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Abstract 
 
We propose a multi-objective Pareto-optimal technique using Genetic Algorithm (GA) for group communi-
cation, which determines a min-cost multicast tree satisfying end-to-end delay, jitter, packet loss rate and 
blocking probability constraints. The model incorporates a fuzzy-based selection technique for initialization 
of Quality of Service (QoS) parameter values at each instance of multicasting. The simulation results show 
that the proposed algorithm satisfies on-demand QoS requirements (like high availability, good load balanc-
ing and fault-tolerance) made by the hosts in varying topology and bursty data traffic in multimedia commu-
nication networks. 
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1. Introduction 
 
Multicast services have been used for real-time multime- 
dia applications to transport audio-video frames, among 
a group of users. During real-time communication the 
related audio-video frames are required to be delivered at 
the end nodes in a synchronous manner [1]. Further, the 
frequent change of service types, session timings with 
QoS requirements by the group members increases the 
communication complexity of the network [2,3]. In a 
wireless medium the situation further deteriorates than 
fixed network due to unpredictable mobility of the host 
nodes as well as their variations in resource requirements. 
It is also important to keep the network live with all pos-
sible satisfactions to the users during that period. Such a 
scenario requires multi-objective optimizations with con-
straints satisfactions [4,5]. The situation becomes critical 
when the destination nodes require multi-rate multicast 
sessions [6]. Hence development of multi-objective op-
timization algorithm for multi-rate traffic during multi-
casting is a challenge for efficient allocation of resources 
in a dynamically changing network [7,8]. However, a 
Pareto optimal algorithm can provide better results by 
fulfilling users’ requirement, irrespective of irrelevant 
transformation of parameters [4].  

To fulfill the on-demand request of the users we use 
Pareto optimal GA, which guarantees for achieving bet-
ter QoS from a large search space. When the size of the 
network is large the situation demands optimization of 
QoS parameters such as: delay, jitter, path length (hops), 
packet loss rate and variation of load among the nodes 
involved, with high fault-tolerance from the network 
within acceptable cost. Most of the research works focus 
on multicasting to a group for near optimal, fast solution 
with multi-tree backups using GA [9-11].  

However, real-time multimedia applications require 
multi-rate data flow to the served nodes in an on-demand 
basis with optimized resource allocation and cost in-
curred. For addressing multi-objective optimization is-
sues GAs are suitable [9].  

In this paper, we propose a multi-objective evolution- 
ary algorithm supporting multi-rate data flow across the 
network using GA. The algorithm approximates Pareto 
front by generating a set of non-dominated solutions. 
Multiple services can be formulated as a multi-objective 
model [12]. Our model assumes that complete knowl-
edge about the network is available to all the nodes pre-
sent inside the region.  

The paper is organized as follows. In Section 2, we 
define the multi-objective optimization (MOO) and 



S. C. RAI  ET  AL. 531                                      
 
Pareto-optimality concepts. Our proposed model, its en-
vironment setup procedure and implementation with GA 
are presented in Section 3. The performance evaluation 
and analysis of the model are elaborated in Section 4. 
Section 5 concludes the paper and discusses potential 
future work. 
 
2. Multi-Objective Quality of Service  
 
Multi-objective optimization is used to solve optimiza-
tion problems that have two or more number of conflict-
ing objectives, where there may not exist an unique op-
timal solution. Discovering and fixing optimal solutions 
in such scenarios is an open problem [6,11]. In general, 
almost all real-world problems are of multiple objectives, 
where each objective needs to be satisfied. For such type 
of problems a single best solution does not exist with 
simultaneous satisfaction of all objectives. In fact, we 
may have a set of optimal solutions in the entire search 
space, when all objectives are considered. These solu-
tions are known as Pareto-optimal solutions. None of the 
solutions in this set is absolutely better then any other. So, 
any one of the solution can be an acceptable solution. In 
this context, mathematically we can define our problem 
more precisely, and introduce some related definitions in 
order to explain our GA based proposed model. It is 
noted that all of the objectives are in a minimized form in 
the following discussion. 

