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ABSTRACT

Let P, be the class of polynomials P(Z) of degree n and B, a family of operators that map P, into itself. For

B € B, , we investigate the dependence of

B[P(Rz)]-aB[P(rz ]+ﬁ{(R+lj | |}B[P 7)]

on the maximum modulus of P(Z) on |Z| =1 for arbitrary real or complex numbers «, f with |a| <1, | ,B| <1

and R>r >1, and present certain sharp operator preserving inequalities between polynomials.

Keywords: Component Polynomials; B-Operator; Complex Domain

1. Introduction to the Statement of Results

Let P, ( ) denote the space of all complex polynomials
P(Z) :Z a, 2" of degree n. If PeP,, then con-
cerning the estimate of the maximum of |P (z )| on the

unit circle |z| =1 and the estimate of the maximum of

|P(2)| onalargercircle |z|=R>1,wehave

max,_ l|P |<nmax‘z‘:1|P(z)| 1)
and

max,_q., [P(z)|< R"max,,_ |P(z)|. )

Inequality (1) is an immediate consequence of S. Bern-
stein’s theorem (see [1-3]) on the derivative of a trigo-
nometric polynomial. Inequality (2) is a simple deduction
from the maximum modulus principle (see [4, p. 346] or
[5, p. 158]). If we restrict ourselves to the class of poly-
nomials P e P, having no zero in |Z| <1, then (1) and
(2) can be replaced by

masx, |P |<gmax‘z‘:1 |P(Z)| 3)

|z]=1
and

"+1

R
max P(Z)| <

max, P(z). @

7|=R>1

Inequality (3) was conjectured by Erdos and later veri-
fied by Lax [6]. Ankeny and Rivlin [7] used Inequality (3)
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to prove Inequality (4).

As a compact generalization of Inequalities (1) and (2),
Aziz and Rather [8] have shown that if P e P,, then for
every real or complex number « with |a| <1 R>1
and |z| =1,

|P(Re)-aP(2) <|R" - a||7" max,[P(z).  (5)

The result is sharp.

As a corresponding compact generalization of Ine-
qualities (3) and (4), they [8] have also shown that if
PeP,,and P(z)#0 for |z|<1, then for every real or
complex number o with |a|<1, R>1,

|P(Rz)-aP(z)|

1
35{
for |z/>1. The result is sharp and equality in (6) holds
for P(z)=az"+b, |a|=|b|=1.

Consider an operator B which carries a polynomial
P eP, into

(6)

R" _0(||z|n -|-|1—0:|}max‘z‘:1 |P(Z)|

nz )\ P'(2)
B| P(z P(z
L E) e
+A?(E 2 P”(Z)
2) 20’
where A,, A4, and A, are such that all the zeros of
AM
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u(z)=4,+4C(n1)z+4,C(n,2)z’° (®)
lie in the half plane
|z] <|z-n/2]. )

As a generalization of the Inequalities (1) and (2), Q.I.
Rahman [9] proved that if P eP,, then for |z|>1,
|B[P(Z)J|S‘B ("] ‘max P(2)|- (10)

|2=1

and if P(z)=0 for |Z|<1,thenfor |Z|21,

B[P(2)] < {‘

(see [9], Inequality (5.2) and (5.3)).
In this paper, we consider a problem of investigating
the dependence of

B[P(Rz)]-aB[P(rz)]+ ﬂ{(R”j —|a |}B[P z)]

on the maximum modulus of P(z) on |z[=1 for arbi-
trary real or complex numbers «, f with a| <1, | ﬁ| <1
and R>r >1, and develop a unified method for arriving
at these results. In this direction we first present the fol-
lowing interesting result which is compact generalization
of the Inequalities (1), (2), (5) and (10).

Theorem 1. If PeP,, then for arbltrary real or com-
<1 R>rz1

}maxH1|P ) (11

and |z]>1,
|B[P (Rz)|+¢(R.r.a. B B[P(rz)]
R"+4(R,r,a,p)r

R+1Y
¢(R,r,a,ﬂ):ﬂ{(m] —|0(|}—0(.

