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ABSTRACT 

In the scope of material science, it is well understood that mechanical behavior of a material is temperature dependent. 
The converse is also true and for specific loading cases contributes to a unique thermal failure mechanism known as 
“heat explosion”. The goal for this paper is to improve the mathematical models for predicting heat explosion by using 
a specific case of the Fourier heat transfer system that focuses on thermoviscoelastic properties of materials. This is 
done by using a computational analysis to solve for an internal heat parameter that determines thermal failure at a criti-
cal value. This critical value is calculated under conditions either accounting for or negating the effect of heat dissipated 
by the material. This model is an improvement on existing models because it accounts for material specific properties 
and in doing so limits mathematical assumptions of the system. By limiting the assumptions in the conditions of the 
model, the model becomes more accurate and useful in regards to material design. 
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1. Introduction 

Material failure is a well researched branch of material 
science, and although most failure mechanics are ob-
served in terms of crack initiation and subsequent crack 
propagation, the exact situations determining material 
failure can become much more complicated. One such 
complication occurs when the mechanism of loading the 
material is not longer a static condition but becomes a 
repeated pattern of loading and unloading [1]. In the case 
of polymeric material and composites there are special 
cases where the viscous resistance of the material can 
generate an internal thermal energy proportionate to both 
the magnitude and frequency of loading [2]. These phe-
nomena can be seen in past studies with respect to ten-
sion compression testing of glass reinforced plastic [3]. 

The two primary laws of heat conduction, Fourier’s 
law of heat conduction and Maxwell’s heat conduction 
law, dictate that heat will diffuse proportionally to tem-
perature from high to low concentrations. Under ordinary 
conditions the thermal energy is dissipated at approxi-
mately the same rate at which it is generated creating a 
stationary thermal state, however, in cases where there 
exists an imbalance of energy for which the heat gener-
ated is significantly greater than the heat dissipated. This 

builds heat up inside the material leading to a phenome-
non known as “Heat Explosion”.  

Heat explosion is a catastrophic failure of the material 
analogous to what would be expected from the sudden 
heat flux of an exothermic chemical reaction. The focal 
point of heat explosion theory is the idea that although 
mechanical behavior of a material can lead directly to 
fatigue failure, failure can also occur less intuitively in 
the form of thermal failure [4].  

Cyclic loading occurs in engineering applications 
ranging from aviation composite steel to automotive en-
gine walls and artificial knee joints. The ultimate goal in 
material selection and design for any of these applica-
tions is to be able to model and predict the occurrence of 
thermal failure in the form of heat explosion. In order to 
do this in increasingly complex systems, it is common 
practice to simplify the conditions of the system by 
making assumptions on parameters for both the envi-
ronment and the material. Although these assumptions 
make the model more manageable in terms of feasibility 
and complexity, they inherently detract from the signifi-
cance and accuracy of the result. For this reason the goal 
of this paper is to develop a model that can predict heat 
explosion while limiting assumptions regarding the con-
dition of the system and in doing so, increasing the accu-
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racy and usefulness of the model.  
The novel approach regarding the model proposed by 

this paper lies in its ability to predict thermal failure us-
ing material properties, and in doing so limiting the pa-
rameters that need to be assumed. This paper elaborates 
on the connection that can be established between me-
chanical properties and thermal properties of a material. 
These properties can be collectively referred to as prop-
erties of thermoviscoelastic parameters. Using standard 
material creep testing, material specific parameters can 
be established empirically and applied using the ideas of 
Fourier’s law of heat conduction. Because this model 
focuses heavily on mechanical properties of a material, it 
is possible to devise a model that reduces the amount of 
required assumptions of the system and in doing so the 
model becomes both more effective and more significant. 

