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Abstract 
 
In this study, a novel procedure is presented for control and analysis of a group of autonomous agents with 
point mass dynamics achieving flocking motion by using a fuzzy-logic-based attractive/repulsive function. 
Two cooperative control laws are proposed for a group of autonomous agents to achieve flocking formations 
related to two different centers (mass center and geometric center) of the flock. The first one is designed for 
flocking motion guided at mass center and the other for geometric center. A virtual agent is introduced to 
represent a group objective for tracking purposes. Smooth graph Laplacian is introduced to overcome the 
difficulties in theoretical analysis. A new fuzzy-logic-based attractive/repulsive function is proposed for 
separation and cohesion control among agents. The theoretical results are presented to indicate the stability 
(separation, collision avoidance and velocity matching) of the control systems. Finally, simulation example 
is demonstrated to validate the theoretical results. 
 
Keywords: Flocking, Cooperative Control, Multi-Agent System, Fuzzy Logic 

1. Introduction 

A special behavior of large number of interacting dynamic 
agents called “flocking” has attracted many researchers 
from diverse fields of scientific and engineering disciplines. 
Examples of this behavior in the nature include flocks of 
birds, schools of fish, herds of animals, and colonies of 
bacteria. 

In 1986, Reynolds introduced three heuristic rules that 
leads to the creation of the first computer animation model 
of flocking [1]. It should be noticed that these rules are also 
known as cohesion, separation, and alignment rules respec-
tively in the literature. Similar problems have become a 
major thrust in systems and control theory, in the context of 
cooperative control, distributed control of multiple vehicles 
and formation control. A research field which is tightly 
related to the theme of this paper is that of consensus seek-
ing of autonomous multi-agent. In this case, multi-agent 
achieve consensus if their associated state variables con-
verge to a common value [2-5]. In the meantime, an im-
portant progression has been achieved on synchronous 
and/or asynchronous swarm stability analysis [6-8]. Pio-
neering works [9-11] on flocking motion of particle sys-
tems have properly explained the heuristic rules embedded 
in Reynolds model. One of the important works in [9-11] is 
the design of attractive/repulsive potential function. In [12], 

Gu and Hu proposed a flocking control algorithm for fixed 
and switching network of multi-agent respectively, in 
which the attractive/repulsive potential was designed using 
fuzzy logic. Stability is analyzed using the classical Lya- 
punov theory in fixed network and non-smooth analysis in 
dynamical network, respectively. 

In this study, the flocking behaviors of multi-agent sys-
tems with point mass dynamics and dynamical network 
topology are investigated. The major difference or contri-
bution compared with previous works, for example [9-12], 
can be outlined as follows. First of all, the new results are 
based on more general particle model and the flocking mo-
tion is centered at different centers, e.g., mass center and 
geometric center. Secondly, two new cooperative control 
laws are proposed such that desired collective behaviors 
(separation, collision avoidance and velocity matching) can 
be achieved. Finally, smooth graph Laplacian and smooth 
attractive/repulsive potential based on fuzzy logic are pro-
posed to overcome the difficulties in theoretical analysis 
and for separation and cohesion control between agents, 
respectively. In contrast to [12], owing to the design of 
smooth attractive/repulsive potential based on fuzzy logic 
and application of smooth graph Laplacian, stability analy-
sis both in fixed and dynamical networks can easily con-
ducted using classical Lyapunov theory. 

The rest of the paper is organized as follows. In Section 
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2, the problems are formulated based on algebraic graph 
theory, preliminaries about smooth collective potential 
function and fuzzy control function are provided. In Sec-
tion 3, two flocking control laws based on fuzzy logic are 
proposed. Stability analysis is given in Section 4. Simula-
tion results are provided in Section 5. Finally, concluding 
remarks are made in Section 6. 
 
2. Problem Formulation and Preliminaries 
 
2.1. System Dynamics 
 
Consider a group of N  agents (or particles) moving in 
an n -dimensional Euclidean space, each has point mass 
dynamics described by 

1 ,, ,2,
i i

i i i i i

x v
m u k v iv N

=
 = − = & L
&

         (1) 

where 1 2( , , , )n T n
i i i ix x x x= ∈L ¡  is the position vector 

of agent i , 1 2( , , , )n T n
i i i iv v v v= ∈L ¡ is its velocity 

vector, 0im >  is its mass, 1 2( , , , )n T n
i i i iu u u u= ∈L ¡  

is the control input acting on agent i , 0ik >  is the 
velocity damping gain, and i ik v−  is the velocity damp-
ing term. 

