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ABSTRACT 

A generalized dissipative discrete complex Ginzburg-Landau equation that governs the wave propagation in dissipative 
discrete nonlinear electrical transmission line with negative nonlinear resistance is derived. This equation presents arbi- 
trarily nearest-neighbor nonlinearities. We analyze the properties of such model both in connection to their modula- 
tional stability, as well as in regard to the generation of intrinsic localized modes. We present a generalized discrete 
Lange-Newell criterion. Numerical simulations are performed and we show that discrete breathers are generated 
through modulational instability. 
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1. Introduction 

During these last decades the behavior of nonlinear dis- 
crete systems has received considerable attention in many 
areas of physics. The nonlinear electrical transmission 
lines (NLTLs) are good examples of such systems. They 
are very convenient tools for studying quantitatively the 
fascinating properties of wave propagation in nonlinear 
dispersive media. Afshari and Hajimiri [1] have intro- 
duced and analyzed pulse narrowing and edge sharpening 
passive NLTL, using accumulation mode metal-oxide 
semiconductor varactors and the gradual scaling lines, 
showing simultaneous edge sharpening for both rising 
and falling edges in silicon. The experimental results 
show considerable improvement in the rise and fall times 
of the pulses. These lines can have applications in ultra- 
wideband systems, broadband signal generations, and high- 
speed serial communications [2-4]. The problem of a 
wide pulse degenerating into multiple pulses rather than 
a single pulse is solved by using a gradually scaled 
NLTL. The ability of solitons to propagate with small 
dispersion can be used as an effective means to transmit 
data, modulated as short pulses over long distances; one 

example of this is the ultra wideband impulse radio that 
has recently gained popularity [5]. More recently, the 
experimental, analytical and numerical study of a left- 
handed nonlinear electrical lattice have been performed 
by English et al. [6]. They found that the above system 
clearly supports backward wave propagation of plane 
waves, but also envelope solitons of the bright and dark 
type. From the viewpoint of NLTL experiments, pulse 
propagation [7] and envelope soliton formation [8] were 
recently studied (see also the review of Ref. [9]), while 
pertinent theoretical works, based on the use of a non- 
linear Schrödinger (NLS) equation, allowed the descrip- 
tion of bright [10] or dark [11] envelope solitons ob- 
served in the experiments. One of the best mechanism to 
generate solitonlike excitation is through the modula- 
tional instability (MI).  

Thus far, discrete spatial solitons (nonlinear eigen- 
states) have been successfully demonstrated in NLTL 
[12-15]. Like every nonlinear system, a NLTL can ex- 
hibit an instability that leads to a self-induced modulation 
of input plane wave with the subsequence generation of 
localized pulses [16-19]. This phenomenon is known as a 
Benjamin-Feir modulational instability [20] and it is re- 
sponsible of many physically interesting effects such as *Corresponding author. 
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the formation of envelope solitons. In homogeneous non- 
linear systems, MI may be considered as the leading 
mechanism for energy localization as well as the forma- 
tion of traveling intrinsic localized modes [21,22]. The 
corresponding mathematical model is the NLS equation 
or the complex Ginzburg-Landau (CGL) equation with 
periodically varying dispersion and nonlinear coefficients. 
The CGL describes the long wavelength modulations 
(envelopes or amplitudes) of both travelling waves and 
homogeneous oscillations. This equation has a wide range 
of applications.  

Dissipative phenomena in nonlinear media with com- 
plex parameters are attracting nowadays a great deal of 
attention. In the present work we shall address these 
problems with a twofold aim. From one side, we derive 
the discrete CGL (DCGL) equation with nearest-neigh- 
bor nonlinearities which governs the propagation of wave 
in the DNLTL. From the other side, we show that the 
derived equation can be used to explore interesting dy-
namical behaviors as generate nonlinear localized modes 
in the DNLTL. To this regard we investigate the MI as a 
mechanism of the generation of bright matter-waves in 
the DNLTL. Dissipation is one of the main forces acting 
against the formation of nonlinear coherent structures in 
extended systems. When dissipation is present in systems 
without additional gain mechanisms, typically all excita- 
tions decay into the regime of linear waves. 

The work is organized as follows. In Section 2, the 
analytical model based on the DNLTL is presented and 
we derived the DCGL equation with nearest-neighbor 
nonlinearities. Then, we present a qualitative analysis 
concerning MI and we propose the generalized Lange- 
Newell criterion. In Section 3, since the discrete brea- 
thers solutions with small amplitudes are very close to 
plane waves, we focuse on the generation of nonlinear 
excitations induced by MI. Finally, conclusions are drawn 
in Section 4. 