There are three main material parameters factored into 
this model. The material property for heat retained by the 
system under cyclic loading (γ), the material property for 
heat dissipated by the system (β) and the material prop-
erty for influence of the heat on the material (δ). There 
also exists a delta critical (δ*) which represents a unique 
condition of δ at the instant prior to heat explosion [5]. T 
represents the temperature of the system while Tm is the 
temperature of the material. Eta (η) is defined as the ratio 
of T to Tm and is used in the integration equations [5]. 
Although these are defined parameters, it is very difficult 
to give a physical manifestation of their meaning. For the 
time being these are all represented as unitless material 
parameters that will be given concrete meaning in work 
to be done in the future [5]. 

2. Governing Equations and MATLAB 
Computations 

2.1. Modeling Equations 

The modeling equations for most heat transfer processes 
can be derived from Fourier’s Law of Heat Conduction. 
The equations for this specific study match the Fourier 
system developed by Viktorova [6]. 
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This equation is used to find the critical heat influence  

within a material that causes heat explosion, delta critical. 
In this case, heat removal is assumed to be zero. This 
represents a perfectly insulated scenario where no heat is 
dissipated. The right side of the equation is a Cauchy 
problem setting in terms of Tm. Tm must also satisfy the 
boundary conditions of the specimen in order to accu-
rately model the physical sample. The Cauchy process is 
used to find delta critical as Tm is increased towards in-
finity [6]. The heat influence value rises quickly until the 
instant of heat explosion and then rapidly declines. For 
any specimen, heat explosion occurs at only one tem-
perature and that temperature is only dependent on 
gamma. This is important because it validates compari-
son when beta is no longer zero. The next equation mod-
els that situation (see Equation (2)). 

In most applications, self-heating materials have sur-
rounding fluid flow or other cooling methods in place to 
prevent overheating and heat removal cannot be dis-
carded. The equation above includes the removal of heat 
from the system by adding the beta term. Now, all three 
parameters have been committed to the system. The same 
Cauchy process is used here in order to find the delta 
critical values of the systems without perfect insulation.  

2.2. MATLAB Conversion 

The MATLAB program used for computation utilizes 
“quad”, “max” and “plot” functions as well as “for” 
loops to process and record the necessary data. MAT-
LAB is convenient for this process because it can quickly 
compute the integrals found in (1) and (2). The following 
code represents (1). 
fun20= @(n) 
(1./(sqrt(1n.^(1+gamma)))); 
z1=quad(fun20,1/k,1); 
Eq20(1,i)=((1+gamma)/2)*((k^((1-gamma)/2))*z1)^2; 

Similarly, (2) becomes 

fun21= @(T) 
(1./(sqrt(((k.^(1+gamma))-(T.^(1+gamma)))+(((beta*(1+
gamma))./2).*(T-k).*(T+k-2))))); 
z2=quad(fun21,1,k); 
Eq21(1,i)=(z2^2)*((1+gamma)/2); 

MATLAB is also useful because it accepts anonymous 
functions. This allows the program to process the entire 
range of gammas and betas through the same function 
consecutively which reduces computation time and 
makes the program more efficient.  

 

    

2

*
1 1 1

1 dT

2 1
2

2

mT

m mT T T T T T 


  

  
  
      

            
    


m

                       (2)

 

Copyright © 2012 SciRes.                                                                                  AM 



I. VIKTOROVA  ET  AL. 537

 
2.3. Comprehensive MATLAB Code 

In this case, numerical computation is used to make 
solving the governing equations simpler. The MATLAB 
program uses input ranges of beta and gamma and solves 
delta critical for each unique pair. The program records 
these values in matrices that can be used for plotting. The 
method chosen to compare the data is one of ratios. A 
delta critical ratio is found, for each gamma and beta pair, 
which compares delta critical of a system with heat re-
moval to one without. The ratio compares (1) and (2) for 
each pair in the input range.  

3. Results and Discussion 

3.1. Delta Critical 

Figure 1 displays delta values based on the heat in the 
system Tm at beta equals zero for nine different values of 
gamma through our Cauchy problem setting. The delta 
values show a rise that plateaus at a delta critical, and the 
falls as Tm increases. 