For flocking motion of a group of agents, the control 
objectives are to design flocking control laws such that: 

a) The distances j ix x−‖ ‖ between any two neighbor 
agents are asymptotically convergent to a desired con-
stant value d ; 

b) The velocity vectors iv  reach consensus, i.e., 

1 2 N c rv v v v v= = = = =L , where cv  is the velocity 
vector of the center of a group of agents and rv  is the 
velocity vector of a virtual agent; 

c) No collision between agents occurs during the 
flocking. 

The theoretical framework presented in this paper for 
creation of flocking behavior relies on a number of fun-
damental concepts in algebraic graph theory [13] that are 
described below. 

A weighted undirected graph will be used to model the 
interaction topology among agents. An undirected graph 
G  consists of a set of vertices {1, 2, , }N= LV  and a 
set of edges V V= ×E , where an edge is an unordered 
pair of distinct vertices in V . In graphG , the i th node 
represents agent i  and a edge denoted as ije  or ( , )i j  
represents an information exchange link between 
agent i and j . The adjacency matrix ( ) [ ]ija=A G  of a 
graph G  is a matrix with nonzero elements satisfying 
the property 0 ( , )ija i j≠ ⇔ ∈E . Throughout the paper, 

for simplicity of notation, we assume 0iia =  for all i  
(or the graphs have no loops). The graph is called 
weighted whenever the elements of its adjacency matrix 
are other than just 0 1−  elements. Here, weighted un-
directed graph is used in this paper. The degree matrix of 
G  is a diagonal matrix ( )∆ G  with diagonal elements 

1
N
j ija=Σ  that are row-sums of ( )A G . The graph Laplacian 

is defined as ( ) ( ) ( )= ∆ −L G G A G . The Laplacian matrix 

( )L G  always has a right eigenvector 1 (1,1, ,1)T
N = L  

associated with eigenvalue 1 0λ = . A graph G  is called 
undirected if and only if the adjacency matrix ( )A G  is 
symmetric. The set of neighbors of node i  is defined 
by 

{ : 0} { : ( , ) }i ijj a j i j= ∈ ≠ = ∈ ∈N V V E     (2) 

In fixed network topology, agent i  can range or 
communication with a fixed set of neighbors. Therefore, 
the set iN  is time invariant. However, in dynamical or 
switching network topology, the set of neighbors of 
agent i  is time-varying due to limited communication. 
 
2.2. Smooth Collective Potential Function 
 
Smooth collective potential function is originally pro-
posed in [11]. The following is a brief introduction about 
it. For more detailed information, the reader is referred to 
[11]. 

In order to construct smooth collective potential func-
tion, a map 0· : n

σ ≥→¡ ¡‖‖  is defined as  

21 ( 1 1)z zσ ε
ε

= + −‖‖ ‖‖  

with a parameter 0ε > . Note that z σ‖‖  is differenti-
able everywhere, but z‖‖ is not differentiable at 0z = . 

Smooth adjacency matrix elements are constructed by 
using a scalar function ( )h zρ  that smoothly varies be-
tween 0  and 1 . One possible choice is as follows: 

( )
[0, )

cos [ ,1]
1

1
1( ) 1
2

0

h

h

z h

z

z z

otherwise

h
h

πρ


  = +  

∈


∈

−
−



       (3) 

where (0,1)h∈ . Using this function, a position-depen- 
dent adjacency matrix ( )xA  can be defined 
as ( ) [ ( )]ijx a x=A  with  

( ) ( / ) [0,1],ij h j ia x x x r j iσ σρ= − ∈ ≠‖ ‖     (4) 

and position-dependent Laplacian matrix as ( )x =L  

( ( )) ( )x x∆ −A A , where 1 2( , , , )T T T T
Nx x x x= L , r rσ σ=‖‖ , 
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0r >  denote the interaction range between two agents. 
The set of neighbors of agent i  is defined by 

( ) { : }i j ix j x x r= ∈ − <‖ ‖N V . 

