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ABSTRACT 

The paper discusses lag synchronization of Lorenz chaotic system with three uncertain parameters. Based on adaptive 
technique, the lag synchronization of Lorenz chaotic system is achieved by designing a novel nonlinear controller. Fur- 
thermore, the parameters identification is realized simultaneously. A sufficient condition is given and proved theoretic- 
cally by Lyapunov stability theory and LaSalle’s invariance principle. Finally, the numerical simulations are provided to 
show the effectiveness and feasibility of the proposed method.  
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1. Introduction 

Since the original work on chaos synchronization by Pe- 
cora and Carroll [1] in the drive-response systems, chaos 
synchronization has attracted much attraction due to its 
potential applications in many practical engineering 
fields, such as secure communication [2], information 
processing [3], image encryption [4], and so on. In the 
past two decades, many schemes for chaos synchroniza- 
tion have been proposed, including linear and nonlinear 
feedback approach [5,6], adaptive technique [6], back-
stepping method [7], impulsive control method [8], etc. 
At present, the researchers are concentrating on the fol- 
lowing types of synchronization phenomena: complete 
synchronization [9], generalized synchronization [10], 
phase synchronization [11], lag synchronization [12], 
dislocated synchronization [13] and so on.  

Lag synchronization, where the corresponding state 
vectors of response system follow the drive system with 
time delay. Recently, some literatures have been devoted 
to lag synchronization of chaotic systems. In Reference 
[14], the lag synchronization of Rössler system and Chua 
circuit has been investigated via a scalar signal. Li et al. 
[15] applied a nonlinear observer to lag synchronization 
of hyperchaotic Rössler system and hyperchaotic Ma- 
tsumoto-Chua-Kobayashi (MCK) circuit. Zhang et al. 

[16] studied the same problem for hyperchaotic Lü sys- 
tem. These design of a controller depends on the consid- 
ered dynamical system, the method can be used in the 
system with certain parameters. But in some real physical 
systems and experimental situations, chaotic systems 
may have some uncertain parameters, so a systematic 
design process of lag synchronization of chaotic systems 
with uncertain parameters is important.  

In this paper, we investigate the lag synchronization of 
Lorenz chaotic system with uncertain parameters. Based 
on the adaptive technique, a novel controller and pa- 
rameter adaptive laws are designed such that parameters 
identification is realized, and lag synchronization of Lo- 
renz chaotic system is achieved simultaneously. Theo- 
retically proof and numerical simulations are given to 
demonstrate the effectiveness and feasibility of the pro- 
posed method.   

2. Problem Formulation 

The Lorenz chaotic system [17] is proposed in 1963, the 
nonlinear differential equations for describing it are  
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having a chaotic attractor when , 10a  8 3b  , 28c  . 
The phase portrait is shown in Figure 1. 

Considering the drive system (1), the response system 
is controlled Lorenz chaotic system as following  
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Figure 1. The phase portrait of Lorenz chaotic system (1) 
with parameter values a = 10, b = 8/3, c = 28.  
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where as, bs, cs of (2) are unknown parameters which 
need to be identified in the response system,   

       1 2 3, ,
T

t t tU t u u u     

is the controller which should be designed such that two 
systems can be lag synchronized.   

Let 
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where 0   is the time delay for the errors dynamical 
system.  

Therefore, the goal of parameters identification and 
lag synchronization is to find an appropriate controller 

 and parameter adaptive laws of as, bs, cs, such that 
the synchronization errors  
 U t

     1 2 30, 0, 0e t e t e t    as     (4) t 

and the unknown parameters 

lim lim , m .i, l
t t t

s s sa a b b c c
  

           (5) 

Remark 1. When 0  , the lag synchronization will 
appear. When 0  , the anticipated synchronization 
will appear. More in general, complete synchronization 
will appear when 0  .  

Remark 2. For the anticipated synchronization and 
complete synchronization, the discussions are similar to 
the method given in this paper.  

