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Abstract

In this study, a novel procedure is presented for control and analysis of a group of autonomous agents with
point mass dynamics achieving flocking motion by using a fuzzy-logic-based attractive/repulsive function.
Two cooperative control laws are proposed for a group of autonomous agents to achieve flocking formations
related to two different centers (mass center and geometric center) of the flock. The first oneis designed for
flocking motion guided at mass center and the other for geometric center. A virtual agent is introduced to
represent a group objective for tracking purposes. Smooth graph Laplacian is introduced to overcome the
difficulties in theoretical analysis. A new fuzzy-logic-based attractive/repulsive function is proposed for
separation and cohesion control among agents. The theoretical results are presented to indicate the stability
(separation, collision avoidance and veocity matching) of the control systems. Finally, simulation example

is demonstrated to validate the theoretical results.

K eywords. Flocking, Cooperative Control, Multi-Agent System, Fuzzy Logic

1. Introduction

A special behavior of large number of interacting dynamic
agents called “flocking” has attracted many researchers
from diverse fields of scientific and engineering disciplines.
Examples of this behavior in the nature include flocks of
birds, schools of fish, herds of animals, and colonies of
bacteria.

In 1986, Reynalds introduced three heurigtic rules that
leads to the creation of the first computer animation model
of flocking [1]. It should be noticed that these rules are also
known as cohesion, separation, and alignment rules respec-
tively in the literature. Smilar problems have become a
major thrugt in sysems and contral theory, in the context of
cooperative contral, distributed control of multiple vehicles
and formation contral. A research fidd which is tightly
related to the theme of this paper is that of consensus seek-
ing of autonomous multi-agent. In this case, multi-agent
achieve consensus if their associated date variables con-
verge to a common value [2-5]. In the meantime, an im-
portant progression has been achieved on synchronous
and/or asynchronous swarm gahility analyss [6-8]. Pio-
neering works [9-11] on flocking moation of particle sys-
tems have properly explained the heurigtic rules embedded
in Reynolds modd. One of the important worksin [9-11] is
the design of attractive/repulsive patential function. In [12],
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Gu and Hu proposed a flocking control agorithm for fixed
and switching network of multi-agent respectively, in
which the attractivelrepulsive potential was designed using
fuzzy logic. Sahility is analyzed using the dassical Lya-
punov theory in fixed network and non-smocth analysisin
dynamical network, respectively.

In this study, the flocking behaviors of multi-agent sys-
tems with point mass dynamics and dynamica network
topology are investigated. The mgjor difference or contri-
bution compared with previous works, for example [9-12],
can be outlined as follows. Firg of al, the new results are
based on more general particle model and the flocking mo-
tion is centered at different centers, eg., mass center and
geometric center. Secondly, two new cooperative control
laws are proposed such that desired collective behaviors
(separation, callison avoidance and ve ocity matching) can
be achieved. Finaly, smooth graph Laplacian and smocth
attractivelrepulsive potentia based on fuzzy logic are pro-
posed to overcome the difficulties in theoretica anaysis
and for separation and cohesion control between agents,
repectively. In contragt to [12], owing to the design of
smocth attractive/repulsive potentia based on fuzzy logic
and application of smoath graph Laplacian, stability analy-
sis both in fixed and dynamical networks can easily con-
ducted using classical Lyapunov theory.

The rest of the paper is organized as follows. In Section
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2, the problems are formulated based on agebraic graph
theory, preiminaries about smocth collective potential
function and fuzzy control function are provided. In Sec-
tion 3, two flocking contral laws based on fuzzy logic are
proposed. Stahility analysisis given in Section 4. Smula
tion results are provided in Section 5. Finaly, concluding
remarks are madein Section 6.

2. Problem Formulation and Preliminaries

2.1. System Dynamics

Consider agroup of N agents (or particles) moving in
an n-dimensional Euclidean space, each has point mass
dynamics described by

1 =y
i .
M =4 - ki
where x = (%, %%, L, x")"1 j
of agent i, v =\,vA,L,Vv)T §"
vector, m >0 is its mass, u, =(u"u?,L,u")"T §"
is the control input acting on agent i, k >0 is the
velocity damping gain, and - kv, is the velocity damp-
ing term.
For flocking motion of a group of agents, the control
objectives areto design flocking control laws such that:
a) Thedistances [ x; - x|l between any two neighbor
agents are asymptotically convergent to a desired con-
stant value d;
b) The velocity vectors v, reach consensus, i.e,
vi=V, =L =vy =v, =v,, where v, is the veocity
vector of the center of a group of agents and v, isthe

vel ocity vector of a virtual agent;

c) No collision between agents occurs during the
flocking.