The plots illustrate that as gamma increases, the value 
of delta critical decreases. This can be explained from the 
fact that at larger gamma values, the material will retain a 
greater value of heat, thus causing heat explosion at a 
lower temperature. 

3.2. Results Based on Beta 

Figure 2 shows the delta critical ratios with respect to 
beta over the nine different values of gamma. As beta 
increases it can be seen that the delta critical ratio also 
increases, such that the value of delta critical with beta is 
constantly increasing with respect to beta. In comparing 
different gamma values, we can see that at lower gam-
mas, an increase in beta will have a greater effect on the 
resulting delta critical ratio. This is important as materi-
als that relatively retain a lower value of heat will require 

a much greater heat and thus a greater delta critical value 
to undergo heat explosion as expected.  

From Figure 2, the ratio of delta critical with respect 
to beta is not linear. This suggests that an increase in heat 
removal will have a greater increase in delta critical, and 
thus more heat will be required to experience heat explo-
sion.  

3.3. Effects of Beta on Delta Critical Ratios 

Figure 3 depicts how that the delta critical ratios are 
greater for high values of beta and low values of gamma. 
The delta critical ratios are about equally affected by 
gamma as they are beta for our range considered. Given 
large values of gamma, beta has little effect on the delta 
critical ratio. For small values of gamma, beta has a great 
effect on delta critical ratios. Conversely, gamma effects 
delta critical more greatly for larger values of beta, and 
less for lower values of beta. Figure 3 suggests that for 
materials that have low heat retention, the effect of heat 
dissipation greatly affects the heat that is requiring for 
heat explosion. For a material that has high heat retention, 
it is not as important to consider the effects of heat dissi-
pation as the effect on the temperature at which heat ex-
plosion occurs. 

Considering a situation where the factor of heat re-
moval is considered constant, if the heat removal factor 
is low, then the temperature at which heat explosions 
occurs does not vary in respect to the heat retention of 
the material. For high heat removal factors, a small heat 
retention property in the material used will maximize the 
temperature at which heat explosion will occur. 

4. Conclusions 

This paper presents a study in the causes of heat explo-
sion through a mathematical approach. The simplified 
approach to modeling heat explosion represents a direct  

 

 

Figure 1. Each subplot illustrates the delta values for Tm between 0 and 100 at a different gamma value. The peak of each plot 
represents delta critical. 
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Figure 2. Delta critical ratios are displayed as beta ranges from 0.1 to 0.9. Each line reflects a different gamma value. These 
values are listed in the legend. 
 

 

Figure 3. 3-D rendering of the delta critical ratios displayed in Figure 2. 
 
comparison between the effects of heat removal and the 
heat retention of the material. A better understanding of 
the causes of heat explosion has been achieved, as well 
as identifying the relative effect of heat removal and heat 
retention.   

The Cauchy problem setting has shown that the mate-
rial’s heat retention rate is about an equivalent factor to 
the conditions relevant to heat removal. Considering a 

scenario of an airplane wing where the material property 
will be held constant due to weight limits, it is important 
to consider that heat removal will have an influence on 
the rate of heat explosion. This will allow a company to 
modify air flow about the wing in order to improve the 
heat removal rate, and thus increase the heat required for 
heat explosion to occur. Observing a scenario of a com-
ponent of an engine block where the boundary conditions 
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are held constant. That is when the heat removal coeffi-
cient is constant, changing the material to be more resis-
tant to heat change will increase the total heat required to 
enter the system for heat explosion to occur. When a 
company is experiencing heat explosion in a constant 
heat removal setting, it is important to consider material 
changes that would require a greater heat before heat 
explosion occurs.  