2. The DCGL Equation with  
Nearest-Neighbor Nonlinearities  
in the Nltl 

Many schematic electrical lattices have already been con- 
sider in the litterature. Recently, a one dimensional bi- 
inductance lattices which act as band-pass filters has 
been considered [23]. Authors of [12,13] consider an 
original capacitor which has the purpose to block dc cur- 
rent from flowing through the resistor and inductor to the 
ground in the case where the driver contained a dc vol- 
tage offset. This description is only correct in the linear 
and weakly nonlinear regime, but does not hold in the 
fully nonlinear regime. The main point (captured both by 
the experimental and numerical traces) is that the block- 
ing capacitor does not alter the linear and weakly non- 

linear properties of the lattice, but that it certainly does 
affect the strongly nonlinear regime in the dynamics. But, 
the attenuation of waves is due to dissipative effects of 
the medium in which they travel. We are interested in 
the study of the propagation of nonlinear localized modes 
in a nonlinear transmission line by doping the line with 
negative nonlinear resistance. Analytical results and 
numerical simulation have shown that the attenuated 
wave recovers its amplitude on a short distance of the 
doped domain. So, the original purpose of this nega- 
tive nonlinear resistance is the particular functional form 
of the capacitor which should amplify the waves after 
attenuation. It has been shown that the wave conserves 
its pulse form when crossing the amplification domain 
[24]. 

So, here we consider a nonlinear network of N cells as 
illustrated in Figure 1. Each cell contains a linear induc- 
tor Ls in the series and shunt branch and a linear inductor 
Lp in parallel with a nonlinear capacitor Cp in the shunt 
branch. This capacitor is the well-known bias-dependent 
responsible for nonlinearity of the system. Its capacitance 
is assumed to be expanded as a power series of the local 
signal voltage Vn, which appears across the nonlinear 
capacitor of the nth cell 

   2
0

1
1 2 3 ,

2p n b s n nC V V C V V        (1) 

where, C0p is a constant corresponding to the capacitance 
of the nonlinear diode at the dc bias-voltage Vb. The 
nonlinear parameters α and β are assumed to be positive 
constants. In Equation (1), we keep nonlinear coefficient 
up to the second order for the following reasons. First, 
the polynomial approximation of the C-V curve and cor- 
responding fit are justified if the voltage amplitude is 
small enough. Second, in this voltage range, to reduce 
the equation of motion to an ordinary differential equa- 
tion, it is sufficient to take into account these two terms, 
only, to balance the first-order dispersion term. Having in 
mind that the compactification of solitary wave results 
from the nonlinear dispersion of the system, we have to 
choose the dispersion element properly in order to assure  
 

 

Figure 1. Schematic representation of the NLTL. 
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that the resulting network will satisfy this requirement. It 
has been pointed out by Comte and Marquié [25] that the 
introduction of the nonlinear resistor in the series branch 
of the nonlinear transmission line modelling the propaga- 
tion of fluxons in reaction-diffusion chain can create a 
nonlinear dispersion and then the compactification of 
kink solitons. Here, the introduction of the voltage de- 
pendence in the capacitor in the series branch can make 
circuits that perform a variety of tasks and probably the 
compactification of envelope solitary waves. Thus, the 
capacitance-voltage relationship in the series branch is 
Taylor expanded to second order and reads: 

   23 ,V 0

1
1 2

2s sC V C V 

  1 1n n

     (2) 

where V is the voltage across the nonlinear capacitor with 
the zero-voltage value C0s. So, the operating point of this 
capacitor corresponds to the zero-voltage value. In order 
to take in to account the dissipation of the network, the 
conductance g is connected in parallel with Cp and Lp, 
respectively. The conductance g accounts for the dissipa- 
tion of the inductor Lp in addition to the loss of the 
nonlinear capacitor C. The corresponding conductance g 
is given by [24] 

g V V   .              (3) 

The linear dispersion relation of the line is a typical 
band pass filter: 

 
 

2 2 2
0 0

2
0

4 sin 2

sin 2r

u k

C k
2

1 4








          (4) 

where, 0 0 0r s pC C C , 2 10 0p p  and  L C 
2
0 01 s pu L C , are the dimensionless capacitance and 

characteristic frequencies of the system. The correspond- 
ing linear spectrum has a gap f0 = ω0/2π and it is limited 
by the cut-off frequency maf x 2πmax , with  