Multi-Objective Optimization (MOO): Let Z1(X), 
Z2(X), …, Zn(X) are n number of objectives to be opti-
mized with gi(X) ≤ 0, i = 1, 2,…, k1 as inequality con-
straints and hi(X) = 0, i = 1, 2, …, k2, as equality con-
straints for the m-dimensional vector X = (x1, x2, …, xm) 
then MOO [13] can be defined as follows: 
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Pareto Dominance: If and 

 are two characteristic functions then 

 dominates V(u  v) if and only if the condition is 
satisfied for    and 
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Pareto Optimality: A solution is said to be 

Pareto Optimal if and only if 

X

: ( ) ( )X Z X Z X   

Pareto Optimality Set: A Pareto Optimality set P is 
defined as { | : ( ) (P X X Z X Z X    

Pareto Front: It is defined as . { ( )| }PF Z X X P 
 
3. Proposed Model 
 
In this section we introduce the multi-objective model 
with its attributes, and their mapping to GA with Pare-
to-optimal verification. 
 
3.1. Network Model 
 
The network consists of n number of similar mobile 
hosts moving within a three-dimensional space. The 
nodes can communicate among themselves either di-
rectly or indirectly via intermediate nodes. All nodes are 
capable of transreceiving as well as forwarding the re-
quest of their neighbors to its near by nodes with broad-
casting. For any instant of time the nodes along with 
their links can be represented as G = (V, E), where V and, 
E represent the set of nodes and edges in the network 
respectively. A multicast tree T = (VT, ET) in the graph G 
is rooted at source node s with destination nodes {d1, 
d2, …, dt} ( )t n  act as group members for the source 

node. A tree is having k number of branches and 

each branch is of r number of edges. The QoS parame-
ters considered for multi-objective optimization during 
multicasting from a single source to its group members 
are as follows:  

(k t )

)

)

)

Bandwidth (BW): The bandwidth of a tree is the av-
erage bandwidth of all its branches; whereas bandwidth 
of any branch of a tree is the minimum of all its edge 
bandwidths  from source to the corresponding 

destination node. Both branch bandwidth  and 

tree bandwidth are represented in Equations (2) 

and (3) as follows: 
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{ , 1, 2,..., }T bBW mean BW b k          (3)
 

Delay (DL): Delay between two corresponding node 
(branch delay: ) is the sum of the delay at the in-

termediate nodes (node delay: ) as well as the 

propagation delay through the links (link delay: ) 

from source to destination. For a multicast tree the tree 
delay is the maximum delay among all branch 

delays ( ). The two different delays can be shown as:  

bDL

vDL

eDL

( TDL

bDL

)

v

T T

b e
e E v V

DL DL DL
 

           (4) 

max{ , 1, 2,..., }T bDL DL b k          (5) 

Jitter (JT): It is defined as the average delay variation 
between any source and destination nodes during trans-
mission of data packets. It is due to processing delay 
variation at the intermediate nodes as well as the propa-

)}  where 

1 2( , , , )mX x x x  is any other element of. 
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gation delay variation during communication through the 
links. In a multicast tree the jitter for any branch ( )bJT is 

the sum of the jitter at the intermediate vertices 
( v )JT and in each edge ( e )JT ; whereas the jitter for a 

multicast tree is the maximum among all branches and 
are given in the following equations. 

T T

b e
e E v V

vJT JT J
 

   T         (6) 

max{ , 1, 2,..., }T bJT JT b  k
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)
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        (7) 

Packet Loss Rate (PLR): It is defined as a ratio of the 
number of lost packets to the total number of transmitted 
packets. PLR for a tree branch is the cumulative 

 along each edge of the path from root to the leaf 

node; where as the PLR for a multicast tree is 

the average loss rate of all branches present in the tree. 
Both can be represented mathematically as: 

( bPLR
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{ , 1,2,..., }T bPLR mean PLR b k         (9) 

Blocking Probability (BP): The ratio between num-
ber of blocked calls to the number of offered calls in a 
tree is considered as the blocking probability for that tree. 
In other words it is the ratio of unreached nodes to the 
total number of destination nodes available in a multicast 
tree. Mathematically it is represented as: 

T

number of destinations not reached
BP

total number of destinations
   (10) 