By the definition of z σ‖‖ , the control objective (1) can 
be expressed as following algebraic constraint: 

, ( )j i ix x d j xσ σ− = ∀ ∈‖ ‖ N           (5) 

where d dσ σ=‖‖ . 
Given a interaction range 0r > , a neighboring graph 
( )xG  can be specified by V  and the set of 

edges ( ) {( , ) : , }j ix i j x x r j i= ∈ × − < ≠‖ ‖E V V , that 
clearly depends on x . 

A smooth collective potential function has the form: 

1
1( ) ( )
2 j i

i j i
V x x x σψ

≠

= −∑∑ ‖ ‖  

where ( )zψ  is a smooth pairwise attractive/repulsive 
potential with a finite cut-off at z rσ=  and a global 
minimum at z dσ= . In order to construct a smooth po-
tential function ( )zψ , denote ( ) ( )zz zφ ψ= ∇  and define 
this function as: 

( ) ( ) ( / ) ( )z hz z z r zσφ ψ ρ ϕ= ∇ =         (6) 

where ( )zϕ  is some function to be designed. Obviously, 
function ( )zφ  should vanish for all z rσ≥ . 

In the next section, the function ( )zφ  is implemented 
using fuzzy logic. 

 
2.3. Preliminaries of Fuzzy Control Function 
 
To the best of our knowledge, for flocking control, [12] 
is the first paper in which attractive/repulsive function is 
designed using fuzzy logic. In this section, we provide a 
brief introduction about fuzzy control function [12]. 

A set of fuzzy logic rules performs a mapping from an 
input PRζ ∈  to a deterministic control ( )g ζ , i.e., 
fuzzy control function. For the kth dimension state 

( 1,2, , ; 1,2, , )k
ix k n i N= =L L , agent i  uses states 

( , )i jx x to build a P-dimension vector ζ =  

1 2( , , , )Pζ ζ ζL  as fuzzy input. The corresponding fuzzy 
input set is 1 2, , , PF F FL . A fuzzy rule between agent i  
and agent j  can be expressed as: 

1

,

1

: IF is AND, L, AND is ,

THEN

l l l
I P P

P
k l l l
ij O P P

P

R F F

g

ζ ζ

θ θ ζ
=

= + ∑
 

where 1,2, , ; 1, 2, ,k n l L= =L L , L  is the number of 
fuzzy rules. 

Use the Gaussian function to define the membership 

function of fuzzy set l
pF : 22( )

exp[ ]
l

p p
l l
p p

a

F

ζ

σ
µ

−
= − , where 

, ( 1,2, , )l l
p pa p Pσ = L  are the mean and variance, re-

spectively. The activation degree of rule lR  is calcu-
lated by product operation: 

2
11

exp[ ].
2( )

lP P
p pl

l
pp p

aζ
ξ

σ==

−
= −∑∏  

The crisp output ( ), 1,2, , ,k
ijg k nζ = L  is calculated 

by center of area method: 
,

1 1
( ) .

L L
k l k l l
ij ij

l l
g gζ ξ ξ

= =

= ∑ ∑  

 
3. Flocking Motion Guided at Mass Center  
  and/or Geometric Center 
 
In this section, two cooperative control algorithms are 
developed for flocking guided at mass center and geo-
metric center respectively. In flocking motion, each 
agent applies a control input that consists of four terms: 

f c
i i i i i iu u u u k vγ= + + +             (7) 

where 1( )
i

f
i xu V x= −∇  is a gradient-based term and will 

be designed using fuzzy logic, c
iu  is a velocity consen-

sus/alignment term, iuγ  is a navigation term due to a 
group objective and i ik v  is the velocity damping term. 