The theoretical framework presented in this paper for
creation of flocking behavior relies on a number of fun-
damental concepts in algebraic graph theory [13] that are
described bel ow.

A weighted undirected graph will be used to mode the
interaction topology among agents. An undirected graph
G consists of a sat of vertices V={1,2L_,N} and a

set of edgeskE =V~ V , where an edge is an unordered
pair of distinct vertices inV . In graphG , the i th node

represents agent i and a edge denoted as g; or (i, )
represents an information exchange link between
agenti and j . The adjacency matrix A(G) =[g;] of a
graph G is a matrix with nonzero elements satisfying
the propertya; * 0U (i, j)T E . Throughout the paper,

=12 ,N @)

" is the position vector

is its velocity
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for simplicity of notation, we assume &; =0 for dl i
(or the graphs have no loops). The graph is called
weighted whenever the e ements of its adjacency matrix
are other than just 0- 1 elements. Here, weighted un-
directed graph is used in this paper. The degree matrix of
G is a diagona matrix D(G) with diagona elements
SJ.N:131.j that are row-sums of A(G) . The graph Laplacian
is defined asL(G) = D(G) - A(G) . The Laplacian matrix
L(G) aways has a right eigenvector 1 = (LLL,1)"
associated with eigenvaluel ; =0. A graph G is cdled
undirected if and only if the adjacency matrix A(G) is
symmetric. The set of neighbors of node i is defined
by
Ny =(jT V:a;* 0 ={jT V:(i,j)I E} 2
In fixed network topology, agent i can range or
communication with a fixed set of neighbors. Therefore,
theset N; istimeinvariant. However, in dynamical or

switching network topology, the set of neighbors of
agent i istime-varying due to limited communication.

2.2. Smooth Collective Potential Function

Smooth collective potential function is originaly pro-
posed in [11]. The following is a brief introduction about
it. For more detailed information, the reader isreferred to
[11].

In order to construct smooth collective potential func-

tion,amap My :i"® j., isdefinedas
2, :§(\/1+ell 27 - 1)

with a parameter e >0. Note that Il Zl; is differenti-

able everywhere, but || ZI isnot differentiableat z=0.
Smooth adjacency matrix elements are constructed by
using a scalar function r,(z) that smoothly varies be-

tween 0 and 1. One possible choiceisasfollows:

i 1 Z1 [0,h)
(@)= E rooslp Z D)0 1 [ng 3
f 0 otherwise

where hi (0,1). Using this function, a position-depen-
dent adjacency matrix A(X) can be defined
asA(X) =[a;(x)] with

g =rylix-xL /)T 0L, ji @
and position-dependent Laplacian matrix as L(X) =

D(A(X) - A(X), wherex = (% , x5, L, x})", 15 =llrlg,
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r >0 denotetheinteraction range between two agents.
The set of neighbors of agent i isdefined by

N; O ={jT V:lIx - xll<r}.

By the definition of || Zl, , the control objective (1) can
be expressed as following algebraic constraint:

1%~ %l =" T N, () ©

whered, =l dlj .

Given a interaction ranger >0, a neighboring graph
G(X) can be specified by V and the st of
edges E(x)={(,))T V" V:I X; - xll<r,jti} , that
clearly dependson x..

A smooth collective potential function has the form:

V(=2 &y (% Xl)
where y (2) is a smoothJ pairwise attractive/repulsive
potential with a finite cut-off at z=r, and a global
minimum at z=d, . In order to construct a smooth po-
tentia functiony (z), denote f (z) =N,y (2) and define
this function as:
f(@=Ny @=ry(z/%) (2 (6)

where j (z) issome function to be designed. Obvioudly,
function f (z) shouldvanishfor alz3 r, .

In the next section, the function f (z) isimplemented
using fuzzy logic.

2.3. Prdiminaries of Fuzzy Control Function

To the best of our knowledge, for flocking contral, [12]
is the first paper in which attractive/repulsive function is
designed using fuzzy logic. In this section, we provide a
brief introduction about fuzzy control function [12].

