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ABSTRACT 

Temporal and spatial subdomain techniques are proposed for a time-spectral method for solution of initial-value prob- 
lems. The spectral method, called the generalised weighted residual method (GWRM), is a generalisation of weighted 
residual methods to the time and parameter domains [1]. A semi-analytical Chebyshev polynomial ansatz is employed, 
and the problem reduces to determine the coefficients of the ansatz from linear or nonlinear algebraic systems of equa- 
tions. In order to avoid large memory storage and computational cost, it is preferable to subdivide the temporal and spa- 
tial domains into subdomains. Methods and examples of this article demonstrate how this can be achieved. 
 
Keywords: Initial-Value Problem; Multiple Time Scales; Time-Spectral; Spectral Method; Weighted Residual Method; 

Subdomains; Domain Decomposition 

1. Introduction 

The generalised weighted residual method (GWRM) is a 
fully spectral method, designed to solve partial differen- 
tial equations in the form of initial-value problems. Al- 
though various applications of time-spectral methods 
have appeared in the past, we have tried in [1] to demon- 
strate a comprehensive view of the wide applicability of 
spectral methods for the time domain. The method ap-
plies to both parabolic and hyperbolic pde’s. Examples, 
briefly discussed in this article, are the Burger equation, a 
forced wave equation and a system of 14 coupled mag- 
netohydrodynamic equations. These are all shown to be 
successfully solved by the GWRM. The basic intention 
of the method is to allow for efficient numerical simula- 
tion of problems with several time scales, where one is 
primarily interested in the long time scale behaviour. 
This is, for example, often the case for problems of sta- 
bility, fluctuations and confinement in fusion plasma 
physics. However, application of the method shows that 
it can also be used for very accurate computation on 
short time scales. 

The trial basis functions used for all temporal, spatial 
and physical domains in the GWRM are Chebyshev 
polynomials, owing to their minimax property which 
provides fast convergence [2] and due to the fact that 
non-periodical boundary conditions are allowed. The so- 
lution obtained by GWRM is thus semi-analytical rather 
than purely numerical in the sense that it is a finite sum 

of Chebyshev polynomials in time, space and, if one so 
chooses, parameter space. This is often practical for ap- 
plications. Moreover, being an acausal method it is not 
constrained by CFL or other time step restrictions, as is 
the case for explicit time differencing methods. In com- 
parison with implicit time differencing schemes, such as 
the Crank-Nicolson method, the GWRM has been shown 
to be efficient [1]. On the theoretical side, there remains 
to determine exact conditions for convergence and accu- 
racy, being important matters for future study. 

We focus here on the introduction of spatial and tem- 
poral subdomains in order to reduce the computational 
effort. For advanced problems with many spatial and 
temporal modes, it becomes costly to iteratively solve the 
algebraic system of GWRM equations associated with 
coefficients of the Chebyshev polynomial ansatz. The 
computational cost scales with the cube of the total 
number of coefficients. This holds also if matrix inver- 
sion is replaced with efficient LU decomposition meth- 
ods. By dividing the computational domains into subdo- 
mains, much can be gained by parallel or consecutive 
solution of the corresponding, reduced algebraic systems 
of equations for each domain. Subdomain, or domain 
decomposition, methods have been studied since the be- 
ginning of the 1980s [3,4]. In particular, the so-called 
patching method, being based on the continuity of the 
solution and its first-order derivative at the subdomain 
boundaries, as well as a variational spectral-element me- 
thod have been developed. These apply to problems 
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where spectral methods in space and finite difference 
methods in time have been used. Here, we concentrate on 
the use of spatial and temporal subdomains for the GWRM, 
which employs a time-spectral method. 

The paper is organized as follows. In Section 2, a brief 
overview of the GWRM is given and some results on 
comparisons with explicit and implicit finite difference 
methods are presented. In Section 3, spatial subdomains 
are introduced. After a discussion of possible computa- 
tional gain, different GWRM implementations of spatial 
subdomains are discussed. A weighting method for im- 
proved convergence is introduced. In Section 4, temporal 
subdomains are introduced. As shown, this is compara- 
tively straightforward. An example application of tem- 
poral subdomains is also studied. In Section 5, the three 
different implementations of spatial subdomains are ap- 
plied to the Burger’s equation and to a large system of 
resistive magnetohydrodynamic (MHD) equations. This 
is followed by a discussion in Section 6 and conclusions 
in Section 7. 

2. The Generalized Weighted Residual 
Method (GWRM) 

2.1. Method in Brief 

Consider a system of parabolic or hyperbolic partial dif-
ferential equations  

D
t


 


u

u f



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               (1) 

where  is the solution vector, D is a linear 
or nonlinear matrix operator and  is an 
explicitly given source (or forcing) term. Note that D 
may depend on both physical variables (t, x and u) and 
physical parameters (denoted p) and that f is assumed 
arbitrary but non-dependent on u. Initial u(t0,x;p) as well 
as (Dirichlet, Neumann or Robin) boundary u(t,xB;p) 
conditions are assumed known. 