Similar to [9-11], the velocity consensus/alignment 
term c

iu  is in the form 

( )
( )( )

i

c
i ij j i

j N x
u a x v v

∈

= −∑            (8) 

and 

( )
( )( )

i

c
i i ij j i

j N x
u m a x v v

∈

= −∑           (9) 

for flocking motion guided at mass center and geometric 
center, respectively. The navigation term iuγ  is de-
signed in the following form 

1 2

1 2

( ) ( )

       ( , ), , 0.

i i i r i i r

i
r r

r

u k m x x k m v v
m

f x v k k
m

γ = − − − −

+ >
       (10) 

The pair ( , ) n n
r rx v ∈ ×¡ ¡  is the desired state vec-

tor of the group center (mass center or geometric cen-
ter). The desired state of the group center can be de-
scribed by 

( , )
r r

rr r r

x
m v

v
f x v

=
 =

&
&

             (11) 
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3.1. Fuzzy Attractive/Repulsive Control 
 
For state vector ix , the fuzzy input ζ  consists of 

, ( )j ix x d j xσ σ− − ∈‖ ‖ N  and ( ) , ( )k
ij ija x n j x∈ N , 

where 
21

k k
j i

j i

k
ij

x xn
x xε
−

−
=

+ ‖ ‖
, i.e., 2P =  and 1 2( , )ζ ζ ζ=  

( , ( ) )k
j i ij ijx x d a x nσ σ= − −‖ ‖ . The fuzzy output is defined 

as 
,

2 ( ) , 1, 2, , .k l l k
ij ij ijg a x n k nθ= = L  

which implies 0 1 0l lθ θ= = . A fuzzy rule lR  is then 
defined as: 

,
2IF is THEN ( )l k l l k

Ij i ij ij ij- d F gx nx a xσσ
θ− =  

Therefore, 

2
1

1

( ) ( ) .

L l l

k kl
ij ij ijM l

m

g a x n
ξ θ

ζ
ξ

=

=

∑
=

∑
 

The fuzzy output vector between agent i  and j  is 

2
1 2 1

1

( ) ( , , , ) ( ) ,

L l l

n l
ij ij ij ij ij ijM l

m

g g g g a x n
ξ θ

ζ
ξ

=

=

∑
= =

∑

TL  

where 1 2
2

( , , , ) .
1

j in
ij ij ij ij

j i

x x
n n n n

x xε

−
= =

+ −

TL
‖ ‖

 

Denote the gradient of the attractive/repulsive poten-
tial ( )j ix x σψ −‖ ‖  as: 

1

2
1

1

( ) ( )

L l l

l
j i ij L l

l

x x a xζ σ

ξ θ
ψ

ξ

=

=

∑
∇ − =

∑
‖ ‖  

and denote 
2

1

1

( )

L l l

l
j i L l

l

x x σ

ξ θ
ϕ

ξ

=

=

∑
− =

∑
‖ ‖ , we have 

 
1

1 1

( ) ( ) ( )

( )

( )

( )
i

i

ij ij j i ij

j i ij

j i x

x j i

g a x x x n

x x n

x x

x x

σ

ζ σ

ζ

σ

ζ ϕ

ψ

ψ ζ

ψ

= −

∇ −

−∇ − ∇

−∇

=

=

= −

‖ ‖

‖ ‖

‖ ‖

‖ ‖

         (12) 

Therefore, gradient-based control term can be de-
signed as 

( ) ( )

( )

( ) ( )

( ) ( )

i
i i

i

f
i x j i ij

j x j x

ij j i ij
j x

u x x g

a x x x n

σ

σ

ψ ζ

ϕ
∈ ∈

∈

= − ∇ − =

= −

∑ ∑

∑

‖ ‖

‖ ‖

N N

N

 (1) 

3.2. Flocking Control guided at Group Centers 
 
Consider the multi-agent motion relative to the group 
center cx (the mass center mcx or geometric center gcx ). 
The position and velocity vectors of agent i relative 
to cx is denoted by i i cx x x= −% and i i cv v v= −% , the collec-
tive state vectors of all agents relative to cx by 

1N cx x x= − ⊗% and 1N cv v v= − ⊗% , where c mcx x= or 

gcx , c cv x= & , ⊗ is kronecker product. 
The mass center of all agents is defined as 

1 1

N N

mc i i i
i i

x m x m
= =

= ∑ ∑               (14) 

Note that 

1 2

1 2 1

2

( ) ( ) ( , )

( )