A set of fuzzy logic rules performs a mapping from an

input z1 R” to a deterministic control g(z) , i.e,
fuzzy control function. For the kth dimenson state
X(k=12L,ni=12L,N), agent i uses states
(%,x;) to build a P-dimension vector z =
(z,,z,,L_,z,) asfuzzy input. The corresponding fuzzy
input set isk, Ry, L, Fp . A fuzzy rule between agent i
and agent | can beexpressed as.
R:IFz, is F' AND,L,ANDz, isF.,
P
THEN gf' =qo +@ dpz,
p=1

where k=1,2,L_,n;l =1,2,L_,L, L is the number of
fuzzy rules.
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Use the Gaussian function to define the membership
zp-a'p

paa K where
P

function of fuzzy set Fy: m

L = exp[-

a,s,(p=12L,P) are the mean and variance, re-

spectively. The activation degree of rule R is calcu-

lated by product operation:
Bea- 42
x =Qexpg-a .
p=1 p=1 2(S lp)z

The crisp output gi'j< (z),k=12,L,n, is calculated
by center of area method:

L L
gj()=a X'gﬁ"/a x'.
=1 =1

3. Flocking M otion Guided at M ass Center
and/or Geometric Center

In this section, two cooperative control algorithms are
developed for flocking guided at mass center and geo-
metric center respectively. In flocking motion, each
agent applies a control input that consists of four terms:

u =y +ul +ul +ky, (7
where uif =- Nxvl(x) isa gradient-based term and will
be designed using fuzzy logic, uS isa velocity consen-
sug/alignment term, u? is a navigation term due to a
group objectiveand k;v; isthe velocity damping term.

Similar to [9-11], the velocity consensus/alignment
term uf isintheform

u = mé.( )aﬁj (v, - v;) (8)
JEN; (X
and
uf = mé( ma; (0, - v) ©)
JEN; (X

for flocking motion guided at mass center and geometric
center, respectively. The navigation tem u? is de-
signed in the following form

U’ =-km(x - x)- km(y - v)

+ M (x v).k K, >0 (10
m fO )kl >0

The pair (x.,v,)T i"" i" isthe desired state vec-
tor of the group center (mass center or geometric cen-
ter). The desired state of the group center can be de-
scribed by

(11)
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3.1. Fuzzy Attractive/Repulsive Control

For state vector x , the fuzzy input z consists of

% - xlg -dg, jT N and  a()nf, jT N(¥)
k ——Xlk_xk i = =

where ny S e ie, P=2 and z =(z;,z,)

=(Ix; - %l - dg,a,()n) . The fuzzy output is defined

as

gilj'<'I :qgan (X)nu 'k :l' 2'L' n.

which implies qy =g =0. A fuzzy rule R is then
defined as:

IF”XJ- -xi”S - dg isFl'THEN gi'J-<'I :qéa,-j (x)ni'j<
Therefore,
k él)(Iqé k
g;; (z) = a;(x) _M | n;.
a x

m=1

The fuzzy output vector between agent i and j is

9

ax'qy
9;(2)=(g;.97.L.g})" =a,(x)5H—n,,
ax
m=1
Xi - X

J

Jirel x; - xIP
Denote the gradient of the attractive/repulsive poten-
tid y (I - xls) as

_(nl A2 T_
where ny = (ng.ng,L,ng)" =

&
axq,
I=1

N,y (1% - xll) =2, ()=

o

ax'
S
axd;
= , we have
ax'
=1

9; ()= & () (I Xj= % In )rh

and denote j (I x; - xll) =

= Nzly (H Xj - )ﬂ Hs )nij
=Ry (1% - xR, 2, (12)
=-Nﬁy (% - x1L)

Therefore, gradient-based control term can be de
signed as

U =- a. N)qy(”X')ﬂ'L)_ a. gu(z)

TN ( TN; (%)

= a aJ(X)J (I -

J|N><

1
%l )n, @
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ET AL
3.2. Flocking Control guided at Group Centers

Consider the multi-agent motion relative to the group
center X (the mass center X, or geometric center X ).

The position and velocity vectors of agent i relative
tox.is denoted by % =x - x.and¥ =v; - v, the collec-
tive state vectors of al agents relative to x, by
%=x- lNAxC and ¥=v- 1, Av, , where x, =X, Of
Xge» Ve =%, Aliskronecker product.