 , ;tu u x p
 , ;f f t x p

To avoid inverting a matrix solution vector, associated 
with the time derivative, Equation (1) is integrated in time; 
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The solution vector  , ;tu u x p  is approximated 
using first kind, multivariate Chebyshev polynomials 
series as both trial and weight functions. These polyno- 
mials, defined by Tn(x) = cos(ncos–1x), are orthogonal 
within the interval [–1,1] over a weight function (1 – x2)–1/2. 
Chebyshev polynomials may be defined appropriately to 
any given finite range [a,b] of x (shifted Chebyshev 
polynomials) by a linear transformation [2]. Confining us 
here to one spatial variable x and one parameter p, we 
thus have 
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with  1 0 2zA z z  ,  1 0 2zB z z   and where in- 
dices “0” and “1” denote lower and upper computational 
domain boundaries, respectively. Primes on summation 
signs in Equation (3) indicate that each occurrence of a 
zero coefficient index renders a multiplicative factor of 
1/2. Just as for standard weighted residual methods 
(WRM), the unknown coefficients aklm are determined by 
requiring that the integral of the weighted residual over 
the computational domain should be zero. Performing the 
integration by parts, the result is [1] 

02qrs q rs qrs qrsa b A F              (5) 

Here Aqrs and Fqrs correspond to Chebyshev expan- 
sions of the time integrals on the right hand side of Equa- 
tion (2). Since Aqrs usually includes u itself, it usually is a 
polynomial function of the unknown coefficients aklm. 
For nonlinear equations, each element of relation (5) may 
thus be a complex function of the unknowns. The coeffi- 
cients brs correspond to the Chebyshev expansion of the 
initial conditions. Equation (5), together with appropriate 
boundary conditions, is used to determine the GWRM 
coefficients aqrs that constitute the solution of the prob- 
lem. Equation (5) can be linear or nonlinear depending 
upon the type of the problem. If linear, the coefficients 
can be found using traditional methods like Gauss elimi- 
nation. For nonlinear problems, a semi implicit root 
solver (SIR) has been developed [5]. SIR has proven to 
be very robust for GWRM applications. 

2.2. The GWRM and Finite Time Step Methods 

In order to investigate the applicability of the GWRM, 
some test problems have been solved using the method 
[1]. The problems were also solved using the finite dif- 
ference time step Lax-Wendroff and Crank-Nicolson 
methods. The former method is explicit and is subject to 
CFL (or similar) time step limiting conditions. The latter 
method allows for arbitrarily large time steps by using an 
implicit approach where the functional values are deter- 
mined both at present and future time steps. 

For studying accuracy, the nonlinear Burger equation 
2
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has been solved with initial condition    0, 1u x x x 
 ,1 0t 

 
and boundary conditions  for differ- 
ent values of 

 ,0u t u
 . The results have been compared with 

the exact solution. Although the GWRM is primarily 
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intended for computing long time behaviour of complex 
problems with several time scales, it can be used for ac- 
curate solution of stiff problems. For the case of Burger’s 
equation, the GWRM was shown to provide efficiency 
close to that of the Lax-Wendroff and Crank-Nicolson 
schemes for given accuracy. Improved GWRM effi- 
ciency is expected for problems with periodic boundary 
conditions. The GWRM has the additional advantage of 
providing approximate, analytic solutions. 

For studying efficiency, a forced wave equation was 
solved: 


2 2

2 2
,

u u f t x
t x

 
 

 
             (7) 

with , ,    ,0 ,1 0u t u t 
   sinu x A x

  0, sin πu x n x 
0,t   . Here A, n, α, β and v are free 

parameters, and f(t,x) = A(vβ2 – α2)sin(αt)sin(βx) is the 
forcing function. The exact solution is 

         0.5, cos π sin π sin sinu t x n t n x A t x    , (8) 

for β = mπ, with m an integer. This problem has the 
separate system and forcing function time scales 

 2 n   and 2π  . Using the parameter values v = 1,  

A = 10, α= π/15, β = 3π and n = 3, the ratio of these time 
scales becomes  π 1 45R n   . Thus the forcing 
term in (7) has here introduced a time scale much longer 
than that of the “unperturbed” system. 

It was found that the GWRM, as intended, is well 
suited for long time scale solution of this problem. For 
suitable mode parameters, it traces the slower dynamics 
using substantially less computational time than the 
Lax-Wendroff and Crank-Nicolson schemes. See Figure 
1 for the case K = 6, L = 8, where single temporal and 
spatial subdomains are used. If results are sought for 
longer times, temporal subdomains are preferably used 
for the GRWM, in order to guarantee constant computa-
tional effort per problem time unit. For problems with 
wider separation of the time scales, the GWRM will be 
an increasingly advantageous method as compared to the 
Lax-Wendroff scheme since the latter must follow the 
faster time scale. It may also be noted that the GWRM 
 

 

Figure 1. GWRM solution (smooth curve) of forced wave 
equation, as compared to exact solution (oscillating curve). 

averages more accurately over the fast time scale oscilla-
tions than the finite difference methods. This is an inter-
esting subject which deserves further attention. 