( ) ( , )

i
i i i r i i r r r

r

i i i i i mc r

i
i mc r r r

r

m
u k m x x k m v v f x v

m
k m x k m v k m x x

m
k m v v f x v

m

γ = − − − − +

= − − − −

− − +

% %  (15) 

and due to 
1 1

0, 0
N N

f c
i i

i i
u u

= =

= =∑ ∑ , 
1

0
N

i i
i

m x
=

=∑ % , 

1
0

N

i i
i

m v
=

=∑ % , we have 

1 1

1 2
1( ) ( ) ( , )

N N

mc i i i
i i

mc r mc r r r
r

v m v m

k x x k v v f x v
m

= =

=

= − − − − +

∑ ∑& &
 

Then, the dynamic of mass center is given by 

1 2
1( ) ( ) ( )

=

,

 mc mc

mc mc r mc r r r
r

x

v k x x k x

v

v v f v
m

= − − − − +







&

&  (16) 

Denote ( , )T T T T T
mc mc r mc re x x v v= − − , the relative dy-

namic of center of mass is given by 

mc mce Ke= %&                  (17) 

where 
1 2

0 1
, .nK K I K

k k
 

= ⊗ =  − − 
%  

We can choose proper control parameters 1 0k >  and 

2 0k >  such that matrix K  is Hurwitz stable, and from 
Lyapunov theory, for given positive matrix 2 2Q ×∈ ¡ , 

there exists a positive definite matrix 2 2P ×∈ ¡ , such 
that: 

.TK P PK Q+ = −              (18) 

For creation of flocking motion relative to mass center, 
we propose following control laws: 
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( )

1
( )

2

( ) ( )

( )( ) ( )

( ) ( , )

i

i

mc
i i

ij j i ij
j x

ij j i i i r
j x

i
i i r r r i i

r

u u
a x x x n

a x v v k m x x

m
k m v v f x v k v

m

σϕ
∈

∈

=

= −

+ − −

− − + +

∑

∑

‖ ‖
N

N

     (19) 

where ,2

1 1
( )

M M
m m m

j i ij i ij
m m

x x σϕ ξ θ ξ
= =

− = ∑ ∑‖ ‖ . 

The geometric center of all agents is defined as 

1

1( )
N

gc i
i

x x x
N =

= = ∑ave            (20) 

Similarly, for geometric center, we propose following 
control law: 

( )

( )

1 2

( ) ( )

( ) ( )

( ) ( ) ( , )

i

i

gc
i i

ij i j i ij
j x

ij i j i
j x

i
i i r i i r r r i i

r

u u
a x m x x n

a x m v v

m
k m x x k m v v f x v k v

m

σϕ
∈

∈

=

= −

+ −

− − − − + +

∑

∑

‖ ‖
N

N

(21) 

 
4. Analysis of Stability 
 
In this section, we present our main results for flocking 
in multi-agent networks with dynamical topology, and 
conduct stability analysis based on classical Lyapunov 
theory and LaSalle's invariance principle. In [12], owing 
to the discontinuity of collective potential function in the 
case of dynamical topology, stability analysis is done 
using classical Lyapunov theory in fixed networks and 
nonsmooth analysis theory, which is difficult to under-
stand for engineers in real applications, in dynamical 
networks, respectively. In our paper, due to the design of 
smooth collective potential function, in both cases of 
fixed network and dynamical network, stability analysis 
can be conducted based on classical Lyapunov theory 
and LaSalle's invariance principle. 

For the collective motion relative to mass center mcx , 
define energy function 

1 2 3 4( , ) ( ) ( ) ( ) ( , )V x v V x V x V v V x v= + + +     (22) 

where, 

1
1( ) ( )
2
1 ( ),
2

j i
i j i

j i
i j i

V x x x

x x

σ

σ

ψ

ψ

≠

≠

= −

= −

∑∑

∑∑ % %

‖ ‖

‖ ‖

 

2 1 3
1 1

4

1 1( ) , ( ) ,
2 2

( , ) ( ) ,

N N
T T

i i i i i i
i i

T
mc n mc

V x k m x x V v m v v

V x v e P I e
= =

= =

= ⊗

∑ ∑% % % %
 

1 0k >  is the parameter of the navigation term. 
Applying control law (19) to system (1), following 

theorem is held to explain the emergence of flocking 
behaviors of agents guided at center of mass mcx . 