3.2. Formulation of Problem 

The Bandwidth (BW), end-to-end delay (DL), jitter (JT), 
packet loss rate (PLR) and blocking probability (BP) are 
the five QoS parameters as defined in Subsection 3.1 are 
considered for our model. All the five objectives are to 
be satisfied simultaneously within their desired accept-
able range for multi-objective optimization. Except BW 
all other objectives will be minimized, where as the for-
mer is to be maximized for optimal utilization. As de-
fined in Equation (1) our MOO problem can be formu-
lated as: 
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3.3. Simulation Model Using GA 

In our proposed model, we choose a heuristic based Ge-
netic Algorithm with binary crossover and Roulette 

Wheel Selection approach. The fitness/objective function 
is the multi-objective function defined in Equation (11). 
The different phases of GA for natural evolution through 
encoding, selection, crossover and mutation operations 
are discussed as below. 

Encoding: We use tree encoding for each chromo-
some to represent a multicast tree due to the 5 properties 
such as 1) all feasible trees can be represented; 2) the 
probability of representing all feasible tree is same; 3) 
only trees are represented; 4) low time complexity for 
encoding and decoding, and 5) no global effect on the 
tree, due to small change in representation, as proposed 
in [14]. 

The Genetic Operators: 
1) Selection: We have used an elitist model for selec-

tion of the individuals for the next generation of popula-
tion. 30 percent of the best fit individuals are selected at 
the first step for the next generation. Rest 70 percent of 
the population are selected using Roulette Wheel selec-
tion method. 

2) Crossover: Standard uniform crossover technique is 
used for the crossover of two parents selected randomly 
from the matting pool. 

3) Mutation: We observe that using the standard 
mutation technique we do not obtain the requisite level 
of performance. When the mutation probability is bit low 
it does not yield any result. In our model we have kept 
the mutation probability very high, i.e., 0.2 and slowly 
decrease it with the progress of the generations using the 
following method. 

(max min )
max

max
m m

m m

P P curGen
P P

Gen

 
    (12) 

where, : current mutation probability, : Maxi- mP max mP

mum mutation probability, : Minimum mutation 

probability, : current generation, and : 
maximum generation 

min mP

curGen max Gen

Fitness Test: The fitness of a tree is evaluated in two 
steps. In the first step, we evaluate Delay, Jitter, PLR and 
BP using Equations (5), (7), (9) and (10) respectively. 
Instead of bandwidth we evaluate deficiency from max-
imum bandwidth ( )sBW . So, and  repre-

sented in Equations (2) and (3) are modified as follows.  
bBW TBW

max{ , 1, 2,..., }s s
b lBW BW l r         (13) 

{ ,s s
T bBW mean BW b E }T          (14) 

At the time of evaluation, if we find an invalid node, 
which is not an intermediate node in the respective path, 
then a penalty value is added to the delay. If the BW, JT, 
PLR and BP values lie outside the desired range, for each 
case we add a small penalty to the delay. The values of 
DL, sBW and JT are rationalized within the range of 0 
and 1. Then in the second step the fitness value is evalu-
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ated as follows Table 1. Network Parameters. 

1 2 3 4 5
sf w DL w BW w JT w PLR w BP    

  
(15) Network Parameters Min Max 

Bandwidth 0 25 

Delay 200 1000 

Jitter 0 650 

Packet Loss Rate 0 1 

where , , , , and are user defined con-

stants in the range [0, 1]. The fit value i.e. 
1w 2w 3w 4w 5w

1 (1 )fit f in the range [0, 1] is maximized by using 

GA. 
 
3.4. Simulation Procedure 

  
Table 2. GA Parameters. 1) Scenario Generation: For our simulation purpose, we 

have considered a three dimensional (3D) space to simu-
late real life wireless scenarios. The 3D coordinates of a 
node are randomly generated. The Euclidean distance 
between each pair of nodes is measured. If the distance 
between any two nodes is found to be less then 250 me-
ters then a link is established between these two nodes 
and accordingly the adjacency matrix is formed. The 
scenario represented in Figure 1 is one of our network 
topology formed during simulation. 