The result is best possible and equality in (12) holds
for P(z)=42";2#0.
Remark 1. For #=0, from Inequality (12), we have

(12)

‘B ‘max |P(Z)|

|z]=1

where

for PeP,, |a|<1, |z]21 and R>r2>1,
B| P(Rz) |-aB| P(rz
[B[P(Re)]-aB[P(r2)] )
<[R"—ar" B[Z"]‘max‘z‘:l P(Z)|.

Remark 2. For ¢=0 and S=0,
reduces to

Inequality (12)

B[P(Rz)]|<R"
~|B[R"2"]
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B[z”]‘max

P(2)

P()

|z]=1

(14)

|z]=1

for PeP,, |Z| >1 and R >1, which contains Inequa-
lity (10) as a special case.
Remark 3. For « =0, Inequality (12) yields,

B[P(Rz ]+ﬂ(R+lj B[P(r2)]

R" +ﬂ[%}r” B[z“]

for |Z|21, R>r>1 and |/J’|Sl.

If we choose A, =4, =0 in (12) and noting that all
the zeros of u(z) defined by (8) lie in the half plane (9),
we get:

Corollary 1. If P eP,, then for all real or complex
r|1u|mbers a and S with' |a|<1 |B<1, R>rx=1 and

z|>1

(15)

<

P(2)

z=1

RP'(R R,r,a,B)rP'(r
[RP'(Rz)+$(R. 1., ) rP'(rz)| 6

R"+¢(R.1,a, B)r"||2" max,,_ |P(z)].
where ¢(R,r,a,B) is defined as in Theorem 1. The
result is sharp and equality in (16) holds for P(z)=A4z",
A#0.

For the case B[P ] P , from (12) we obatin
for all real or complex numbers a and S with |a| <1,

|B<1, R>r=1 and |z]>1,

|P Rz)+¢(R,r,a, f)P (rz)|

n (17)
R" +¢(R,r,a,ﬂ)r”||z| max,,., |P(z)|

Inequality (17) is equivalent to the Inequality (5) for
|Z| >]1 and f=0. For =0 and £ =0, Inequality
(17) includes Inequality (2) as a special case.

Next we use Theorem 1 to prove the following result.

Theorem 2. If P e P,, then for arbitrary real or com-
plex numbers « and ,B with || <1, |f|<1, R>r=21
and |7]>1,

B[P(Re)]+4(R.r.a. 8)B[ P(12)]

+[B[Q(R2) ]+ ¢(R.r.a. 5)B[Q(r2) ]
<{R"+g(R.r.a. B)r"||B[ "]
+1+¢(R ., )| Ay [} max,,, [P(2)

where Q(z)=2"P(1/Z) and ¢#(R,r,a,p) is defined
as in Theorem 1.

The result is sharp and equality in (18) holds for
P(z)=4z", 2#0.

Remark 4. Theorem 2 includes some well known
polynomial inequalities as special cases. For example,

inequality (18) reduces to a result due to Q. I. Rahman
([8], Inequality (5.2) with ¢ =0 and S =0). Also for

(18)
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£ =0, Inequality (18) gives
B[P (Rz)]-aB[P(rz)]+|B[Q(Rz)]-

S{ B[z”]

for |a|£1, R>r>1 and |z|21.

If we take A, =4, =0 in (18), we get:

Corollary 2. If PeP,, then for all real or complex
r|1u|mbers a and S with’ la|<1, |B]<1, R>r=1 and
z|>1

aB[Q(rz)]

R" —qr" +|1—a||/10|}max‘z‘:l|P(Z)|,

(19)

IRP'(Rz)+ ¢(R,r,a, B)rP'(12)
+|RQ’ Rz)+¢(R,r,a ,B)rQ’(rz)| (20)
R"+¢(R,r,a, B)r P(2)-

Z| max |2|=1

where ¢(R,r,a,f) is defined as in Theorem 1. The

result is sharp and equality in (20) holds for P(z)=4z",

A#0.

For 4,=4,=0 and a=1, F=0, Theorem 2 in-
cludes a result due to A. Aziz and Rather [2] as a special
case.

Inequality (12) can be sharpened if we restrict our-
selves to the class of polynomials P e P, having no
zeros in |z|<1. In this direction we next prove the fol-
lowing result which is a compact generalization of the
Inequalities (3), (4) and (6).