The computations have been carried out using Maple. 
Although faster computational environments exist, exact 
comparisons of efficiency are not essential at this stage. 
The examples we have given show that the efficiency 
and accuracy of the GWRM is comparable to that of both 
explicit and implicit finite difference schemes in a given 
environment. Further optimisation of both GWRM and 
finite difference codes could increase efficiency, but our 
examples indicate that time-spectral methods for solution 
of initial-value pde’s are of interest for general use and 
for computations of problems in magnetohydrodynamic 
and fluid mechanics in particular. 

3. Spatial Subdomains 

The number of operations in GWRM computations can 
be significantly reduced by using subdomains for the 
spatial, temporal and physical variables [1]. It is the pri- 
mary objective of this paper to qualify this claim. Thus 
we begin this section with some numerical considera- 
tions. 

Iterative solution of the GWRM coefficient Equation (5) 
will lead to approximately  = (K + 1)3(L + 1)3(M + 1)3 
operations for each iteration owing to the cubic depend- 
ence on the number of unknowns for computations in- 
volving matrix inversion. Using LU decomposition me- 
thods rather than matrix inversion, the number of opera- 
tions may be reduced to 3  [6]. This may be an accept- 
able amount of work. For more complex calculations, 
however, high efficiency often requires the temporal and 
spatial domains to be separated into subdomains. This 
would in principle enable a linear rather than a cubic 
dependence of efficiency on, for example, the number of 
spatial modes applied to the entire domain, given that the 
number of subdomains is proportional to L. Now assume 
that the temporal and spatial domains are divided into Nt 
and Nx subdomains, respectively. The result is that only 

     
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operations are then needed for a particular problem, as- 
suming that the same total number of modes (degrees of 
freedom) are sufficient in both cases. As an example, for 
K = L = 11, M = 2 and Nt = Nx = 3 there would be a re- 
duction from about 2.7 × 107 to 3.3 × 105 operations.  

In this section, we will discuss and suggest schemes 
for introducing spatial subdomains. We begin by consid-
ering the question of how internal boundaries optimally 
should be constructed and how they depend on the spatial 
order of the differential equation. Next we turn to discuss 
how the subdomain conditions may be iterated as the 
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solution is produced. 

3.1. Internal Boundaries and Their Modelling 

Whereas temporal subdomains are fairly easy to imple- 
ment, spatial subdomains must be carefully handled. The 
reason is that, for spatial subdomains, the information 
that should be passed on between each subdomain is ex- 
ternally unknown and globally dependent on all other 
subdomain boundaries. For temporal subdomains the in- 
formation at one boundary (the initial time) is completely 
known, thus numerically more stable behaviour may be 
expected. 

A question arises. Given the spatial order s  of the 
combined system of partial differential equations, what is 
the order of contact required between the internal spatial 
boundaries in order to avoid underdetermining the sys- 
tem? Clearly, continuity of the function itself and of its 
derivative are natural conditions. We may reformulate 
the problem by instead asking the question: given that the 
points of contact between the subdomains are given by 
continuity of the function and its spatial derivative only 
(second order contact), what requirements need be satis- 
fied to avoid underdetermination of the system? 

In the Appendix we show that the answer may be sim-
ply expressed as the criterion  

2sV                     (9) 

where V is the number of dependent variables that are 
used in the partial differential equation. Note that the 
number Ns of spatial domains has no influence. As an 
example, consider a fourth order equation ( s  = 4). If 
second order contact is used at internal boundaries, the 
equation has to be broken down into at least two second 
order equations to satisfy the requirement on information 
(9), that is V ≥ 2. This is, of course, easily facilitated. 

Implementation of second order contact between the 
subdomains is not straightforward, however. Derivatives 
of Chebyshev expansions are spectrally represented as 
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Even if the spectral coefficients Gklm associated with 
the function u converge, the convergence of the deriva- 
tive is weaker because of the multiplying factors λ that 
add extra weight to higher order Gklm coefficients. In or- 
der to avoid consequential numerical instability, we have 
found that an overlapping (“handshaking”) procedure is 
preferable. The Chebyshev expansions of the dependent 
variables of each subdomain are allowed to extend a dis- 
tance ∆x into the neighbouring domains. For simplicity 

we restrict us here to discuss a one-dimensional spatial 
domain. Assuming Ns spatial domains, external and in- 
ternal boundary conditions relating to the dependent 
variable u are then implemented through 

     1 1 1
0 00 0 01 0 02, ,u x u u x u u x u ,      

   1n n
sn snu x x u x x     

   1n n
sn snu x x u x x      

     1 10 1 11 1 12, ,s s sN N Nu x u u x u u x u    ,   (11) 

for 1 ≤ n ≤ Ns – 1 with xsn denoting the position of the 
right-hand boundary of the nth subdomain un. The total 
number of external boundary conditions, that should be 
applied at the boundaries x0 and x1, is s . The set {xsn} 
of internal boundaries need not be equidistantly spaced, 
and the size of ∆x may also be adapted to each subdo- 
main, depending on, for example, the local stiffness of 
the problem. We will here constrain us to equidistantly 
spaced subdomain boundaries having the same values of 
∆x, the size of which should be optimized. 