GA Parameter Value 

Population Size 100 

Crossover Probability 0.6 

Mutation Probability 0.2 

 
good result. For the subsequent simulations, we take a 
high value such as 0.2 for the mutation probability to 
ensure a diversified search and slowly reduces as the Once the network is formed, the source and destina-

tions are generated randomly and GA is applied to find 
out the optimal multicast tree over a set of evolutions. 
Also we define different cut-off ranges for various net-
work parameters to fulfill the demands of multimedia 
applications. These cut-off values were considered in the 
algorithm while a tree is selected for optimality. 

network converges to an optimal solution to narrow 
down the search in the close proximity.  

In our model we have considered the nodes are of ho-
mogeneous with respect to their transmission range, proc-
essing capability and buffer length [15,16]. The wireless 
bandwidth is equally shared among the mobile entities. At 
any instance of the simulation the available bandwidth is 
optimized in consideration with the QoS required by the 
end nodes. To emulate the scenario the available band-
width for each node can be obtained randomly. However, 
random initialization of other QoS parameters like de- 

2) Simulation Parameters: The Network and GA 
parameter values considered for our simulation are given 
in the Table 1 and Table 2 respectively. During initial 
stage of our simulation, we have given a constant low 
value to the mutation probability, which did not yield  
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Figure 1. 3-D Network topology generation with 100 nodes (volume: 6000 × 5000 × 300 cubic meters).    
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lay(DL), jitter (JT) and packet loss rate (PLR) and 
blocking probability (BP) may results unpredictable net-
work performance. Although there is no established rela-
tionship among the parameters [7,17], we propose a 
sigmoidal fuzzy-logic based parameter initialization with 
error model for our GA approach in (17).  

1
( ; , )

1 exp( ( ))
sig x a c

a x c

  

        (16) 

0.2fs sig rand sig              (17) 

We establish the relationship between available band-
width and other parameters with the following formulae 
as given in Equations (18) to (21). 

( ) (( ); , )i i D DD nD XD nD fs xW x a c        (18) 

 ( ) (( ); , )i i J JJ nJ xJ nJ fs xW x a c       (19) 

( ) (( ); ,i iL nL xL nL fs xW x a c     )L L

i P P

  (20) 

( ) (( ); , )iP nP xP nP fs xW x a c       (21) 

where the triplets (xD, nD, Di), (xJ, nJ, Ji), (xL, nL, Li) 
and (xP, nP, Pi) represent maximum, minimum and cur-
rent values of DL, JT, PLR, and BP of the ith node re-
spectively. xW and xi represent maximum and allocated 
BW for the ith node respectively. The parame-
ters ( , )D Da c , ( , )J Ja c , ( , )L La c , and ( , )P Pa c used in 

evaluation of sigmoidal function are suitably selected 
constants which are obtained after a maximum number 
of testing. 
 
4. Simulation Results and Performance 

Analysis 
 
In this simulation our objective is to test if the proposed 
model is producing an optimal solution with multi-ob-
jective constraints. During simulation, the total number 
of nodes were varied from 10 to 100 by keeping density 
of the nodes in the space same by changing the space 
volume according to total number of nodes such that the 
maximum number of neighbors present for a node is lim-
ited to 6. The multicast group size was kept as one fourth 
of the total nodes. The maximum numbers of generations 
for evolution were fixed at 250. As the objectives are 
conflicting in nature, to obtain the Pareto-optimal solu-
tion we have considered different sets of randomly se-
lected weights in Equation (15) for each simulation. 
However, one may consider meta-heuristic approach for 
dynamic selection of those weights. The range of net-
work parameters and GA parameters considered for 
evaluating QoS parameters are represented in Table 1 
and Table 2 respectively. The simulation results of QoS 
parameters are shown in Table 3. 

Table 3. Average results of QoS parameters with different 
group size. 