   2 2
max 0 0 0r  due to lattice effects. The 

linear dispersion curve of the network is plotted in Fig- 
ure 2 as a function of the wave vector k (rad/cell). From 
Equation (4), one can derive the following group velo- 
city: 

4 1 4u C  

 
   

  

2 2
0

22 2
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sin 2

k

k

0 0

0 0

d

d 1 4

r

g

r
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




 


   (5) 

This group velocity is represented in Figure 3. We re- 
strict our study to slow temporal variations in the enve- 
lope. As we shall see, it provides a deep and useful in- 
sight into the full dissipative dynamics of the nonlinear 
electrical line and leads to pattern formation. 

Applying Kirchhoff’s laws to this system leads to the 
following set of differential equations governing wave 
propagation in the network 
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Figure 2. Linear dispersion curve of the lattice: frequency f 
= ω/2π (MHz) as a function of wave vector k (rad/cell). The 
characteristic frequencies of the network and reduced ca- 
pacitance are ω0 = 3.77 × 106 rad/s, u0 = 2.58 × 106 rad/s and 
C0r = 0.03, respectively. 
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Figure 3. Group velocity. 
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with, 1 1 0 pC   and 1 1 0 pC   . For this purpose, 
restricting moreover our study to weak amplitude and 
slow temporal variations of the wave envelope, we look 
for a solution of Equation (6) in the form 

   *i t i t
n n nV T e T e    ,       (7) 
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2T twhere   is small parameter ( 1  ) and  , n  
is unknown complex envelope function, *

n  stands for 
complex conjugate and ω denoting frequency. Inserting 
this relation in Equation (6), we collect solutions of order 

   which give a relation between the wave func- 
tion at different site of the lattice. Thereafter, one can 
write the relation at order   , using the disper- 
sion relation [Equation (4)] and equations resulting from 
the above different order, one obtains the following equa- 
tion: 
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where the complex coefficients of Equation (8) are given 
by 

 

 
 

1

2 2
0 0

2 2 2 2 2
0 0 0

2

2 2 2

r

i

u C
P

u C u

  

  




    2 2
0 0 0r rC  

 

 
   

22 2
0

2 2 2
0 0

r rC 1 0 0

2 2 2
0 0 0

3

8 2
i

r r

C u
Q

C u C

 

  




   
 

  


 
 

  
 

2 2 2
0 0 0

2 2 2 2
0 0 0 02

22 2
0 0

22 2 2 2 2
1 0 0

22 2 2 2 2
0 0

2

2

3 2
9

4

16

r

r

r r

r

r

r

Q
u C

C u

u C

u C

C

 

2 2 2
02C  




   

   


 

    
 

  
 

  

 

 

2
0

2 2 2
0 0 0

r

r

C 6
2 ; 2 ;

2
r i i rP P D

u C
 

  
     

Equation (8) is the DCGL equation with nearest- 
neighbor nonlinearities. Note that the DCGL equation 
has been phenomenologically proposed to describe frus- 
trated states in a linear array of vortices [26,27]. Also, it 
reproduces reasonably well characteristics of the turbu- 
lent regime below the percolation threshold. Percolation 
has been found to be a useful concept for the description 
of turbulence, and the results suggest that non adiabatic 
effects, such as discrete nature of the system, play a role 
in the system. From a physical point of view, it is of in- 
terest to study the effects of including nearest-neighbor 
nonlinearities terms than cubic in the equation on dis- 
crete solitons. These terms appear in different physical 
contexts such as Bose gases with hard core interactions 
in the Tonks-Girardeau regime [28] and low dimensional 

Bose-Einstein condensates in which quintic nonlineari- 
ties in the NLS equation are used to model three-body 
interactions [29]. A self-focusing cubic-quintic NLS equa- 
tion is also used in nonlinear optics as a model for 
photonic crystals [30]. 

In particular when the nearest-neighbor parameter D = 
0, Equation (8) becomes the well-known DCGL equation 
[31], and for Pi = Qi = γr = D = 0, Equation (8) is re- 
duced to the usual (nonintegrable) discrete nonlinear 
Schrödinger equation [32,33]. 