Theorem 1 Consider a group of agents applying con-
trol law (19) with proper selected parameters 1 2, 0k k >  
satisfying (18) to system (1). Assume that the initial 
value ( (0), (0))V x v  is finite. Then, the following state-
ments hold. 

(i) The solution of system (1) asymptotically con-
verges to an equilibrium point *( , )mcx v  where *x a 
local minima of is 1 2( ) ( )V x V x+ . 

(ii) The velocities of all agents asymptotically con-
verge to the velocity of mass center mcv , and the velocity 
of mass center mcv  asymptotically converge to the de-
sired velocity rv , i.e., , 1, 2, , ,i mc mc rv v i N v v→ = →L . 

(iii) No collision between agents occurs during the 
flocking. 

Proof: First of all, we explain the fact that the energy 
function ( , )V x v  is positive definite. 

Obviously, 2 3( ), ( )V x V v  and 4 ( , )V x v  is positive. 
Therefore, the positive definiteness of energy function 

( , )V x v  is equivalent to that of 1( )V x . By similar analy-
sis to theorem 1 of [12], ( )j ix x σψ −% %‖ ‖  can be designed 

positive definite by using proper fuzzy rules, i.e., 1( )V x  
can be designed positive definite. 

Secondly, the derivative of the energy function 
( , )V x v  is seminegative definite. 

1
1 ( ) 1

( ) ( )
i

i

N N
T T f
i x j i i i

i j N x i
V x v x x v uσψ

= ∈ =

= ∇ − = −∑ ∑ ∑& ‖ ‖  (23) 

2 1
1

( )
N

T
i i i

i
V x k m v x

=

= ∑& % %             (24) 

Due to
1

0
N

i i
i

m v
=

=∑ % , we have 

3 1
1

( ) ( ) ( ) .
N

T T
n i i

i
V v V x v I v v uγ

=

= − − ⊗ + ∑& & % % %L  

From (15) and note that 

1 2
1

[ ( ) ( )

( , )] 0,

N
T
i i mc r i mc r

i

i
r r

r

v k m x x k m v v

m
f x v

m

=

− − − −

+ =

∑ %
 

We have 

1 2
1 1 1

.
N N N

T T T
i i i i i i i i

i i i
v u k m v x k m v vγ

= = =

= − −∑ ∑ ∑% % % % %  

Then, 
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3 1

2 2

( ) ( ) ( )

( ) ( )

T
n

T
n

V v V x v I v

V x k v M I v

= − − ⊗

− − ⊗

& & % %
& % %

L
       (25) 

where 1 2( , , , )NM diag m m m= L . 
From (17), we have 

4 ( , ) ( )T
mc n mcV x v e Q I e= − ⊗&            (26) 

From (23) to (26), we have 

1 2 3 4

2

( , ) ( ) ( ) ( ) ( , )

( ) ( )

( ) 0.

T T
n n

T
mc n mc

V x v V x V x V v V x v

v I v k v M I v

e Q I e

= + + +

= − ⊗ − ⊗

− ⊗ ≤

&

% % % %L       (27) 

Part (i) and part (ii) follow from LaSalle's invariance 
principle. As ( , )V x v&  is seminegative definite, given 

{( , ) : ( , ) }c x v V x v cΩ = ≤ , cΩ  is an invariant set. From 

( , )V x v c≤ , we have 
min

2
( )n

c
mc P Ie λ ⊗≤‖ ‖ . Therefore, 

both mc rx x−‖ ‖ and mc rv v−‖ ‖  are bounded. Given 
the desired state ( , )r rx v  is bounded and from the defi-
nition of mcx  and mcv , we know ( , )x v  is bounded. 

From LaSalle's invariance principle, all states starting 
in cΩ converge to the largest invariant set 

{( , ) : ( , ) 0}cS x v V x v= ∈Ω =& . Hence, all states converge 
to the largest invariant set {( , ) :c iS x v v= ∈Ω =  

, }mc r mc rv v x x= =  asymptotically, i.e., all agent veloci-
ties iv  converge to the velocity of center of mass, mcv , 
and the position and velocity vectors of center of mass, 

,mc mcx v , converge to the desired states, ,r rx v , asymp-
totically. 