We have studied different implementations of spatial 
subdomains of the form (11). These are now briefly de- 
scribed. 

3.2. Method I—Dependent Subdomains 

In this approach, the complete system of all coefficients 

 
given by Equation (5) for all domains, including 

internal and external boundary conditions are solved self- 
consistently at each iteration. For the internal boundaries 
it thus holds that, after each iteration p, 

n
qrsa
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n p n p
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       (12) 

This approach requires only a few iterations (typically 
4 - 10 for nonlinear problems) for good accuracy and 
converges swiftly but on the expense of computational 
memory, as this involves matrix inversion of a large ma- 
trix, simultaneously representing all subdomains. A rea- 
son for employing several dependent subdomains in pre- 
ference for a single spatial domain is that it may be eco- 
nomic to localize one or more subdomains in a region of 
strong gradients for an elsewhere smooth solution. 

3.3. Method II—Independent, Consecutively 
Updated Subdomains 

Here Equation (5) is iterated separately for each subdo- 
main, with internal boundary conditions at point snx x   

 obtained from the previous iteration, but with internal 
boundary conditions at point snx x  obtained from the 
neighbouring subdomain at the present iteration. For- 
mally, 
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This procedure decouples the matrices to be inverted 
at each iteration (one for each subdomain), and substan- 
tial computational speed is gained. A disadvantage is that 
a larger number of iterations is needed than for the case 
of dependent subdomains. 

3.4. Method III—Independent, Late Update of 
Subdomains 

This procedure differs from that of independent, con- 
secutively updated subdomains only by that the internal 
boundaries are not assigned until all subdomains are 
computed at each iteration level: 
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3.5. Retarding Update of Internal Boundary 
Conditions 

Whereas explicit theoretical criteria for convergence may 
be formulated for the single domain problem, correspond- 
ing to solution of a fixed system of nonlinear equations, 
the situation is different for independent domains. The 
reason is that those coefficients of Equation (5) that cor- 
respond to the internal boundary conditions are non-con- 
stant throughout the iterations. If these were constant, 
convergence of each subdomain would, of course, be gua- 
ranteed once the convergence criteria were satisfied. In 
this case, however, no information is passed between the 
internal boundaries and a global solution is not attained. 

On the other hand, if boundary information changes 
too rapidly during the iterations of Equation (5), the it- 
eration scheme may not lead towards a solution and 
convergence is endangered. Intuitively, a possible rem- 
edy would be to “retard” the information exchange at the 
internal boundaries by only allowing for a certain rate of 
change. The boundary data that comes into iteration p are 
thus replaced by a weighted combination of boundary 
value data from both iterations p – 1 and p – 2. This pro-
cedure is likely to be successful, since in the limit that all 
boundary data are obtained from the previous iteration 
(that is, the boundary conditions are unaltered throughout 
the iterations) well known convergence criteria exist. The 
internal boundary Equations (11) are consequently re- 
placed with the following set of relations: 
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    (15) 

The parameter w is used to control the weight of 
“new” boundary information in relation to “old” bound- 
ary information. For w = 1, the scheme degenerates to the 
case of independent, consecutively updated subdomains, 
and for w = 0 the conditions at the internal boundaries 
remain fixed. In the following, we will refer to this pro- 
cedure as the “w method”. 

4. Temporal Subdomains 

As described in Section 3, temporal subdomains can en- 
hance computational efficiency of the GWRM. Similarly 
as for spatial subdomains, the major role is played by the 
reduction in operations when inverting the matrix for 
each domain, required for solution of the coefficient 
Equation (5). For instance, a temporal domain using K 
modes could simply be split up into Nt subdomains with 

tK N  modes in each. Stiff differential equations, how- 
ever, may of course require somewhat more than tK N  
modes per subdomain for adequate accuracy, reducing 
the gain in efficiency. As was also shown in Section 3, 
optimal efficiency is likely obtained when spatial and 
temporal subdomains are employed jointly. 

There are essentially two different paths to implement 
temporal subdomains, using single or multiple order 
contact at the temporal boundary. For single order con- 
tact, the result from the previous temporal subdomain at 
time t = t1 is simply used as initial value at time t = t0 for 
the subsequent time domain. This is not always allowed: 
similarly as for spatial subdomains, the number of exter- 
nal conditions to be imposed on each variable depends on 
the order of the system. Single order contact requires that 
there are at least as many variables as the temporal order 
of the combined differential equations. Since the GWRM 
system of equations are always cast in the form of Equa- 
tion (1), this is always guaranteed for GWRM problems. 
Application to a large system of differential equations 
will be presented in the next section. 