Theorem 3. If PeP, and P(z)=0 for |z]<1, then
for arbitrary real or complex numbers « and g with
la|<1, |f|<1, R>r>1 and |z]>1,

B[P (Re)]+(R.r.c. ) P(12)]
S%{ R" +¢(R,r,a,ﬁ)l’” B[Z"J

+|l+ go(R, r,a,,b’)||/10|} max, | |P(Z)|

20

where ¢(R,r,a,B) is defined as in Theorem 1. The
result is sharp and equality in (21) holds for
P(z)=2"+1.

Remark 5. Inequality (11) is a special case of the Ine-
quality (21) for =0 and S =0. If we choose A, =
A, =0 in (21) and note that all the zeros of u(z) de-
fined by (8) lie in the half plane defined by (9), it follows
that if P eP, and P(z):tO for |z| <1, then for |z|>1,
<1,

|RP' Rz)+¢(R,r,a, B)rP'(12)
(22)
R"+¢(R.r,a,B)r IP(z)-

|2 max

|z]=1

Setting o =0 in (22), we obtain for P P,,

Copyright © 2012 SciRes.

RP’(RZ)+/3[EJn rP’(rz)

r+l
-~ (23)
Ni.n + nliomn-
SER +ﬁ(mj r |Z| 1maxz‘1|P |
for |z/21, R>r>1 and |B|<1.

Taking a=p£=0 in (22), we obtain for PeP,,
|z|>1 and R>1,

|P'(Ra)| ng”*l |2 maxy, [P(2). @49

which in particular gives Inequality (3).
Next choosing 4, =4, =0 in (21), we immediately

get for |z|21, <1,
|P(Rz)+¢(R,r,a,ﬂ)P(rz)|
s%{ R"+¢(R.r,a, B)r"||2" 25)

+|1+¢(R,r,a,ﬂ)|}max |P(Z)|,

L

which is a compact generalization of the Inequalities (3),
(4) and (6). The result is sharp and equality in (25) holds
for P(z)=az"+b, |a|=|b|=1.
Ifweput =0 in(25), we get the following result.
Corollary 3. If PeP,, and P(z)=0 for |z|<1,
then for every real or complex number o with |o| <1,
R>r>1 and |z>1,

|P(Rz)-aP(r2)
1
<
< 2{
A polynomial P eP, is said to be self-inversive if

P(z)=Q(z) where Q(Z): Z”P(I/T). It is known [6,

10] thatif P e P, is a self-inversive polynomial, then

(26)
R"—ar"

Z|rI +|1—a|}max |P(Z)|

|z]=1

max,,_,|P'(2)| < gmaxwz\:l P(2). 7

Here finally, we establish the following result for
self-inversive polynomials

Theorem 4. If P e P, is a self-inversive polynomial,
then for arbitrary real or complex numbers « and g
<1, R>r>1 and |z]>1,

B[P(R2)]+¢(R.r.c. 5)B[P(r2) ]
s%{R”+¢(R,r,a,ﬂ)r” B[Z”]

o) s, o)

(28)

|z]=1

where ¢(R,r,a,B) is defined as in Theorem 1. The
result is sharp and equality in (21) holds for
P(z)=2"+1.

The following result is an immediate consequence of
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Theorem 4.

Corollary 4. If P eP, is a self-inversive polynomial,
then for arbitrary real or complex numbers « and g
with e <1, |[f<1, R>r>1 and |z|>1,

IP(Rz)+4(R.r.a, B)P(rz)
{ "Il (29)
+1+4(R.1, @, B)|} max,,,|P(2)).

where ¢(R,r,a,f) is defined as in Theorem 1. The
result is best possible
For £ =0 the Inequality (29) reduces to

R"+4(R,r,a,B)r

|P(Rz)-aP(rz)|
1
<
< 2{
Remark 6. Inequality (6) is a special case of the Ine-
quality (30). Many other interesting results can be de-

duced from Theorem 4 in the same way as we have de-
duced from Theorem 1 and Theorem.