3. Adaptive Lag Synchronization of Lorenz 
Chaotic System 

In this section, based upon the nonlinear adaptive feed- 
back control technique, a systematic design process of 
parameters identification and lag synchronization of Lo- 
renz chaotic system under the situation of response sys- 
tem with unknown parameters is provided.  

According to the systems (1) and (2), we have the er-
rors dynamical system  
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Obviously, lag synchronization of systems (1) and (2) 
appears if the errors dynamical system (6) has an as- 
ymptotically stable equilibrium point , where     0e t 

T       1 2 3, ,e t e t e t e t    . 

Then, we get the following theorem. 
Theorem Assuming that the Lorenz chaotic system (1) 

drives the controlled Lorenz chaotic system (2), take  
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and parameter adaptive laws 
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Systems (1) and (2) can realize lag synchronization 
and the unknown parameters will be identified, i.e., 
Equations (4) and (5) will be achieved.  

Proof Equation (6) can be converted to the following 
form under the controller (7)  
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Consider a Lyapunov function as 
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Obviously, V is a positive definite function. Taking its 
time derivative along with the trajectories of Equations 
(8) and (9) leads to 
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where . It is obvious that  if and 
only if , , namely the set  

 ,1,P diag a b
  0ie t  1,2i 
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is the largest invariant set contained in  for 
Equation (9). So according to the LaSalle’s invariance 
principle [18], starting with arbitrary initial values of 
Equation (9), the trajectory converges asymptotically to 
the set M, i.e., , , 

 0E V 

0 1 0e t   2e t   3e t 


0 , 

s , s  and s  as . This indi- 
cates that the lag synchronization of Lorenz chaotic sys- 
tem is achieved and the unknown parameters as, bs, cs, 
can be successfully identified by using controller (7) and 
parameter adaptive laws (8). Now the proof is completed.  

a a b  b c  c t

Remark 3. Taking our adaptive synchronization me- 
thod, we can not only achieve synchronization but also 
identify the system parameters. The values for parame-
ters a, b, c of drive system (1) should be confined to it 
has a chaotic attractor.  

Remark 4. Although this process is focused on the 
Lorenz chaotic system, the systematic design process 
could be used for many other complex dynamical sys- 
tems with uncertain parameters.  

4. Numerical Simulations 

In order to verify the effectiveness and feasibility of the 
proposed method, we give some numerical simulations 
about the lag synchronization and parameters identifica- 
tion between systems (1) and (2). In the numerical simu- 
lations, all the differential equations are solved by using 
the fourth-order Runge-Kutta method.  

For this numerical simulations, we assume that the ini- 
tial states of drive system and response system are 

, ,  and ,  1 0 1x   2 0 1x   3 0x 
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1  1 0 1y   2 0 2y  , 
 and the unknown parameters have zero initial 

condition, the time delay is chosen as 
 3 0y  3

1  . The drive 
signals are from the Lorenz chaotic system (1) with sys- 
tem parameters , 10a  8 3b  ,  so that it ex- 
hibits a chaotic attractor. The simulation results are 
shown in Figures 2-4. Figures 2 and 3 display the lag 
synchronization state variables and errors response of 
systems (1) and (2), respectively. Figure 4 shows the 
identification results of unknown parameters as, bs, cs.  

28c 

(c) 

Figure 2. The lag synchronization state variables of systems 
(1) and (2): (a) Variables x1(t), y1(t); (b) Variables x2(t), y2(t); 
(c) Variables x3(t), y3(t).  
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Figure 3. The lag synchronization error evolutions of sys- 
tems (1) and (2). 
 

 
Figure 4. The parameters identification results of response 
system (2): a = 10, b = 8/3, c = 28. 

5. Conclusion 

This paper investigates the adaptive lag synchronization 
for the classical Lorenz chaotic system with the response 
system parameters unknown. Based on Lyapunov stabil- 
ity theory and LaSalle’s invariance principle, the con- 
troller and parameter adaptive laws are given to achieve 
lag synchronization and parameters identification simul- 
taneously. Finally, numerical simulations are provided to 
demonstrate the effectiveness of the scheme proposed in 
this work.  
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