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ABSTRACT 

On the basis of similar structure of solutions of ordinary differential equation (ODE) boundary value problem, the simi- 
lar construction method was put forward by solving problems of fluid flow in porous media through the homogeneous 
reservoir. It is indicate that the pressure distribution of dimensionless reservoir and bottom hole in Laplace space, which 
take on the radial flow, also shows similar structure, and the internal relationship between the above solutions were il- 
lustrated in detail.  
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1. Introduction 

Due to the permeability of porous media, reservoir engi- 
neers could simulate fluid flow by using media such as 
ground rock, filters and catalyst beds as well, it is useful 
to those researches who are interested in the behavior of 
porous media in different engineering applications. Me- 
chanics of porous media flow plays an important role in 
many branches of engineering, including geotechnical 
engineering, material science, biomechanics and petro- 
leum industry.  

In 2004, S. C. Li [1,2] proposed a important conjecture 
that the solution formula of some differential equations 
under different conditions have the similarity, which is 
similar to that real numbers can be expressed as contin- 
ued fraction and geometric graphics have certain similar- 
ity, we call it the similar structure of solutions. Over the 
past six years, for some second-order homogeneous ODE 
[1-14], and some second-order homogeneous linear par- 
tial differential equations (PDE) in Laplace space [15-21] 
as well as some mathematical models of fluids flow in 
porous media [22-34], the right smart evolution had been 
obtained on the study of the similar structure of their 
solutions.  

The previous studies are separate, since the similar 
structure of solutions merely deduced from one certain 
model of the differential equation boundary value prob- 
lem, and that was apparently gone against the analysis of 

the internal relationship between solutions of different 
models. This paper is intended to reveal the internal rela- 
tionships between different mathematical models. First of 
all, in section two, we provide the theoretical background 
materials of the similar structure of solutions for solving 
the modified Bessel equation boundary value problem. 
Secondly, in section tree and four, we devote to solve the 
problem of fluid flow in porous media through the ho- 
mogeneous reservoir. At last, in the fifth section, we re- 
veal the inherent laws between above solutions. 

2. The Similar Structure of Solutions of the 
Modified Bessel Equation Boundary  
Value Problem 

In [1] gives the boundary value problem of the modified 
Bessel equation   
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where a, b,  , R and Q are real constants, an 1 , 
its solution can be expressed as the following similar 
structure form  
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where  x  is called the similar kernel function and 
defined as   
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 I   denotes the first kind modified Bessel function 
with order  , and  denotes the second kind 
modified Bessel function with order 

 K 
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When 0   in the modified Bessel Equation (1), if 
we setting x   (where   is real constant, and 

0  ), then y satisfies the ODE  
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Similarly as Equations (2) and (3) the boundary value 
conditions are  
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Quite similar to solve the ODE boundary value prob- 

lem, by Equations (9) and (11) have the following similar 
structure form of solution  
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where  ,   is also called the similar kernel function 
and defined as  
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In particular, we also have 
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3. The Radial Flow Problem through the  
Homogeneous Reservoir 

According to [22], the mathematical model of radial flow 
through the homogeneous reservoir has been described as 
follows   
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where pD, rD, tD, CD, RD, and qD are dimensionless 
variables respectively represent the pressure of any point 
in reservoir, the distance of reservoir from any point to 
the wellbore, time, the wellbore storage coefficient, the 
outer boundary radius of circular reservoir and the liquid 
flow output of bottom hole (which may depend on time t), 
and S is the skin factor (well bottom pollution factor). 
The outer boundary conditions   
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denote that the outer boundary of circular reservoir are 
infinite, constant pressure and closed respectively.  

Taking the Laplace transform of  , D D Dp r t  with re- 
spect to tD, we obtain the ODE with parameter z (where z 
is variable in Laplace space)  
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If let 
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then the boundary value problem, Equations (23)-(26) 
becomes the boundary value problem of Equations (9)- 
(11). Consequently, according to Equation (12), we know 
that the similar structure formula of dimensionless res- 
ervoir pressure distribution at any point for homogeneous 
reservoir radial flow model in Laplace space is   
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where  is called the similar kernel function and 

defined as 
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Similarly, according to Equation (17), we see that the 
similar structure formula of dimensionless well bottom 
hole pressure distribution for homogeneous reservoir 
radial flow model in Laplace space is  
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In particular, when the liquid flow output of bottom 
hole is constant, set   1Dq z z , then Equations (28) 
and (32) still hold.   