The mass center of all agentsisdefined as

- (14)

3 3
=amx/am
i=1 i=1
Note that
o =km - %)= m (- v+
=-kmy -

- KM (Vmc

f(xr’vr)
kom¥ - km (X, - %) (15)

m
)+ (%)
m

0=
z

and due to a_u =0,au =0 , é_mx:o )

i=1 i=1 i=1

m¥ =0, we have
N N

=a m\%/am
i=1 i=1

1
=- kl(xmc_ Xr)_ kZ(Vmc_ Vr)+ﬁ f(Xr,Vr)
Then, the dynamic of mass center is given by
1K= Vi
!
P =k 0= %)= KoVeg
I

- Qyoz

1

1 (16)
V) +—Tf(x,v)
)

Denote €, = (X1 - X Vi - Vi )T, the relative dy-

namic of center of massisgiven by

b = Kepy (an
) 0 14
where & =K A1,,K = Se -
k -kog

We can choose proper control parameters k, >0 and
k, >0 such that matrix K isHurwitz stable, and from
Lyapunov theory, for given positive matrix QT 22,

there exists a positive definite matrix P 22, such
that:

KTP+PK =-Q. (18)

For creation of flocking motion relative to mass center,
we propose following control laws:

IJCNS



H. YU ET AL 573

u =u™
= é. a; (i (% - %l )n,
il N ()
+ & 3,00 -Wkmx-x) 19
it N0
m-v)+ M
2m(V| Vr)+ f(xr'vr)+kivi
m
y ¥
wherej (I x; - xlk)=a xi;“qim'z/a X"
m=1 m=1
The geometric center of all agentsisdefined as
198
Xge =ave(x) TN (20)
i=1

Similarly, for geometric center, we propose following
control law:

u =u®
= & a,09mj (Ix - %I\ )n,

TN (%)

+ & am(,-v) (21)

iT N (%)

Skm (% - %)~ kom (v, - vr)+%f(xr,vr)+lsvi

4. Analysis of Stability

In this section, we present our main results for flocking
in multi-agent networks with dynamica topology, and
conduct stability analysis based on classical Lyapunov
theory and LaSalle€'s invariance principle. In [12], owing
to the discontinuity of collective potentia function in the
case of dynamical topology, stability analysis is done
using classical Lyapunov theory in fixed networks and
nonsmooth anaysis theory, which is difficult to under-
stand for engineers in rea applications, in dynamical
networks, respectively. In our paper, due to the design of
smooth collective potential function, in both cases of
fixed network and dynamical network, stability analysis
can be conducted based on classical Lyapunov theory
and LaSall€'sinvariance principle.

For the collective motion relative to mass center X,

define energy function
V(X,V) =V (X) +V, (X) +V5(v) +V,(X,V) (22)
where,

V(=28 8y (1% - xI,)

NIk NP

ady (1% - %),

i

I 1y
V(%) —Ekla m jlﬂ,Vg(v)—Ea my¥,
i=1 i=1

V,(x,v) =€, (PA1,)e,.,

Copyright © 2010 SciRes.

k, >0 istheparameter of the navigation term.

Applying control law (19) to system (1), following
theorem is held to explain the emergence of flocking
behaviors of agents guided at center of massx,,. .

Theorem 1 Consider a group of agents applying con-
trol law (19) with proper selected parameters ki, k, >0
satisfying (18) to system (1). Assume that the initial
value V(x(0),v(0)) is finite. Then, the following state-
ments hold.

(i) The solution of system (1) asymptotically con-
verges to an equilibrium point (x*,vmc) where X a
local minimaof is V;(x) +V,(X).

(ii) The velocities of all agents asymptotically con-
verge to the velocity of mass centerv,,,., and the velocity
of mass center v, asymptotically converge to the de-
sired velocityv, ,i.e, v ® V,.,i =L2,L,N,v,. ® v, .

(iii) No collison between agents occurs during the
flocking.

Proof: First of all, we explain the fact that the energy
function V(x,v) ispositive definite.

Obviously, V,(x),V3(v) and V,(x,v) is positive.
Therefore, the positive definiteness of energy function
V(x,Vv) is equivaent to that of V;(x) . By similar analy-
sistotheorem 1 of [12], y (I % - %ll;) can be designed
positive definite by using proper fuzzy rules, i.e., V;(x)
can be designed positive definite.

Secondly, the derivative of the energy function
V(X,V) isseminegative definite.

N N
W=& & VR (x-xL)=-Avy @
i=1

i=1 jT Nj (%)
V(9 =k MV X @)

N
Duetod m¥ =0, we have
i=1

N
V() = -V - ¥ (LA T b+ ¥l
i=1
From (15) and note that
N
é. %iT[_ klm(xmc - Xr)_ kzm(vmc - Vr)
i=1
m _
+—f(x,v)]=0,
m
We have
N N N
AW =-k& mi'K - ka mi'y.
i=1 i=1 i=1

Then,
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V() =-W(x)- ¥ (LA,

25
VB (X) - kM (M AT )

where M =diag(m,m,,L.,my) .
From (17), we have

V(% V) = - e (QA 1)y (26)

From (23) to (26), we have

V(XV) =V, () +V, () + V5 (V) +V, (%,V)
=-4 (LA )¥- k¥ (MAI )Y (27)
-e (QA 1 )e, £0.