For second order contact in the temporal domain, the 
condition 

2tV                    (16) 

must be satisfied. This result is found in a similar manner 
as the condition (9) for spatial subdomains. Here t  is 
the order of the time derivative for the system. Second, 
or higher, order contact is not necessary for GWRM ap- 
plications, but may improve convergence, in particular in 
presence of shocks. This is a matter for future study. 

Adaptive, temporal subdomains can enhance accuracy 
and efficiency. To introduce the adaptive temporal sub- 
domain method for nonlinear problems, a stiff ordinary 
differential equations is here studied. The following 
equation models the propagation of the flame when 
lighting a match: 
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2d

d

u
u u

t
  3                (17) 

It is assumed that u(0) = δ and that 0 2t   . This 
is a stiff differential equation for small values of the pa- 
rameter δ because of the presence of a ramp at 1t  . 

We have solved this problem by using routines for 
transforming nonlinearities to Chebyshev spectral space 
and by formulating an equation of the form (5); see Ref. 
[1]. A strongly ramped solution with δ = 0.0001 is com- 
puted. We have imposed an accuracy of ε = 1.0 × 10–4 by 
comparing the GWRM solution with the exact solution 
    1 expu t W a a t   1 , where 1a 1   and 

W is the Lambert W function. Both the computed and 
exact solutions are shown in Figure 2. At this accuracy, 
they are indistinguishable from each other.  

Also, the smallness of δ makes the ramp very distinct 
and numerically difficult to resolve. Consequently, ex- 
plicit finite difference methods need extremely small 
time steps to solve the problem. An optimised Matlab 
solution uses implicit methods that reduces the computa- 
tional effort to about 100 time steps, taking a few sec- 
onds on a tabletop computer. 

The GWRM solution uses 69 time domains and takes 
just about the same amount of computational time. The 
temporal domain length has been automatically adapted 
as follows. Since it holds that   1nT t  , a useful accu- 
racy criterion is    K K K Ka a a a    , where an 
is the nth coefficient in the Chebyshev spectral expansion 
of u. 

In performing the adaptive computation, a default of 
10 time subdomains is assumed and K = 6 is used. If the 
accuracy criterion is satisfied, the subdomain length is 
doubled at the next domain, and if not it is halved. In the 
latter case, the calculation is repeated for the same sub- 
domain until the accuracy criterion is satisfied. This goes 
on as the calculation proceeds in time until near the end- 
point, where the subdomain length is adjusted to land 
exactly on the predefined upper time limit. Due to the 
stiffness of the problem, the subdomains are concentrated 
near t = 1.0 × 104 where the subdomain length may be as 
small as about 2 time units. The automatic extension of 
the subdomain length in smoother regions saves consid- 
erable computational time; at the end of the calculation 
the subdomain length is more than thousand time units. 
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Figure 2. GWRM and exact solutions of Equation (17) for δ 
= 0.0001. 

5. Results 

Accuracy and computational efficiency of two example 
problems will now be studied, employing the above dis- 
cussed three GWRM spatial subdomain methods. Also, 
the effect on convergence by use of the w method (Sec- 
tion 3.5) will be studied. 

5.1. Burger Equation—Spatial Subdomains 

The Burger Equation (6) is a fundamental hyperbolic- 
parabolic partial differential equation from fluid me- 
chanics, containing both convection and diffusion terms. 
Thus two separate time scales govern the time evolution 
of an initial state. 

We showed in Section 2 that GWRM accuracy is com- 
parable to that of explicit and implicit schemes, for a 
similar number of floating operations. For high accuracy, 
that is at high mode numbers, it is of interest to deter- 
mine whether spatial subdomains may reduce the mem- 
ory requirements and the number of operations. Employ- 
ing the methods described earlier we compare the results 
with the analytical solution given in Ref. [1], using 50 
terms of the expansion. 

The results for Method I are displayed in Table 1 for a 
suitable selection of parameters. Initial and boundary 
conditions are those stated below Equation (6) and we 
have chosen   = 0.01. By “Iter” is meant the number 
of iterations required, “Time” denotes the normalized 
time required to solve the GWRM system of coefficient 
Equations (5) including boundary conditions, “Memory” 
denotes normalized memory requirements and “Max 
error” is the maximum absolute error as compared to the 
exact solution. The maximum mode number L for sub- 
domains is obtained from the relation 10 1sL N  . 
The root solver SIR is set so that it solves system (5) 
using Newton’s method, with start data given by the ini- 
tial condition. It is seen that convergence is rapid for all 
cases, even when 5 subdomains are employed. The pri- 
mary information from Table 1 is that although compu- 
tational time and memory requirements decrease when 
employing the relation 10 1sL N   for the spatial 
subdomain modes, accuracy is partially lost. Due to the 
shock-like structure of the solution near r = 1, many 
modes are needed for high resolution. We will return to 
this issue. 

Next, the same problem is solved using Method II. The 
results are displayed in Table 2. Clearly, less memory is 
used than in Method I but more iterations are required, 
thus enhancing computational time. The convergence of 
all Ns = 5 cases was too slow to reach a SIR solver accu- 
racy of 1.0 × 10–5 within 100 iterations. For the conver-
gent cases, the absolute error is essentially the same as 
for Method I. 