(30)
R" -

ar" |Z|n +|l —a|} max

P().

|z=1

2. Lemmas

For the proofs of these theorems, we need the following
lemmas. The first lemma can be easily proved.

Lemma 1. If PeP, and P(z) has all its zeros in
|Z|<1,thenforevery R>r>1 and |z|=1,

|P(Rz)|2[|:+lj P(rz),. (31)

The next Lemma follows from corollary 18.3 of [11, p.
65].

Lemma 2. If PeP, and P(z) has all its zeros in
z|<1, then all the zeros of B[P(z)] also lie in
z|<1.

Lemma 3. If PeP, and P(z) does not vanish in
|| <1, then for arbltrary real or complex numbers «
and B with |a|< <1, R>rx1 and |z]=1,

|B[P Rz ]+¢ R.r.a, )B[P(rz ]|
<|B[Q(Re)]+4(R.r.a. 8)B[Q(r2)]

where Q(z)=2z"P(1/Z) and ¢#(R,r,a,B) is defined
as in Theorem 1.

The result is sharp and equality in (32) holds for
P(z)=2"+1.

Proof of Lemma 3. Since the polynomial P(z) has
all its zeros in z| >1 for every real or complex number
y with |y|>1, the polynomial g(z)=P(z)-rQ(z),

where Q(z)=2"P(1/Z), has all its zeros in |z|>1 with

atleast one zero in |Z| <1, so that we can write

32)

Copyright © 2012 SciRes.

g(z):(z—te“’)h(z),

where t<1 and h(Z is a polynomial of degree n-1
having all its zeros in Z| <1.

Applying lemma 1 to the polynomial h(z), we obtain
for R>r>1 and 0<6<2m,

‘g (Reig )‘ = |Rei'9—tei5”h Rei'g ‘

> |Re‘9—tei§|(R:1j ‘h re'g)‘

This implies for R>r>1 and 0<6 <2,

(#5 Joe (5] ot
R+t

Since R>r>1>t so that g(Re );tO for

0<6<2r and 1+—r> rt
*R_ R+

obtain for R>r21 and 0S9<21t,
n
(ke > (57 e
Equivalently,
R+1Y'
(R >( 25 fo(r2)

for |z|=1 and R>r>1. Hence for every real or com-
plex number « with |a| <1 and R>r>=1 we have

(33)

, from Inequality (33), we

(34

|g (Rz)-ag(rz) |2|g (Rz) |—|a||g rz|

> {(%j“ —|a|}|g (rz)| (35)

for |Z| =1. Also, Inequality (34) can be written as

1Y ,
<[5 lotre

forevery R>r>1 and 0<6<2n Since

(36)

‘g(re‘g)

g (Reig) #0 and (r—ﬂj <1, from inequality (36), we
R+1
obtain for 0<#<2n and R>r>1,
‘g(reig)‘<‘g(Rei9)‘.
Equivalently,
|g(rz)| <|g(Rz)| for || =1.

Since all the zeros of g(Rz) liein |z|<(I/R)<1,a
direct application of Rouche’s theorem shows that the
polynomial g(Rz)-ag(rz) has all its zeros in |z|<1
for every real or complex number & with |a|<1. Ap-

plying Rouche’s theorem again, it follows from (35) that
for arbitrary real or complex numbers «, f with |a| <1,

AM
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|ﬂ’|£1 and R>r >1, all the zeros of the polynomial
F(z)=9(Rz)+9¢(R,r,a,8)9(rz)
=[{P(R2)-7Q(R2)}
+¢(R.r.a, 8){P(R2)-yQ(Rz)} |
=[P(Rz)+¢(R,r,a,B)P(rz)]
-7[Q(Rz)+4(R.r.a.8)Q(rz)]

lie in |Z| <1 with |7/| >1. Applying Lemma 2 to the
polynomial F (Z) and noting that B is a linear operator,
it follows that all the zeros of the polynomial

T(2)=B[F(2)]
~{B[P(Re)]+4(Ror.. £)B[P(12)]]
_y{B[Q(Rz)}rqﬁ(R,r,a,ﬂ)B[Q(rz)]}

lie in |z|<1 for all real or complex numbers a, 3, ¥
with |a| <1, |,B| <1, |7/| <1 and R>r2>1. This implies