Part (i) and part (ii) follow from LaSalle's invariance
principle. As M(x,v) is seminegative definite, given
W, ={(x,v):V(x,v) £c}, W, isan invariant set. From
V(xV)£c, we have || gyl” £ % px, ). Therefore
both || X - %/l and [l v, - v/l are bounded. Given
the desired state (x.,v,) is bounded and from the defi-
nition of x,,. and v,., weknow (x,v) isbounded.

From LaSalle's invariance principle, all states starting
in W, converge to the largest invariant set

S={(xv)T W, \(x,v) =0} . Hence, al states converge
to the largest invariant set S={(x,v)T W,:v =
Vie = Vi X = %} asymptotically, i.e., al agent veloci-
ties v, converge to the velocity of center of mass,v,,.,
and the position and velocity vectors of center of mass,
Xe» Vime » CONVerge to the desired states, x.,v,, asymp-
totically.

Furthermore, in stable state,V(x,v) ® V,(X) +V,(X) .
Thereis a equilibrium point at (x*,vmc) where X isa
local minima of V; (X) +V,(X) .

Finally, we prove part (iii) by contradiction. Assume
there exists a time t =t, >0 when two distinct agents
k,I collide, i.e, x (t;) =x(t;). Foral t>0, wehave

V,(x(1) :gé Ay (1% -xl.)

P
=y (% () - x ®l)

+%é‘ii VA{k,I} a vk Y (I X - xlls)
2y (% (1) - % ®)l)

At t=t, defining y (0) larger than c leads to
V,(x(t,)) 2 ¢, which isin contradiction with the invariant
set W, . Therefore, no two agents collide at any time
t3 0.

Copyright © 2010 SciRes.

Remark: From theorem 1, control objective a) and b)
are achieved, but the geometric characterization of local
minima X of Vi (X) +V,(x) is not possible satisfying
the algebraic constraint (5). In [11], the authors pose two
conjectures that establish the close relationship between
geometric and graph theoretic properties of any local
minima of V;(x)+V,(x) and features of flocks. Based
on the conjectures in [11], we can conclude that the local
minima X of V(X)+V,(x) is a socadled
quas- a -lattice [11], i.e, -d£Ilx;-xls-d£d,
0£d=d,," (i,j)T E(X) . Obviously, it is very close to
the conformation satisfying algebraic constraint (5).

When control laws (21) applied to system (1), similar
theorem is established to explain the emergence of
flocking behavior of agents guided at geometric center.

For the collective motion relative to geometric cen-
ter X, , define energy function

U (%) = Vi (9 +U,(X) +U3(v) +V, (x.V)
Where

V=38 Y (1 - 5L )U,09=3kA K%,

i

= NI+~

ug(v):%é%T%,v4(x,v):e;C(PA|n)egc, k>0 is
i=1

the  parameter of the
€ = (X1g—c - X:— 'V;c - V:—)T :

We have following theorem.

Theorem 2 Consider a group of agents applying con-
trol law (21) with proper selected parameters ki, k, >0
satisfying (18) to system (1). Assume that the initial
valueU (x(0),v(0)) is finite. Then, the following state-
ments hold.

1) The solution of system (1) asymptotically con-
verges to an equilibrium point (x*,vgc) where X a
local minima of isV;(x) +U,(x).

2) The velocities of all agents asymptotically converge

to the velocity of geometric centerv,. , and the velocity

of geometric center v, asymptotically converge to the

navigation term,

desred velocity v, , i.e, V ® vy, i=L12L,N,
Vge ® V; .

3) No collision between agents occurs during the
flocking.

Proof: The proof of this theorem is similar to that of
theorem 1.