It becomes of interest to determine whether the w  
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Table 1. Method I solution of Burger’s equation. 

Ns L ∆x Iter Time Memory Max error

1 10 - 4 1 1 0.0015 

2 6 0.002 4 0.81 0.96 0.0060 

2 6 0.010 4 0.74 0.87 0.0080 

2 6 0.050 4 0.82 0.86 0.011 

5 3 0.002 4 0.57 0.98 0.025 

5 3 0.010 4 0.58 1.03 0.025 

5 3 0.050 4 0.58 0.90 0.021 

 
Table 2. Method II solution of Burger’s equation. 

Ns L ∆x Iter Time Memory Max error

1 10 - 4 1 1 0.0015 

2 6 0.002 74 6.44 0.75 0.0068 

2 6 0.010 19 1.64 0.72 0.0080 

2 6 0.050 12 1.09 0.65 0.011 

5 3 0.002 NA - - - 

5 3 0.010 NA - - - 

5 3 0.050 NA - - - 

 
method described in Section 3.5, using the weighting 
parameter w, can improve convergence of Method II. 
Results are shown in Table 3. 

The values of w given indicate the values that result in 
the least number of iterations of Equation (5). We find 
that convergence can be improved using the w method, in 
particular for the case with several spatial subdomains. 
The w method is most effective for large x . 

Finally, we return to the question how many spatial 
modes are required in each of several subdomains to ob- 
tain the same accuracy as that of the single domain for 
the Burger equation. Results are shown in Table 4, using 
Method II. It is seen that Method II offers a path to com- 
parable accuracy using less memory, at the expense of 
computational time. 

For all cases considered, Method III converges slower 
than Method II; thus we do not report on any details of 
these calculations. The result is not surprising, since 
Method II can be regarded as a hybrid method in relation 
to Methods I and III in the sense that one subdomain 
boundary is instantaneously updated as the coefficients 
of each subdomain are iterated using Equation (5). 

Let us summarise the results from application of spa- 
tial subdomains. Regarding convergence, we conclude 
that Method I converges fast for all cases considered. 
Method II needs more iterations and does not converge at  

Table 3. Method II solution of Burger’s equation. 

Ns L ∆x Iter Time Memory Max error w

1 10 - 4 1 1 0.0015 - 

2 6 0.050 11 1.02 0.65 0.011 0.9

5 3 0.002 99 2.71 0.67 0.024 0.9

5 3 0.010 49 1.31 0.61 0.025 0.6

5 3 0.050 66 1.74 0.63 0.021 0.1

 
Table 4. Method II solution of Burger’s equation, higher 
accuracy. 

Ns L ∆x Iter Time Memory Max error w 

1 10 - 4 1 1 0.0015 - 

2 7 0.01 19 2.72 0.73 0.0021 1.0

5 5 0.01 26 3.29 0.73 0.0011 1.0

 
all for cases featuring many subdomains. Employing the 
w parameter method, however, Method II convergence is 
obtained for nearly all cases. Method III generally fea- 
tures poorer convergence properties than Method II. 

Accuracy is high for the single subdomain case, since 
the Burger equation features a shock near r = 1, where 
high spectral orders are needed for good resolution. 
Method II reaches the same accuracy both for the case of 
2 and 5 subdomains when the order of the Chebyshev 
spectral expansion is 7 and 5, respectively. This shows 
that for shock-like problems, the order of the spectral 
expansions needed in each domain is higher than sL N , 
that is, the total number of degrees of freedom must be 
increased. For the same values of Ns and L, all methods 
provide the same accuracy. 

Computational memory requirements are the highest 
for Method I, since it involves a global solution where all 
Chebyshev coefficients are simultaneously interrelated at 
each iteration. Memory reductions by up to 40% were 
demonstrated for Method II. The reduced memory re- 
quirement is coupled to the size of the matrix equations 
corresponding to Equation (5), and for both Methods II 
and III a substantial increase in efficiency in the sense 
that the iteration computational time is reduced to a frac- 
tion of that of the single domain case. The number of 
iterations required are higher for Methods II and III, 
however, and the total computational time becomes com- 
parable to, or higher than, that of Method I. 

In conclusion, using a simple but demanding test prob- 
lem we have shown that spatial subdomain methods, in 
combination with the w method, has a potential to allevi- 
ate memory requirements for the GWRM while preserv- 
ing accuracy and, in most cases, convergence. Efficiency 
is, however, reduced for these cases. 
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5.2. Magnetohydrodynamic Equations—Spatial 
and Temporal Subdomains 

We next turn to an advanced application of GWRM 
subdomain methods. The problem at hand is a plasma 
stability problem formulated as a system of coupled mag- 
netohydrodynamic (MHD) equations. The following set 
of equations govern the resistive MHD model: 

  0
t

 


  u  

d

d
p

t
   

u
j B  

  E u B j                (18) 
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   
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
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  
B
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0 B j  

