbitrary re omplex numbers al or c   and   
with 1  , 1 , R r> 1  and 1z  ,  

     

 
    0

, , ,
2

ma

n nR R r r B z

R r P z

 

 11 , , , x z



   

, , ,

1 n

B P Rz R r B P rz        

    

 

   (28) 

where  , , ,R r    
result is sharp and eq

is defined as in Theorem 1. The 
uality in (21) holds for  

 P z 1.nz   
 following resuThe lt is an immediate consequence of 
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Theorem 4. 
Corollary 4. If is a self-inversive polynomial, 

then for arbitrary re omplex numbers 
nP P  

al or c   and   
with 1  , 1, R r  and > 1  1z  , 

     

 
   11 , , , max .zR r P z    

w

, , ,

1

P Rz R r P rz  

, , ,
2

nn nR R r r z         (29) 

here  , , ,R r   efined as in Theorem 1. The 
result is best possible 

For 0

 is d

   h  Ine 9) redu e o  t e quality (2 c s t

   

   1

1
1 max

2
nn n

z

P Rz P rz

R r z P



  



   
  (30) 

Remark 6. Inequality (6) is a special case of the Ine- 
quality (30). Many other interesting results can be de- 

rom Theorem
 and Theorem. 

2. Lemmas 

For the proofs of these theorems, we need the fo
lemmas. The first lemma can be easily proved. 

Lemma 1. If  and has all its zeros in 

.z

duced f  4 in the same way as we have de- 
duced from Theorem 1

llowing 

nP P  P z  
1 , then for every > 1R r   and z 1z  ,  

   1
.

1

n
R

P Rz P rz
r

    
          (31) 

The next Lem
65]. 

ma follows from corollary 18.3 of [11, p. 

Lemma 2. If nP P  and  P z  has all its zeros in 
1z  , then all the zeros of  B P z    also lie in 
1 . 

L ma 3. If P P z  doe ot vanish in 
z

em  andn   P s n
1z  , then for arbit  nurary re mplex mbersal or co    

and   with 1 ,  1  , >R r 1  and 1z  ,   

     
     

, , ,B P Rz R r B P rz        

w

, , ,B Q Rz R r B Q rz         
   (32) 

here    1nQ z z P z  and  , , ,rR    is defined 
heorem 1. 
 re

as in T
 (32The sult is sharp and equality in ) holds for  

  1.nz z   
Pr of of Lemma 3. Since the polynomial 

P
o  P z  has 

all its zeros in 1 ev r comp mbez   for ery real o r lex nu
  with 1  , the polynomial      g z P Q zz   ,  

where    1nQ z z P z , has all its zeros in 1  with  z 

atleast one zero in 1z 

      ,ig z z h z   te

here < 1t  and  h z  is a polynomial of degree 1n   w
having  zeros all its  in 1z  . 

Applying lemma 1 to the polynomial  h z , we tain 
for > 1R r   a < 2π

 
nd 

ob
0  ,  

   

 
1n

Re Rei i ie    Re

1

ig t h

te
r



 

 

 

This implies for  and 

1
Rei i iR

h re     

> 1R r  0 < 2π ,  

, so that we can write  

   
1

1
Re

n
r t R

g
    

    .i ig re      (33) 

ince  so that  for  

1R t r    

S 1r   gR t  Re 0i 

0 < 2π  and 
1

1

r r

R R t

t 


 
, from Inequality (33), we  

obtain for  and > 1R r  0 < 2π ,  

   1
Re

1
g g


   .

n
i iR

re
r

    
 

    (34) 

Equivalently,  

   1
n

R
g

1
Rz g rz

 



 

for 

r
  

1z   and R ce for every real or com- > 1r  . Hen
plex number   with  and 1  we have  >1  R r 

       

 1

1

n

g Rz g rz g Rz g rz

R
g rz

r

 



  

         

   (35) 