5. Simulation

In this section, mass center guided flocking motion is
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simulated in 2-dimentional space. The following pa-
rameters were fixed throughout the simulation:
d=2r=12d,e=05, and h=0.3 for r(2). Eight
fuzzy sets are designed for the fuzzy control in-
putll x; - xII- dg . They are LN, N, SN, Z, SP, P, LP,

and PP as shown in Figure 1. Eight fuzzy rules are de-
signed asfollows:
IF Il - %l - d, iSLN THEN
gt =-90r (%, - %l /)N
IF Il x; - %l - d; isNTHEN
gi? =-80r (I x; - Xl /1, )nfs;
IF 1% - xls - d; isSNTHEN
gl =-50r , (I %, - % /1)
IF I - %l - d; isZ THEN gf* =0;
IF 1% - %lls - dg isSPTHEN
gi® = 0.5r (I x; - %l /r)nf;
IF Il % - x|l - d; isPTHEN
g® =l - %l /)
IF Il - %l - d; iSLPTHEN

g’ =150, (I x - %l /r)n;

ij
IF [I%; - %lls - dg isPPTHEN
ai® =2r (1%, - %I, /r)nf.
Control parameters k;,k, are selected to bek, =
14
k, =1. The two eigenvalues of matrix K :geo 2
&l -1y

are -05000+08660i and -05000- 08660i . Therefore,
matrix K is Hurwitzstable. Let Q =1,, using Matlab
command lyap(K,Q), we obtain positive definite matrix

_&l5 -056
&05 1 4
1 —
as /N ’ \/ (\\ i (
08 / / N

0rf

08}

05

04r /
/

031

/ : \ . \\\ ‘ \
) \. N
02 // \ \ f
/ AN
01 e AR 1

Figure 1. Fuzzy member ship function.

e
o
-
N
oL
IS
o
L
~
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Simulation is calculated within 20 seconds time by
using Matlab Simulink. In addition, the position of each
agent ismarked with aright triangle sign.

Figures 2 to 5 show the simulation results within 2-D
flocking using contral law (19) for 50 agents. Figures 2 to
4 show snapshots of 2-D flocking at time t =0,4.3495,
and 20 (sec). The initial position and initial velocity
coordinates were uniformly chosen in the random do-
main of [0,3]" [0,3] and[0,1]" [0,1], respectively. The
mass of each agent was also uniformly chosen in arandom
domain of [0.5, 1.5]. A steady configuration was formed

3
. =
> > >
25 R s> >
>
2 B> >
>
= P oo .
E1s > S
> >
> > DD
1 > >
> . >
05/ > > >> e
>
>
0 >> . . D>, .
o 05 1 15 2 25 3
x(m)

Figure2. Initial positions of 50 agents.

5
>
0 ey
> > b .
> > > > > > b
- P>
E 5 > > B >
> >> > b b
S
10! O N
L N
>
15 ‘ ‘ ‘
0 5 10 15 20

x(m)

Figure 3. Configuration of 50 agents at t = 4.3495 (sec).

20
>
> > > >
15 . o> b
> P e e g
. >
E1o . N
> > > > > > >
> > > > > > >
5 L S N >
> > > > S
>
0 ‘ ‘ ‘
-15 -10 -5 0 5
x(m)

Figure4. Final configuration of 50 agentsat t = 20 (sec).
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20

o L L L
-15 -10 -5 0 5

Figure 5. Position-dependent neighboring graph at t = 20
(se0).
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Figure 6. Velocities of 50 agents along x-axis and y-axis
respectively.
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Figure7. Trajectoriesof all agentswithin 20 (sec) time.

as shown in Figure 4 and maintained thereafter. A vir-
tual agent

X (t) = (10sin(03t),10cos(03t))"
v, (t) = (3cos(03t),- 3sin(03t))"

Copyright © 2010 SciRes.

was used for this example. For highly disconnected
neighboring graph G(x) ininitial state, Figure 5 shows
the connected neighboring graph G(X) corresponding to

the final configuration. Figure 6 shows velocity match-
ing is achieved along x-axis and y-axis respectively.
Figure 7 shows the trajectories of al agents within
20(sec) simulation time and the cohesive behaviors. The
simulation demonstration with control law (21) was
similar to that conducted by control laws (19), and
therefore is not necessarily repeated here.

6. Conclusions

This paper establishes atheoretical framework for design
and anaysis of flocking control agorithms using a
fuzzy-logic-based attractive/repulsive potential function
for multiple agent networks with dynamical topology.
Two cooperative control laws have been proposed for a
group of autonomous agents to achieve flocking motion
relative to different centers (mass center and geometric
center). A virtual agent isintroduced to represent a group
objective for tracking purposes. Smooth Laplacian and
smooth fuzzy-logic-based attractive/repulsive potential
are proposed to overcome the difficulties in sability
andysis. Simulation results validated the theoretica re-
sults.
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