4. The Radial Flow Problem through the 
Homogeneous Reservoir Considering the 
Effective Well Radius 

According to [35], the mathematical model of radial flow 
through the homogeneous reservoir has been described as 
follows  
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where , eDr DT  and  are given as follows, respec- 
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The outer boundary conditions 
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denote that the outer boundary of circular reservoir are 
infinite, constant pressure and closed, respectively.  

Taking the Laplace transform of  , D eD Dp r T  with 
respect to DT , we obtain the ODE with parameter z 
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then the boundary value problem Equations (38)-(40) 
becomes the boundary value problem Equations (9)-(11). 
Consequently, according to Equation (12), we know that 
the similar structure formula of dimensionless reservoir 
pressure distribution at any point for homogeneous res- 
ervoir radial flow model in Laplace space is  
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where  is called the similar kernel function and 
defined as   
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Similarly, according to Equation (17), we know that 
the similar structure formula of dimensionless bottom 
hole pressure distribution for homogeneous reservoir 
radial flow model in Laplace space is  
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In particular, when the liquid flow output of bottom 
hole is constant, set   1Dq z z , then Equations (42) 
and (46) still hold.  

5. Conclusions 

Form above discussion, the conclusion can be reached 
that 

1) In section three and four, we use the property of 
similar structure of ODE boundary value problem, and in 
the process of solving problem of radial flow through 
homogeneous reservoir in Laplace space, we can get the 
expecting outcome by means of algebra constructive 
theory in Laplace space, and avoid the procedure of 
solving Bessel equation and the complicated partial de- 
rivative operation, but making simple change of variables 
(such as Equation (27) or Equation (41)) only. 

We find this is a simple, convenient and effective 
method, and an innovation idea for solving problem of 
fluid flow in porous media. 

2) Different similar kernel functions (see Equations 
(5)-(7), (13)-(15), (29)-(31) and (43)-(45)) corresponding 
to different right (outer) boundary value conditions (see 
Equations (3), (11), (22) and (36)), respectively. Actually, 
the similar kernel functions are the basic solutions which 
corresponding to the especial left (inner) boundary value  
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3) The similar structure formula of solutions (see 
Equations (4) or (8), (12) or (17), (28) or (32) and (42) or 
(46)) depend on the left (inner) boundary conditions (see 
Equations (2), (10), (24), (25) and (39)), instead of the 
determine equations (see Equations (1), (9), (23) and (38)) 
and the right (outer) boundary value conditions (see 
Equations (3), (11), (22) and (36)). From the unified ex- 
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pression in Equation (28) and (32), it is easy to see how 
the wellbore storage effects, skin factors, as well as the 
outer boundaries influence the reservoir pressure and 
bottom hole pressure. This expression brought great con- 
venience for programming well test analysis software, 
and simplified the program algorithm.  

4) If take the Laplace transform to the measured pres- 
sure data, well test analysis (dynamic analysis of pressure) 
can be conducted directly in Laplace space, this also can 
reflect the advantage of the similar structure of solutions 
in this paper. In general, using Stehfest numerical inver- 
sion formula, the solutions we got in this paper can be 
transformed into numerical solution in real space, which 
fully meat the need of the application of well test analy- 
sis. 

5) This arouses our interest in studying the similar 
structure of solutions. On the one hand, it is clearly that 
we can get direct solutions satisfying more especial left 
(inner) boundary conditions (such as the real constants 
and in Equation (2) satisfying restricted conditions) from 
the similar structure expression. On the other hand, using 
the similar structure expression and the basic solutions 
(i.e. the similar kernel functions), we can construct some 
more complicated practical problems. Therefore, we put 
forward the construction method for solving the bound- 
ary value problem of ODE, and it is called the similar 
construction method. 
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