These macroscopic (fluid) plasma equations are the 
continuity and momentum equations, Ohm’s law (in- 
cluding resistivity) and the (adiabatic) energy equation 
followed by Faraday’s and (the displacement current free) 
Ampere’s law, respectively. Regarding notation, E and B 
denote the plasma electric and magnetic fields respec- 
tively, u is the fluid velocity, j is the current density, p is 
the kinetic pressure, ρ is the mass density, η is the resis- 
tivity, Γ = 5/3 is the ratio of specific heats and μ0 is the 
vacuum permeability. The MHD stability problem con- 
sists of a system of 14 nonlinear, coupled partial differ- 
ential equations. Boundary conditions corresponding to a 
perfectly conducting wall are provided from the require- 
ments that the radial components of the magnetic field 
and fluid velocity should vanish, and from the fact that 
the parallel components of the electric field at the wall 
should vanish. For further details, see Ref. [7]. 

A standard way of investigating plasma stability is by 
linearization of the above equations followed by Fourier 
decomposition in the azimuthal and axial directions (cir- 
cular cylindrical geometry is assumed here). All depen- 
dent quantities Q are considered as the sum of an equi- 
librium term Q0 and a small perturbation q, thus Q = Q0 + 
q. Perturbations are assumed to be proportional to 
exp[i(mθ + kz)] where k and m are the axial and azi- 
muthal mode numbers respectively. For a given perturba- 
tion, stability is completely determined by the equilib- 
rium. An equilibrium is unstable if it features a time de- 
pendence exp(γt), where γ is a positive number, and sta- 
ble (wavelike solution) if γ is imaginary. 

The Equations (18), together with initial and boundary 
conditions, have been solved with the GWRM for a 
number of different equilibria. We here study the stabil- 

ity of the z-pinch equilibrium B0θ = r, B0z = 0, p0 = 1 – r2, 
where r denotes the radial coordinate. Also, it is assumed 
that ρ = constant and that η = 0. The effect of an initial 
perturbation (m,k) = (1,10) is followed for a sufficiently 
long time that a dependence of the form exp(γt) has time 
to develop. The solution to this problem is known from 
computations using other methods. We have applied both 
Methods I and II to this problem. In Figure 3(a) is dis- 
played the evolution in time and space of the radial, per- 
turbed fluid velocity, using Method I with 5 temporal 
subdomains (Nt = 5) and a single spatial domain, using 
orders K = 5 and L = 10 and a time domain reaching to 
10 normalized (Alfvén time) units. The equilibrium was 
unstable for this perturbation. Obtained growth rate is γ = 
1.03, to be compared with the correct result γ = 1.04. 

In Figure 3(b) the same method is used for 5 temporal 
domains, but now for 3 spatial domains using x = 
0.05 and with orders K = 4 and L = 3. The obtained 
growth rate was γ = 1.06. In comparison with the single 
subdomain case, 81% of the computational time was 
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Figure 3. (a) GWRM single spatial domain solution of an 
MHD stability problem formulated using Equations (18), 
showing radial velocity ur . Method I was used with Ns = 1, 
Nt = 5, K = 5, L = 10; (b) GWRM solution as in Figure 3(a), 
but here Ns = 3, ∆x = 0.05, Nt = 5, K = 4, L = 3. 
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needed, with a memory requirement of 82%. 
It should be noted that relatively high values of K 

would be required for this case for sufficient accuracy if 
a single temporal domain were used. This is due to the 
exponential dependence of the solution, which requires 
high order spectral resolution. Using orders K = 5 and L 
= 10, the value γ = 0.73 was found, and at sufficiently 
high values of K, the internal Maple memory (on a ta- 
ble-top computer, order 250 Mb) was insufficient. 

Application of Method II was unsuccessful; conver- 
gence could only be obtained for impractical subdomain 
time intervals (<0.1 time units). This being in spite of 
application of the w method, and of various techniques to 
expedite convergence. 

Although this is a linear problem in the unknown vari- 
ables, iterations are needed to satisfy the internal bound- 
ary conditions, since the subdomains are partially de- 
coupled. Thus the SIR solver was fruitlessly tried with 
various values of its convergence parameters. 

Likewise, Method III was unsuccessful in handling 
this complex problem. The reason is found in that, where- 
as Method I retains the acausality of the GWRM, Meth-
ods II and III introduces independent spatial regions that 
become coupled to the length of the time interval through 
a CFL-like criterion. Thus, time domains must be kept 
small for convergence. 

6. Discussion 

The GWRM convergence of problems with a single spa- 
tial domain is often adequate, but memory requirements 
may be large when many spatial modes are employed for 
obtaining high accuracy. This is mainly due to that a ma- 
trix equation for all GWRM coefficients need be solved 
at each iteration by a root solver, a procedure that scales 
as L3 operations. 

