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ABSTRACT

The paper discusses lag synchronization of Lorenz chaotic system with three uncertain parameters. Based on adaptive
technique, the lag synchronization of Lorenz chaotic system is achieved by designing a novel nonlinear controller. Fur-
thermore, the parameters identification is realized simultaneously. A sufficient condition is given and proved theoretic-
cally by Lyapunov stability theory and LaSalle’s invariance principle. Finally, the numerical simulations are provided to

show the effectiveness and feasibility of the proposed method.
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1. Introduction

Since the original work on chaos synchronization by Pe-
cora and Carroll [1] in the drive-response systems, chaos
synchronization has attracted much attraction due to its
potential applications in many practical engineering
fields, such as secure communication [2], information
processing [3], image encryption [4], and so on. In the
past two decades, many schemes for chaos synchroniza-
tion have been proposed, including linear and nonlinear
feedback approach [5,6], adaptive technique [6], back-
stepping method [7], impulsive control method [8], etc.
At present, the researchers are concentrating on the fol-
lowing types of synchronization phenomena: complete
synchronization [9], generalized synchronization [10],
phase synchronization [11], lag synchronization [12],
dislocated synchronization [13] and so on.

Lag synchronization, where the corresponding state
vectors of response system follow the drive system with
time delay. Recently, some literatures have been devoted
to lag synchronization of chaotic systems. In Reference
[14], the lag synchronization of Rgssler system and Chua
circuit has been investigated via a scalar signal. Li et al.
[15] applied a nonlinear observer to lag synchronization
of hyperchaotic Rdssler system and hyperchaotic Ma-
tsumoto-Chua-Kobayashi (MCK) circuit. Zhang et al.
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[16] studied the same problem for hyperchaotic Ll sys-
tem. These design of a controller depends on the consid-
ered dynamical system, the method can be used in the
system with certain parameters. But in some real physical
systems and experimental situations, chaotic systems
may have some uncertain parameters, so a Systematic
design process of lag synchronization of chaotic systems
with uncertain parameters is important.

In this paper, we investigate the lag synchronization of
Lorenz chaotic system with uncertain parameters. Based
on the adaptive technique, a novel controller and pa-
rameter adaptive laws are designed such that parameters
identification is realized, and lag synchronization of Lo-
renz chaotic system is achieved simultaneously. Theo-
retically proof and numerical simulations are given to
demonstrate the effectiveness and feasibility of the pro-
posed method.

2. Problem Formulation

The Lorenz chaotic system [17] is proposed in 1963, the
nonlinear differential equations for describing it are

% ()= a(x2 (t)=x% (t))
X, (t) = ox (1) =X, (t) X3 (1) =X, (1), @)
% (t) =% (1), (t) =bx (1),
having a chaotic attractor when a =10, b=8/3, c¢=28.
The phase portrait is shown in Figure 1.

Considering the drive system (1), the response system
is controlled Lorenz chaotic system as following
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Figure 1. The phase portrait of Lorenz chaotic system (1)
with parameter values a =10, b = 8/3, ¢ = 28.

v (t)=a,

(v2 (1) = w2 (1)) +uu (1),
y() Csy() V(1) ys (1) =y (1) +u (1), (2
Y5 (1) = Y1 (1) ¥ (1) = byys () +us (1),

where a, bs, ¢s of (2) are unknown parameters which
need to be identified in the response system,

t)=[u (t).u, (£), 0, (1) ]'

is the controller which should be designed such that two
systems can be lag synchronized.
Let

& (t)=y(t)-x(t-7),
e, () =y, (t)-x(t-7), (3)
& (1) = 5 (t) =%, (t-7).

where 7 >0 is the time delay for the errors dynamical
system.

Therefore, the goal of parameters identification and
lag synchronization is to find an appropriate controller
U (t) and parameter adaptive laws of a, bs, Cs, such that
the synchronization errors

e (t)—>0,6,(t)>0,6(t)>0 as t—>m ()

and the unknown parameters

tI|ma =a, I|mb =b, Ilmc =C. (5)
—®©

Remark 1. When 7 >0, the lag synchronization will
appear. When 7 <0, the anticipated synchronization
will appear. More in general, complete synchronization
will appear when 7=0.

Remark 2. For the anticipated synchronization and
complete synchronization, the discussions are similar to
the method given in this paper.
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3. Adaptive Lag Synchronization of Lorenz
Chaotic System

In this section, based upon the nonlinear adaptive feed-
back control technique, a systematic design process of
parameters identification and lag synchronization of Lo-
renz chaotic system under the situation of response sys-
tem with unknown parameters is provided.

According to the systems (1) and (2), we have the er-
rors dynamical system

é (t)=—ae (t)—(a,—a)y,(t)-ax, (t—7)
+a,y, (t)+u,(t),
&, (t)=—e,(t)+(c;—c)y (t)—cx (t—7)+x (t—7)
Xs (t—7)+cy (1) =y (1) s (1) +uy (1),
& (t) =—be; (t) (b, =b) y5 (1) =% (t—7) %, (t—7)
+ Y (1), (1) +ug(t).