The ultimate goal of our work is to create a well un-
derstood and reliable model to predict thermal failure 
given parameters for both the loading conditions and 
material properties. To do this we need to account for the 
degree to which each parameter contributes to heat ex-
plosion phenomena. In order to do this the next step is to 
use a sensitivity analysis on each of the contributing pa-
rameters. In doing so the materials can be evaluated for 
each parameter and materials can be selected for engi-
neering designs conscious of evading problems with 
thermal failure. We also have interest in developing an 
additional model to account for thermal failure parame-
ters on the basis of Maxwell’s laws of heat conduction. 
We will then compare these results to those modeled 
with Fourier’s law to determine the more accurate and 
efficient model. Another previously mentioned goal of 
our work is to develop a well known physical meaning 
and dimensions to the material parameters that are de-
rived and input into the model. All of these goals com-
bine to create a well understood, consistent and accurate 
model to predict thermal failure and allow for considera-
tions during the process of material selection and design. 
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Appendix 

Matlab Code 1—Computes Delta Critical Values 
and Plot Figure 1 

%beta=0 
gammas=[1.1,1.3,1.5,1.7,1.9,2.1,2.3,2.5,3.0]; 
for i=1:1:9 
gamma=gammas(1,i); 
for k=2:1:1002 
T_m(1,k)=k; 
fun20= @(n) (1./(sqrt(1-n.^(1+gamma)))); 
z1=quad(fun20,1/k,1); 
Eq20(1,k)=((1+gamma)/2)*((k^((1-gamma)/2))*z1)^2; 
subplot(3,3,i) 
plot(T_m,Eq20) 
axis ([0 1010 0 2]) 
MAX(1,i)=max(Eq20); 
end 
end 

Matlab Code 2—Computes Delta Critical Ratio 
Values and Plot Figures 2 and 3 

gammas=[1.1:.1:3]; 
for m=1:1:20 
gamma=gammas(1,m)     
betas=linspace(0.1,0.9,80); 
for j=1:1:80 
beta=betas(1,j); 
i=1; 
spoint=1.1; 
fpoint=.5; 
epoint=51.1; 
for k=spoint:fpoint:epoint 
%With beta 
T_m(1,i)=k; 
fun21= @(T) (1./(sqrt(((k.^(1+gamma))-(T.^(1+gamma))) 
+(((beta*(1+gamma))./2).*(T-k).*(T+k-2))))); 

z2=quad(fun21,1,k); 
Eq21(1,i)=(z2^2)*((1+gamma)/2); 
%Without beta 
T_m(1,i)=k; 
fun20= @(n) (1./(sqrt(1-n.^(1+gamma)))); 
z1=quad(fun20,1/k,1); 
Eq20(1,i)=((1+gamma)/2)*((k^((1-gamma)/2))*z1)^2; 
i=i+1; 
end 
[Max21,T_mc1]=max(Eq21); 
[Max20,T_mc2]=max(Eq20); 
T_mc1=(T_mc1*fpoint)+spoint; 
T_mc2=(T_mc2*fpoint)+spoint; 
if T_mc1==T_mc2 
T_mc(m,j)=T_mc1; 
deltar(m,j)=Max21/Max20; 
deltas(m,j)=Max21-Max20; 
delta21(m,j)=Max21; 
delta20(m,j)=Max20; 
else  
error('T_mc values differ'); 
end 
end 
end 
plot(betas,deltar) 
xlabel('Beta') 
ylabel('Delta Critical Ratio') 
title('Delta Critical Ratios for Gamma Value [1.1,3.0]') 
legend('Gamma=1.1','Gamma=1.2','Gamma=1.3', 
'Gamma=1.4','Gamma=1.5','Gamma=1.6','Gamma=1.7','
Gamma=1.8','Gamma=1.9','Gamma=2.0','Gamma=2.1','
Gamma=2.2','Gamma=2.3','Gamma=2.4','Gamma=2.5','
Gamma=2.6','Gamma=2.7','Gamma=2.8','Gamma=2.9','
Gamma=3.0','Location','NorthWest') 
figure 
surf(betas,gammas,deltar) 
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