1z  . Also, Inequality (34) can be written as  for 

   1
Re

1R  

for every > 1R r   an 2

n
i ir

g re g   


         (36) 

d 0 < π    Since

 Re 0ig    and 
1

1
1

n
r

R

    
, from inequality (36), we  

obtain for 0 < 2π  and ,  > 1R r 

   Re .g re g  i i 

Equivalently, 

    for 1.g rz g Rz z   

Since al os of  g Rz  l the zer lie in  1 1z  R  , a 
direct appli of Ro
polynomial 

cation s theorem shows that the uche’
   g Rz has all its zeros in g rz  1z   

for every r plex nue ber al or com m   with 1  . Ap- 
plying Rouc t ws from (35) that 
for arbitrary

he’s theorem
 real or com

 again, i
plex num

 follo
bers ,   with 1  , 
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1   and , all the zeros of t e polynomial  





> 1R r 

 Rz

P R

R r



h

 F z g    
    
   

, , ,

, , , ( )

R r g rz

z Q Rz

P Rz Q Rz

  



   



 

    

     
     

, , ,

, , ,

P Rz R r P rz

Q Rz R r Q rz

  

   

   
  

lie in 1z   with 1  . Applying Lemma 2 to the 
polynomial  F z  and noting that B is a linear opera o , 

ows that zeros of the polynomial   
t r

it foll e 



lie in

 all th

   
      

     
, , ,

, , ,

T z B F z

B P Rz R r B P rz

B Q Rz R r B Q rz

  

   

   

       

     

 



 1z   for all real or complex numbers , ,    
with 1  , 1  , 1   and . Th> 1R r  is implies 

    
     

,B P R r 

for 

, ,

, , ,

Rz B P rz

B Q Rz R r B Q rz

 

  

     

       
     (37) 

1z  , 1  , 1   and . If Inequality 
(38) is not true, then there is  with 

> 1R r 
a point z w 1w   

such that  

     
      

, , ,
z w

, , , .
z w

z R r z  


      

B P Rz R r B P rz

B Q R B Q r

  


      


 

But all the zeros of  lie in  Q z  1z  , therefore, it 
follows (as in case of  g z ) that all the zeros of   

     , , ,Q Rz R r Q rz    

lie in 1z  . Hence by Lemma 2, all the zeros of  

B Q R     , , ,z R r B Q rz        

lie in 1z  , so that  

      
=

, , , 0.
z w

B Q Rz R r B Q rz           

We take  

      
       

, , ,
,

, , ,
z w

z w
Q Rz R r B Q rz  


      

B P Rz R r B P

B

  
 

      
  

then 

rz

  is a well defined real or complex nu ber with m
1   and with this choice of  , from (37) we obtain 

 T w where 0   1w  . Th radicts the fact that 
of  lie in

is cont
all the zeros  T z  1

     
     

, , ,

, , ,

B P Rz R r B P rz

Q Rz R r B Q rz

  

  

   

B

  

       
 

for , 1  , 1 1z   and . This proves 
(38) and hence Lemma 3. 

3. Proofs of the Theorems  

f

> 1R r 

Proo  of Theorem 1. Let  1max zM P z , then  

 P z M  for 1z  . B
h mial 

y Rouche’s Theorem, it follows 
that all the zeros of t e polyno     nH z  P z Mz  
lie in 1z   for every real or complex number   with 

1  , therefore, as before (as in
clude that all the zeros of the polynom

 Lemma 3), e con- 
ial 

w

     , ,z Rz H    ,G H R r rz  

lie in 

z . Thus  

1z   for all real or complex numbers   and 
  with 1   and 1  . Hence by 
polynomial  

Lemm  a 2, the

   T z B G z   

     
     

 

, , ,

, , ,

, , ,n n n

B H Rz R r B H rz

B P Rz R r B P rz

R R r r B z M

  

  

   

     






      
     

 

 

has all its zeros in 1z   for every real or complex 
number   with 1  . This implies for every real or 
complex numbers   and   with 1  , 1   and 

> 1R r  ,  

     

 

, , ,

, , , for 1n n n

B P R z R r B P rz

R R r r B z M z

  

  

    

    
  (38) 

If Inequality (40) is not true, then there is a point 
z w  with 1w   such that  

      
  , .