Modulation instability is a generic nonlinear phe-
nomenon governing nonlinear wave propagation in dis- 
persive media. It refers to a weak space-time dependence 
(modulation) of the wave amplitude, due to intrinsic me- 
dium nonlinearity, however weak. Under the effect of 
external perturbations (e.g., noise), the wave amplitude 
(the envelope) may potentially grow, eventually leading 
to energy localization via the formation of localized 
structures (envelope solitons) [34]. 

To analyze MI, which is responsible for energy lo- 
calization, we seek a solution of Equation (8) in the form 
of plane wave disturbed as follow 

   0 expn nB i kn t           

 2r i r ii i

     (9) 

where 0 is the initial complex constant amplitude, k and 
ω are, respectively, the wave number and the angular 
frequency of the carrier wave. The quantity Bn(τ) is the 
perturbation assumed to be small in comparison with the 
amplitude of the carrier wave. It would be important to 
ask what happens to the plane waves when the amplitude 
increases sufficiently so that the nonlinearity occurs. In 
the linear approximation an equation for Bn(τ) yields the 
dispersion relation for the evolution of small perturba- 
tions, 

    ,          (10)    

where λr, λi, χr, and χi are defined in the Appendix. The 
frequency Ω can be written as 
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   
0rEquation (11) has been established for the case   . 

We easily get the perturbation as follow 
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where K, b1 and b2 are the wave number and the complex 
constants, respectively. 

The amplitude Bn will be unbounded as 

    if and only if: 
 

0
2

r  
i   , in or- 

der to get this relation, it is necessary that λi < 0. Because,  
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0

2
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  , the relation, 
 

0
2

r  
 i ,  

holds and from this inequality we can easily derive the 
following inequality, 
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4 sini
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2 cos

i

P K k
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Relation (13) represents the amplitude threshold 
2

0 cr
 , 

for the MI versus the wave number k of the carrier wave 
and the K of the perturbation for the dissipative coeffi- 
cients: α1 = 2.6710 × 104 Ω−1·F−1 (see Figure 4). 

Assume that the necessary condition  

 
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2
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22 i r

i , is satisfied, then we can write the  

inequality    , that is 
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(14) 

2

0

Relation (14) represents the MI criterion associated 
with the DCGL equation with higher-order nonlineari- 
ties. 

This result is the generalized Discrete Lange and Ne- 
well criterion for Stokes waves. 

The growth rate of the perturbation is given by Ωi. 
This quantity has been plotted in Figure 5. 

From this figure, one can see that our system can be 
really stable unstable (the two branches). 

3. Generation of Intrinsic Localized Modes 

Let us check the theoretical predictions concerning the 
existence of MI in the system. So, to further explore MI, 
we compute numerical simulations. In particular, our 
results are based on the theory of linear stability analysis. 
However, we know that the linear stability analysis is 
limited because it can only predict the onset of instability 
and does not tell us anything about the long-time dy- 
namical behavior of the system when the instability 
grows. When the perturbation amplitude grows large 
enough compared to that of the initial wave, the numeri- 
cal analysis must be adopted. To further confirm that the 
linear instability analysis given above can correctly de- 
scribe the initial stage of instability, we have performed 
numerical simulations of Equation (1). A fourth-order 
Runge-Kutta algorithm has been used. A normalized  

 

Figure 4. Treshold amplitude on the (K, k) plane. Pi = 
0.0141, Qi = −1.6681. 
 

 

Figure 5. Imaginary part of Ω for k = π. 
 
integration time step Δt = 5 × 10−3 is used for numerical 
simulations. Similarly, the number of cells N is chosen to 
be equal to 1600 and we have used periodic boundary 
conditions so that we do not encounter the wave reflec- 
tion at the end of the line. The parameters of the system 
are choosen in accordance with Figure 2 as well as with 
Equation (14). At the input of the line, we apply a slowly 
modulated signal located at n0 = 100, 

     0 01 cos 2π cos 2πm pV t V m f t f t     (15) 