B[P(R2)]+¢(R.r.ce. 8)B[P(r2)]
<|B[Q(R2)]+4(R.r.. )B[Q(r2) ]

for [z]21, |a|<1, |f|<1 and R>r=21. If Inequality
(38) is not true, then there is a point z=w with |w|>1
such that

‘{B[P(Rz)}qﬁ(R,r,a,ﬁ)B[P(rz)]}zzw‘
> ‘{B[Q(Rz)}qﬁ(R,r,a,ﬂ)B[Q(rZ)]}

But all the zeros of Q(z) lie in |z| <1, therefore, it
follows (as in case of ¢(z)) that all the zeros of

Q(Rz)+¢(R.r.a. £)Q(r2)

G37)

=W

lie in |z| < 1. Hence by Lemma 2, all the zeros of
B[Q(Rz)]+4(R.r.a.8)B[Q(rz)]

liein |z| <1, so that

{B[Q(Re)]+¢(R.1.a,8)B[Q(rz)]} =o0.

=W

We take

(B[P(Re)]+4(R.r.a. 8)B[P(12) ]

=W

{B[Q(Rz)]+¢(R,r,a,ﬂ)B[Q(rz)]}Z:W
then y is a well defined real or complex number with
|7/| >1 and with this choice of y, from (37) we obtain
T(w)=0 where |w|>1. This contradicts the fact that
all the zeros of T(z) liein |z|<1. Thus

Copyright © 2012 SciRes.

B[P(R2)]+#(R.r.a. 8)B[P(r2)]
<[B[Q(Re)]+4(R.r.a. 8)B[Q(12)]

for |z|21, |a|£l, ﬂ|£1 and R>r>1. This proves
(38) and hence Lemma 3.

3. Proofs of the Theorems

Proof of Theorem 1. Let M =max_, [P(z)|, then

|P(Z)| <M for |z]=1. By Rouche’s Theorem, it follows
that all the zeros of the polynomial H (z)=P(z)-AMz"
lie in |Z| <1 for every real or complex number A with
|/1| >1, therefore, as before (as in Lemma 3), we con-
clude that all the zeros of the polynomial

G(z)=H(Rz)+¢(R,r,a,f)H (rz)

lie in |Z|<1 for all real or complex numbers o« and
p with |a|£l and |ﬂ|§l. Hence by Lemma 2, the
polynomial

T(z)=B[G(z)]
=B[H(Rz)]+¢(R.r,a, 8)B[H(rz)]
=B[P(Rz)|+¢(R,r,a,8)B[P(rz)]
+A[R" +¢(R.r,a.)r" |B[ 2" [M

has all its zeros in |Z|<1 for every real or complex
number A with |/1| >1. This implies for every real or
complex numbers ¢ and B with |o|<1, |8|<1 and
R>r>1,

|B[P(Rz)]+¢(R,r,a,ﬂ)B[P(rz)]
R"+¢(R,r,a,fB)r" B[z"] M for |z|>1

If Inequality (40) is not true, then there is a point
z=w with |W|>1 such that

{B[P(Re)]+#(Ror.a. 5)B[P(r2)]} |
>{ R"+¢(R,r,a,f)r" B[Zn]z:W M}'

Since {B[Z" ]}Z:W #0, we take

(B[P(Re)]+4(R.r.a. 8)B[P(12) ]

38)

<

=W

[RP+gRrapr]is[] M -

so that A is a well defined real or complex number with
|/1| >1 and with this choice of A4, from (39) we get
T(w)=0 where |W|>1. This contradicts the fact that
all the zeros of T (Z lie in |z| < 1. Thus for every real
or complex numbers & and S with |a|£1, |,B|S1 and
R>r>1,
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B[P(R2)]+#(Ror.. 5)B[P(r2)]
<|R"+¢(R,r,a, 8)r"||B] 2" ]

This completes the proof of Theorem 1.
Proof of Theorem 2. Let M = max,

M for|2|21.