Furthermore, in stable state, 1 2( , ) ( ) ( )V x v V x V x→ + . 

There is a equilibrium point at *( , )mcx v  where *x  is a 
local minima of 1 2( ) ( )V x V x+ . 

Finally, we prove part (iii) by contradiction. Assume 
there exists a time 1 0t t= >  when two distinct agents 

,k l  collide, i.e., 1 1( ) ( )k lx t x t= . For all 0t > , we have 

1
1( ( )) ( )
2 j i

i j i
V x t x x σψ

≠

= −∑∑ ‖ ‖  

\{ , } \{ , , }

( ( ) ( ) )
1 ( )
2

( ( ) ( ) )

k l

i k l j i k l j i

k l

x t x t

x x

x t x t

σ

σ

σ

ψ

ψ

ψ

∈ ∈

= −

+ −

≥ −

∑ ∑

‖ ‖

‖ ‖

‖ ‖

V V  

At 1t t= , defining (0)ψ  larger than c  leads to 

1 1( ( ))V x t c≥ , which is in contradiction with the invariant 
set cΩ . Therefore, no two agents collide at any time 

0t ≥ .  

Remark: From theorem 1, control objective a) and b) 
are achieved, but the geometric characterization of local 
minima *x of 1 2( ) ( )V x V x+  is not possible satisfying 
the algebraic constraint (5). In [11], the authors pose two 
conjectures that establish the close relationship between 
geometric and graph theoretic properties of any local 
minima of 1 2( ) ( )V x V x+  and features of flocks. Based 
on the conjectures in [11], we can conclude that the local 
minima *x  of 1 2( ) ( )V x V x+  is a so-called 
quasi- α -lattice [11], i.e., ,j ix x dσδ δ− ≤ − − ≤‖ ‖  

0 , ( , ) ( )d i j xσδ≤ ∀ ∈= E . Obviously, it is very close to 
the conformation satisfying algebraic constraint (5). 

When control laws (21) applied to system (1), similar 
theorem is established to explain the emergence of 
flocking behavior of agents guided at geometric center. 

For the collective motion relative to geometric cen-
ter gcx , define energy function 

1 2 3 4( , ) ( ) ( ) ( ) ( , )U x v V x U x U v V x v= + + +  

Where 

  1 2 1
1

1 1( ) ( ), ( ) ,
2 2

N
T

j i i i
i j i i

V x x x U x k x xσψ
≠ =

= − =∑∑ ∑ % %‖ ‖  

3 4
1

1( ) , ( , ) ( )
2

N
T T
i i gc n gc

i
U v v v V x v e P I e

=

= = ⊗∑ % % , 1 0k >  is 

the parameter of the navigation term, 
( , )T T T T T

gc gc r gc re x x v v= − − . 
We have following theorem. 
Theorem 2 Consider a group of agents applying con-

trol law (21) with proper selected parameters 1 2, 0k k >  
satisfying (18) to system (1). Assume that the initial 
value ( (0), (0))U x v  is finite. Then, the following state-
ments hold. 

1) The solution of system (1) asymptotically con-
verges to an equilibrium point *( , )gcx v  where *x a 

local minima of is 1 2( ) ( )V x U x+ . 
2) The velocities of all agents asymptotically converge 

to the velocity of geometric center gcv , and the velocity 

of geometric center gcv  asymptotically converge to the 

desired velocity rv , i.e., ,i gcv v→  1, 2, , ,i N= L  

gc rv v→ . 
3) No collision between agents occurs during the 

flocking. 
Proof: The proof of this theorem is similar to that of 

theorem 1.  
 