where, V0 is the amplitude of the unperturbed plane wave, 
m0 designates the modulation rate and fm the frequency of 
modulation. MI has been analyzed for lattices with re- 
spect to discrete breathers. As a specific example, we use 
the following value V0 = 0.90 V, fp = 800 kHz, m0 = 0.01 
and fm = 8 kHz. Then, we launch solution (15) in the 
network. As time goes on, the modulation increases and 
the continuous wave breaks into a periodic pulse or en- 
velope soliton train as shown in Figure 6(a) at time t = 
1000. A soliton is a localized wave form that travels 
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along the system with constant velocity and underformed 
shape. It is well known that in transmission media sup- 
porting solitons, any input pulse with a duration greater 
than soliton width tends to dissolve into a superposition 
of solitons. In this regard, a sinusoidal signal fed to the 
NLTL will progressively decompose into multiple soli- 
tons per cycle, and harmonics of the input frequency will 
be obtained at the output as viewed in Figure 6(b). This 
figure has been obtained for the parameters fm = 8 kHz, fp 
= 750 kHz and k = 0.9π , one sees that as time goes on, 
the modulation increases and the initial continuous wave 
breaks into a periodic pulses soliton train at time t = 375. 
The amplitude of the wave generated by wave motion is 
modulated in the form of a train of small amplitude with 
a short wavelength. Each component of the train has the 
shape of a soliton like object. 
 

 
(a) 

 
(b) 

Figure 6. Space evolution of the amplitude showing the dy- 
namics of the pulse. The pulse undergoes periodic oscillations 
in the vicinity of the stable intersite configuration. V0 = 0.90 
V, m0 = 0.01. (a) At time t = 1000 for fp = 800 kHz, and fm = 8 
kHz; (b) At time t = 375 for fm = 8 kHz and fp = 750 kHz. 

Figure 7 shows the development of nonlinear wave 
packets with a slowly varying envelope in space with 
regard to a given carrier wave with frequency fp = 750 
kHz, fm = 16 kHz and the modulated wave number k = 
0.9π at time t = 750. One sees the appearence of enve- 
lope solitons related to the existence of MI in the NLTL. 
One obtains an interesting phenomenon: the wave dis- 
plays an oscillating and breathing wave behavior. In 
nonlinear physical systems with discrete symmetry, 
which is considered to be as fundamental as the concepts 
of solitons, dissipative structures, etc. in modern non- 
linear science the concept of bushes of normal modes 
could be applied. The phenomenon observe in Figure 7 
can be also explained by the theory of “bushes” of non- 
linear normal modes [35-37]. Since the symmetry-de- 
termined bushes are valid for any of monatomic chains 
and, in some sense, they can be applied to multiatomic 
chains as well, one can describe these phenomena as 
bushes. As an indivisible nonlinear object, the bush 
exists because of force interactions between the modes 
contained in it. Apparently, bushes of modes play an 
important role in many physical phenomena of current 
interest [35-37]. 

4. Conclusions 

In this work, we have introduced the generalized discrete 
complex Ginzburg-Landau equation with nearest-neigh- 
bor nonlinearities in the nonlinear discrete transmission 
lattices. The appearence of MI has been investigated and 
the generalized discrete Lange-Newell proposed. The 
theoretical findings have been numerically tested through 
direct simulations and solitonic excitations of the pulse 
train have been generated. The theory of “bushes” of 
nonlinear normal modes has been also point out. 

The MI is the first step in the generation of soliton like 
excitations in physical systems. Therefore the study of  
 

 

Figure 7. Desintegration of the initial periodic solution into 
a wave train at t = 750 for k = 0.9π, fp = 750 kHz and fm = 16 
kHz. 
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the conditions in which this phenomenon takes place is 
of special importance. This result is very useful for either 
the investigation of nonlinear transmission lines or of 
there similar physical problems, such as nonlinearity, in 
the plasma, dusty plasma, Bose-Einstein condensates, etc. 

Finally, it is important to mention that, in recent years, 
the development in NLTL has demonstrated its capacity 
to work as signal processing tools. To cite only very few 
examples, it has been demonstrated that the nonlinear 
uniform electrical line can be used for extremely wide 
band signal shaping applications [2] as well as a wave 
form equalizer in the compensation scheme for signal 
distortion caused by optical fiber polarization dispersion 
mode. Moreover, it is also possible to use NLTLs in the 
scheme for controlling the amplitude (amplification) and 
the delay of ultrashort pulses through the coupled propa- 
gation of the solitonic and dispersive parts, which is im- 
portant in that it enables the characterization of high- 
speed electronic devices such as hetero-junction field ef- 
fect transistor or resonant tunneling diodes, and raises the 
possibility of establishing future ultra-high signal pro- 
cessing technologies. Besides its practical interests, it is 
well known that NLTLs are convenient tools for the 
study of wave propagation in nonlinear dispersive media. 
In particular, they provide a useful way to check how the 
nonlinear excitation behaves inside the nonlinear me- 
dium and to model the strange properties of new systems. 
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