|P | then

|z]=1
|P |<M for | | 1. If x4 is any real or complex
number with | ,u| > 1, then by Rouche’s Theorem, the poly-
nomial f( ) H#M  does not vanish in |Z|<1 Applying
Lemma 3 to the polynomial f(Z) and using the fact
that B is a linear operator, it follows that for all real or
complex numbers « and g with |a|<1, [g|<1,
R>r>1 and for |Z|>1

|B[ (Rz) ]+4( R,r,a,ﬂ)B[f(rz)]
<[t (Re)]+#(Rr.c.0)B 1" ()]

where

f*(z)=2"1(1/7)=2"P(1/7)- uMz"
ZQ(Z)—/,_JMZH,
Q(z)=2"P(1/Z). Using the fact that B[l]=4,, we

obtain
(B[P (Re)]+4(Rr.c.5)B[ P(12)])
—,u(1+¢(R,r,a,ﬂ))/10|
<|(B[Q(Re)]+4(R.r.a. 8)B[Q(12)])
~u(R"+o(R.r,a,B)r")B[ 2" ] M‘

for all real or complex numbers o and S with |a| <1,
|8/ <1, R>r=>1 and |z|21. Now choosing the argu-
ment of x such that

‘(B[Q Rz)]+¢(R.r.a. 8)B[Q(rz)])
~A(R +g(R.r,a.p)r")B[2"] ‘
= "[[8[z" Jm
-|B[Q(R2)]+¢(R.1.e, 8)B[Q(r2) ]|

R"+¢(R,r,a, B)r

which is possible by Theorem 1, we get
B[P(Rz)]+4(R.r,e, 8)B[P(r2)]

|1+ ¢(R.r.a. B)| | 4 | M
<]yl B[ "]
~[B[Q(Re)]+o(R.r.a. )B[Q(12)]

for || <1, [B|<1, R>r=>1 and |z|>1. This implies

M

R"+¢(R,r,a,p)r"

Copyright © 2012 SciRes.

B[P(Rz)]+4(R,r.e, 8)B[P(12) ]|
+[B[Q(Re)]+4(R.r.a. £)B[Q(12) ]
<|u{[R" +4(R.r.ce.0)r"([B[ 2"
+Halt+g(Ror.a. )| M

for |a|£1, |ﬂ|$l,
4| — 1, we obtain

|B[P(Rz)]+¢(R,r,a,/3)B[P(rz)]|
+|B[Q(Rz)]+¢(R,r,a,ﬂ)B[Q(rz)]|
g{R"+¢(R,r,a,ﬂ)r" B[2"]
+| 4|1+ (R, B)|| M

which is inequality (18) and this proves Theorem 2.

Proof of Theorem 3. Lemma 3 and Theorem 2 to-
gether yields for all real or complex numbers o and f
with |a|£1, |ﬂ|£1, R>r>1 and |Z|21,

2[B[P(Re)]+¢(R.r.. f)B[P(r2)]

R>r>1 and |Z|Zl. Letting

=|B[P(Re)]+¢(R.1,a. B) B[P z) |
+|B[P(Rz)]+¢(R.r,, B)B[P(r2) ]
<|B[P(Rz)]+¢(R.r,a. 8)B[ P(r2)]
+[B[Q(R2) ]+ (R.r.a. )B[Q(12)]
<{R"+4(Rr.a.p)r[B[2"]
+|1+¢(R,r,a,ﬁ)|}|v|
which gives
B[P(Rz)]+¢(R.1,, 8)B[ P(r2)]
S%{R"+¢(R,r,o¢,ﬁ)r“ B[ "]
+|/10||1+¢(R,r,a,ﬂ)|}|\/|

which is the Inequality (21) and this completes the proof
of Theorem 3.

Proof of Theorem 4. Since P(z) is a self-inversive
polynomial of degree n, therefore

P(2)=Q(2)=2"P(1/7)

for all z eC . This implies, in particular, that for all real
or complex numbers « and £ with |a|<1 |,B|<1
R>r>1 and |z]21,

B[P(Re)J+¢(Rr..5)B[P(12) ]
=[B[Q(Re)]+4(R.r. . 8)B[Q(r2)].

Combining this with Theorem 2, the desired result fol-

AM
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lows immediately. This completes the proof of Theorem

4.
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