By employing a set of spatial subdomains, memory 
requirements may be reduced. Spatial subdomains are 
here implemented in three different ways. In Method I, 
the internal boundary conditions of all subdomains are 
simultaneously solved for at each iteration; see Equation 
(12). This still requires the use of a single, global matrix 
equation for the GWRM coefficients. In Method II, the 
subdomains are decoupled so that the connecting internal 
boundary conditions are updated consecutively at each 
iteration; see Equation (13). Finally, in Method III the 
internal boundary conditions are updated jointly at the 
end of each iteration; see Equation (14). It is in the two 
latter cases that the main potential for reduction of mem- 
ory requirements exists, and thus of efficiency in solving 
the GWRM matrix equation. If sL N  spectral modes 
are employed at each subdomain,  3

s sN L N   opera- 
tions would be performed for coefficient matrix solution 
at each iteration. This represents a gain in efficiency by a 
factor 2

sN . We show that, in order to retain accuracy, 

more modes are needed in each subdomain, so the gain in 
efficiency is somewhat reduced for the same accuracy. 

Usually Methods II and III require more iterations than 
Method I. The cause for this is that the information of the 
internal boundary conditions is changing rapidly. By in- 
troduction of a weighting parameter w, we have shown 
that by controlling the rate at which information enters 
the internal boundary conditions, otherwise numerically 
unstable cases may be stabilized. For nearly all cases 
studied in this work, Method II has turned out to be pref- 
erable to Method III. 

All three methods have been employed to solve the 
example magnetohydrodynamic stability problem. This 
is an advanced problem, since it involves the simultane- 
ous solution of 14 coupled partial differential equations, 
with a rapidly (exponentially) growing solution. Method 
I was successfully applied, both for single and multiple 
spatial subdomains and using multiple temporal domains. 
Whereas Methods II and III were applicable to the Bur- 
ger example, they were however ineffective for this case 
in the sense that unrealistically small time domains were 
essential for convergence. We speculate that this behav- 
iour is related to the causal behaviour that is imposed by 
partially decoupling the subdomains (except for bound- 
ary points) from each other. Spatial decoupling implies a 
CFL-like condition to be satisfied. For Ns = 3, it would 
thus seem that the time interval  may not exceed the 
ratio of characteristic length (1/3 in normalized units) to 
characteristic speed (1 in normalized units), thus being 
approximately equal to 1/3 time units. The w method was 
shown to add increased stability, but convergence re- 
mained unrealistically slow for all values of w. Turning 
to the Burger case, the explicit finite difference stability 
criterion is approximately [1] 

t

   2
2st L N    = 2 

for Ns = 5. This may explain the need for the w method 
here. 

We have employed the SIR root solver [5], with pa- 
rameters set to make it identical to Newton’s method, for 
inversion of the GWRM matrices of this work. Starting 
points for the iterations was chosen to be the initial con- 
ditions of the problems. It should be mentioned that fur- 
ther optimization of convergence may be aquired by ad- 
justing the parameters of SIR. 

Temporal GWRM subdomains were studied for first 
order contact applications since the GWRM equations 
are formulated as a set of first order partial differential 
equations, and are easy to implement. Nonetheless, sec- 
ond or higher order contact in time should be considered 
in future work to improve convergence for advanced 
problems. 

7. Conclusions 

Implementations of spatial and temporal subdomains for 
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Appendix 

In this Appendix, we derive a criterion for the minimum 
number H of contact points required at the internal 
boundaries in order to determine, and not underdeter- 
mine, an approximate solution that uses the full informa- 
tion from both the system of differential equations and 
from the external boundary conditions. H will be a func- 
tion of the spatial order of the system of differential 
equations s , the number of spatial subdomains Ns and 
the number of variables V. The analysis is restricted to a 
single spatial dimension but can easily be generalized to 
higher dimensions. The criterion can also be applied to 
temporal domains. We assume that the approximate so- 
lution can be expressed as a truncated expansion in some 
basis, for example Chebyshev polynomials. 

The total number of unknown coefficients of the sys- 
tem that must be given information is s s , since the 
solution for each variable in each subdomain needs in- 
formation in the form of 

VN

s  relations to be completely 
determined. The differential equations will provide for 
information to solve for all but s


 
of these in each 

subdomain. Thus, in total, the differential equations will 
provide  1s s s sVN N V  s  s  equations. This 
gives the total number of internal boundary conditions 

that are needed; 

N

   1 1s s s s s s sVN V N N           

where contributions from s  externally given boundary 
conditions have been accounted for. 

The s  external boundary conditions may be applied 
on any variable, at any external boundary and for any 
order less than s . The two outermost spatial subdo- 
mains related to each variable also have contact with the 
inner subdomains. These points add upp to HV in total. 
The desired criterion can now be derived from the re- 
quirement that the average number of internal contact 
points     1s s s  should be less or equal 
than H. Solving this equation, there results the criterion 

N HV VN  

sH
V


                   (A1) 

The criterion is independent of , as it should be. 
For “double handshaking”, that is for H = 2, we see that 
condition (A1) is easily satisfied for the magnetohydro- 
dynamics problem of Section 5.2, for which 

Ns

s  = 6 and 
V = 7. Additional contact points near each internal 
boundary may of course be added for computational 
reasons. 
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