, , ,

, ,

z w

n n n

z w
R R r B z M  




    

 
B P Rz R r B P rz

r

        

Since  
=

0n

z w
zB   , we take   

      
   

, , ,
,

, , ,
z w

n n n

z w   

 

B P Rz R r B P rz

R R r r B z M

  


  


      


   
 

so that   is a w  defined real oell r complex number with 
1   and with this choice of  , from (39) we get 

 T w 0  where 1w  . This contradicts the fact that 
of all the zeros  T z  lie in 1z . Thus for ev y real 

x num
er

or comple bers   and   with 1  , 1   and 
,  > 1R r
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, , ,B r B P     

, , , for 1.n n n

P Rz R rz

R R r r B z M z



  

 

    
 

This completes the proof of Theorem 1. 

Proof of Theorem 2. Let  1max zM P z , then  

 P z M  for 1z  . If   is any real or complex 
ith number w 1  , then by Rouche’s Theorem, the poly- 

nomial  f z M oes not vanish in  d 1z  . Applying 
Lemma 3 to the polynomial  f z  and using the fact 
that B is a linear operator, it follows t or al or hat f  all re
complex numbers   and   with 1  , 1  , 

> 1  and for R r  1z    

     

     

, , ,

, , ,B f Rz R r B f       

B f Rz R r B f rz

rz

  
 

      


 

where 

     
 

1 1

,

n n n

n

f z z f z z P z Mz

z Mz





   


 

 

Q

 1 .nQ z z P z  Using the fact that   01B  , we 

obtain   

      
  

      
  

0

, , ,

1 , , ,

, , ,

, , ,n n n

B P Rz R r B P rz

R r

B Q Rz R r B Q rz

R R r r B z M

  

    

  

   

      

 

     

    

 


for all real or complex numbers   and   with 1  , 
1  , > 1R r   and 1z  . Now choosing the argu- 

ment of   such that  

       
  
 

     

, , ,

, , ,

= , , ,

, , ,

n n n

n n n

B Q Rz R r B Q rz

R R r r B z M

R R r r B z M

B Q Rz R r B Q rz

  

   

   

  

      

    

   

     

 



which is possible by Theorem 1, we get  

     
 
 

     

0,

, , ,

, , ,

n n n

B

R R r r B z M

B Q Rz R r B Q rz

 

   

  



    

       

 

for 

, , ,

1 , , | |

B P Rz R r P rz

R r M

  

  

      



1  , 1  , > 1R r 

     
     

 
 0

, , ,

, , ,

, , ,

1 , , , ,

n n n

B P Rz R r B P rz

B Q Rz R r B Q rz

R R r r B z

R r M

  

  

   

   

      

      

    

 


 

for 1  , 1  , > 1R r   and 1z  . Letting 
1  , we obtain  

     
     

 
 0

, , ,

, , ,

, , ,

1 , , , ,

n n n

B P Rz R r B P rz

B Q Rz R r B Q rz

R R r r B z

R r M

  

  

  

   

      

      

    

 



h is i qualit 18) and t es T
Proof of Theorem 3. Lemma 3 and Theorem 2 to- 

gether yields for all real or complex numbers 

 

whic ne y ( his prov heorem 2. 

  and   
with 1  , 1  , > 1R r   and 1z  ,   

     
     
  

 and 1z  . This implies  

  
     
     

 
 

2 , , ,

, , ,

, ,

, , ,

, , ,

, , ,

1 , , , ,

n n n

B P Rz R r B P rz

B P Rz R r B P rz

P Rz R r P rz

R r B P rz

B Q Rz R r B Q rz

R R r r B z

R r M

  

  

 

  

  

  

  

      

    

,B B

B P Rz



  

       

       

       

    

 

 

which gives 

     

 
 0 1 , , , ,R r M   

, , ,

1
, , ,

2
n n n

B P Rz R r B P rz

R R r r B z  

        

     

 

which is the Inequality (21) and this completes the proof 
of Theorem 3. 

Proof of Theorem 4. Since is a self-inversive 
polynomial of degree n, theref

 P z  
ore 

     1nP z Q z z P z   

z Cfor all . This implies, in particular, that for all real 
or com umbers plex n   and   with 1  , 1  , 

> 1  and R r 1z  ,  

     
     

, , ,

, , , .

B P Rz R r B P rz

B Q Rz R r B Q rz

  

  

      

       
 

Combining this with Theorem 2, the desired result fol- 
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lows immediately. This completes the proof of Theorem 
4.  
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