5. Simulation 
 
In this section, mass center guided flocking motion is 
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simulated in 2-dimentional space. The following pa-
rameters were fixed throughout the simulation: 

2, 1.2 , 0.5d r d ε= = = , and 0.3h =  for ( )h zρ . Eight 
fuzzy sets are designed for the fuzzy control in-
put j ix x dσ− −‖ ‖ . They are LN, N, SN, Z, SP, P, LP, 
and PP as shown in Figure 1. Eight fuzzy rules are de-
signed as follows: 

IF j ix x dσ σ− −‖ ‖  is LN THEN 
,1 90 ( / )k k

ij h j i ijg x x r nσ σρ= − −‖ ‖ ; 
IF j ix x dσ σ− −‖ ‖  is N THEN 

,2 80 ( / )k k
ij h j i ijg x x r nσ σρ= − −‖ ‖ ; 

IF j ix x dσ σ− −‖ ‖  is SN THEN 
,3 50 ( / )k k

ij h j i ijg x x r nσ σρ= − −‖ ‖ ; 

IF j ix x dσ σ− −‖ ‖  is Z THEN ,4 0k
ijg = ; 

IF j ix x dσ σ− −‖ ‖  is SP THEN 
,5 0.5 ( / )k k

ij h j i ijg x x r nσ σρ= −‖ ‖ ; 
IF j ix x dσ σ− −‖ ‖  is P THEN 

,6 ( / )k k
ij h j i ijg x x r nσ σρ= −‖ ‖ ; 

IF j ix x dσ σ− −‖ ‖  is LP THEN 
,7 1.5 ( / )k k

ij h j i ijg x x r nσ σρ= −‖ ‖ ; 
IF j ix x dσ σ− −‖ ‖  is PP THEN 

,8 2 ( / )k k
ij h j i ijg x x r nσ σρ= −‖ ‖ . 

Control parameters 1 2,k k  are selected to be 1k =  

2 1k = . The two eigenvalues of matrix 
0 1
1 1

K  
=  − − 

 

are 05000 08660i− +  and 05000 08660i− − . Therefore, 
matrix K  is Hurwitzstable. Let 2Q I= , using Matlab 
command lyap(K,Q), we obtain positive definite matrix 

1.5 0.5
0.5 1

P
− 

=  − 
. 

 

 
Figure 1. Fuzzy membership function. 

Simulation is calculated within 20 seconds time by 
using Matlab Simulink. In addition, the position of each 
agent is marked with a right triangle sign. 

Figures 2 to 5 show the simulation results within 2-D 
flocking using control law (19) for 50 agents. Figures 2 to 
4 show snapshots of 2-D flocking at time 0,4.3495t = , 
and 20 (sec). The initial position and initial velocity 
coordinates were uniformly chosen in the random do-
main of [0,3] [0,3]×  and[0,1] [0,1]× , respectively. The 
mass of each agent was also uniformly chosen in a random 
domain of [0.5, 1.5]. A steady configuration was formed  
 

 
Figure 2. Initial positions of 50 agents. 

 

 
Figure 3. Configuration of 50 agents at t = 4.3495 (sec). 

 

 
Figure 4. Final configuration of 50 agents at t = 20 (sec). 
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Figure 5. Position-dependent neighboring graph at t = 20 
(sec). 
 

 
Figure 6. Velocities of 50 agents along x-axis and y-axis 
respectively. 
 

 
Figure 7. Trajectories of all agents within 20 (sec) time. 

 
as shown in Figure 4 and maintained thereafter. A vir-
tual agent 

( ) (10sin(03 ),10cos(03 )) ,T
rx t t t=

( ) (3cos(03 ), 3sin(03 ))T
rv t t t= −  

was used for this example. For highly disconnected 
neighboring graph ( )xG  in initial state, Figure 5 shows 
the connected neighboring graph ( )xG corresponding to 
the final configuration. Figure 6 shows velocity match-
ing is achieved along x-axis and y-axis respectively. 
Figure 7 shows the trajectories of all agents within 
20(sec) simulation time and the cohesive behaviors. The  
simulation demonstration with control law (21) was 
similar to that conducted by control laws (19), and 
therefore is not necessarily repeated here. 
 
6. Conclusions 
 
This paper establishes a theoretical framework for design 
and analysis of flocking control algorithms using a 
fuzzy-logic-based attractive/repulsive potential function 
for multiple agent networks with dynamical topology. 
Two cooperative control laws have been proposed for a 
group of autonomous agents to achieve flocking motion 
relative to different centers (mass center and geometric 
center). A virtual agent is introduced to represent a group 
objective for tracking purposes. Smooth Laplacian and 
smooth fuzzy-logic-based attractive/repulsive potential 
are proposed to overcome the difficulties in stability 
analysis. Simulation results validated the theoretical re-
sults. 
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