Obviously, lag synchronization of systems (1) and (2)
appears if the errors dynamical system (6) has an as-
ymptotically stable equilibrium point e(t)=0, where

= |:e1 (t)’ez (t)'ea (t):|T :

Then, we get the following theorem.
Theorem Assuming that the Lorenz chaotic system (1)
drives the controlled Lorenz chaotic system (2), take

() = ax, (t-7)-a,y, 1),
U, (1) = 0, (t=7) %, (t-7) %, (t-7)
—cy; (1) + ¥, (1) 5 (1),
U (1) =% (t=7)% (t=7) = %1 () ¥, (1),
and parameter adaptive laws

a =y, (t)e (),
b, =y, ()&, (t), (8)
¢, ==Y (t)e; (1)-

Systems (1) and (2) can realize lag synchronization
and the unknown parameters will be identified, i.e.,
Equations (4) and (5) will be achieved.

Proof Equation (6) can be converted to the following
form under the controller (7)

é (t)=—ae (t)—(a,—a)y(t),
&, (t)=—e,(t)+(c,—c)y,(t), 9)
é;(t)=—be; (t)— (b, —b) y, (t).

Consider a Lyapunov function as

V=2 (1) e (1)+ € (1) + (2 -a)
+(b,=b)" +(c, —c)’ ]

(6)

U]

AM



Y. F. CHEN

Obviously, V is a positive definite function. Taking its
time derivative along with the trajectories of Equations
(8) and (9) leads to

V =g (t)6(t)+e, (1) (t)+
+(b, —b)b, +(c, —¢)¢,
=—ae] (t)—e; (t)—bes (t) =

where P =diag{a,1,b}. It is obvious that V =0 if and
only if ¢ (t)=0, i=12,3, namely the set

M :{61('{):0! ez(t)zo! e3(t)=0,
a,=a,b =b,c =c}

€; (t)és (t) +(as N a)as

—e"Pe <0,

is the largest invariant set contained in E ={V =0} for
Equation (9). So according to the LaSalle’s invariance
principle [18], starting with arbitrary initial values of
Equation (9), the trajectory converges asymptotically to
the set M, ie, e(t)>0, e, (t)>0, &(t)>0,
a,—>a, b—>b and c,—>c as t— o . This indi-
cates that the lag synchronization of Lorenz chaotic sys-
tem is achieved and the unknown parameters as, b, Cs,
can be successfully identified by using controller (7) and
parameter adaptive laws (8). Now the proof is completed.

Remark 3. Taking our adaptive synchronization me-
thod, we can not only achieve synchronization but also
identify the system parameters. The values for parame-
ters a, b, ¢ of drive system (1) should be confined to it
has a chaotic attractor.

Remark 4. Although this process is focused on the
Lorenz chaotic system, the systematic design process
could be used for many other complex dynamical sys-
tems with uncertain parameters.

4. Numerical Simulations

In order to verify the effectiveness and feasibility of the
proposed method, we give some numerical simulations
about the lag synchronization and parameters identifica-
tion between systems (1) and (2). In the numerical simu-
lations, all the differential equations are solved by using
the fourth-order Runge-Kutta method.

For this numerical simulations, we assume that the ini-
tial states of drive system and response system are

% (0)=1, x,(0)=1, x,(0)=1 and y,(0)=1, y,(0)=2,

y3(0) =3 and the unknown parameters have zero initial
condition, the time delay is chosen as z=1. The drive
signals are from the Lorenz chaotic system (1) with sys-
tem parameters a=10, b=8/3, ¢=28 so that it ex-
hibits a chaotic attractor. The simulation results are
shown in Figures 2-4. Figures 2 and 3 display the lag
synchronization state variables and errors response of
systems (1) and (2), respectively. Figure 4 shows the
identification results of unknown parameters as, bs, Cs.
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Figure 2. The lag synchronization state variables of systems
(1) and (2): (a) Variables x4(t), y1(t); (b) Variables x,(t), y,(t);
(c) Variables x3(t), ys(t).
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Figure 3. The lag synchronization error evolutions of sys-
tems (1) and (2).
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Figure 4. The parameters identification results of response

system (2): a=10, b = 8/3, ¢ = 28.

5. Conclusion

This paper investigates the adaptive lag synchronization
for the classical Lorenz chaotic system with the response
system parameters unknown. Based on Lyapunov stabil-
ity theory and LaSalle’s invariance principle, the con-
troller and parameter adaptive laws are given to achieve
lag synchronization and parameters identification simul-
taneously. Finally, numerical simulations are provided to
demonstrate the effectiveness of the scheme proposed in
this work.
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