Tot Gr HC DL PLR JT BW BP PP 

10 3 2.16 442.43 0.012 40.14 21.99 0 3.01E+07

20 5 2.76 413.36 0.013 46.39 22.52 0 2.88E+10

30 8 8.13 1545.4 0.033 53.9 20.44 0 6.13E+11

40 10 5.34 726.61 0.02 57.86 21.05 0 5.61E+12

50 13 7.9 3123.7 0.032 58.39 21.59 0 3.81E+13

60 15 9.48 3581.3 0.035 60.01 21.31 0 1.81E+14

70 18 5.93 1835.1 0.025 51.86 21.23 0 2.26E+14

80 20 6.81 1902.3 0.026 52.59 21.57 0 3.66E+14

90 23 7.6 2240.4 0.02 48.59 20.02 0 7.28E+14

100 25 8.44 2190.1 0.023 42.66 20.42 0 6.08E+14

 
4.1. A Study of QoS Parameters 
 
Hop Count (HC) represents the maximum number of hops 
required to reach any destination in the multicast tree.  

Delay (DL): is the maximum delay along any branch of 
the tree. A penalty is added if no link found between two 
nodes. 

Packet Loss Rate (PLR): is the average packet loss 
along the tree branches. The cut-off for PLR is set at 10%. 
If a branch having more than 10% packet loss then it is 
assigned a penalty, such that the model tries to search a 
path less then10% PLR. 

Jitter (JT): is the maximum delay variation along any 
branch of the tree. The cut-off is set at 20% otherwise a 
penalty is added. 

Bandwidth (BW): of the multicast tree is the average 
bandwidth requirement of all the tree branches. The 
cut-off BW is taken as 2 Mbps. 

Blocking Probability (BP): is the ratio of not getting a 
node to the total number of destination nodes in the mul-
ticast tree. 

Possible Paths (PP): in the tree are the average possi-
ble paths available for any destinations in the tree. The 
PP field gives an estimation of the search space and also  
proves the efficiency of our algorithm to find an optimal 
tree from such a huge search space. Also the BP field 
proves the definiteness of this algorithm to find a path 
from source node to destination node (if exists). 

The ‘Tot’ represents the total number of nodes con-
sidered for the simulation and ‘Gr’ represents the multi-
cast group size. In order to maintain node density, we ha- 
ve increased the volume of the search space proportion-
ately as the total number of nodes. The QoS parameter 
values were obtained by changing the total number of 
nodes and the respective multicast group size. 

The QoS parameter values presented in the table are 
the average values of 25 simulations. The multicast tar-
gets are randomly chosen for each simulation and QoS 
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work conditions is assumed to be constant, i.e. the adja-
cency matrix representing the links among the nodes is 
not altered. 

parameters are also reinitialized for each simulation. We 
have not considered HC as a parameter for optimization; 
as a result we obtained different results for different tar-
get size depending upon the availability connectivity. As 
we have considered a minimum delay of 200 ms per 
node, the delay affects with increase in the number of 
hops. However, this algorithm has ensured to find a path 
where the delay gets minimized. 

The results of QoS parameter values obtained from 
simulation show that our proposed model can adapt and 
scale well to large group members and capable of ob-
taining near optimal solution from a large search space. 
 

The robustness of our GA based approach is the inher-
ent capability of obtaining optimal solution after search-
ing from a large search space, which is shown in Figure 2. 

4.2. A Simulation Study 
 
The overall results from our simulation studies have been 
presented in Table 3. We now present the details of a sin- Further the increase in group size of a multicast envi-

ronment results in marginal elevation in the node density. 
The node density of a multicast tree is considered as the 
ratio between numbers of nodes in the tree to the size of 
the group. i.e. represented as  

gle simulation study to show the working of the algo-
rithm and the performance results that were obtained. In 
this simulation, we have considered 10 nodes as a net-
work from the environment consisting of 100 nodes. In 
the selected group, the node with index number 14 was 
taken as the source node and nodes with indices 5, 11, 15, 
17, 20 were considered as the target nodes. 

number of nodes in thetree
node density

sizeof the group
    (22) 

Table 4 presents the status of a typical simulation. The  While measuring intermediate node density, the net-  
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Figure 2. A subset of total search space representing average number of valid paths with 5 intermediate nodes. 
 

Table 4. Multicast Tree with QoS Parameter Values. 

Result obtained after generation  
25 50 75 100 125 150 

 
Multicast 
Tree 

14→11 
14→15 
14→5 
14→17 
14→6→20 

14→11 
14→15 
14→5 
14→12→17 
14→6→20 

14→11 
14→15 
14→5 
14→12→17 
14→6→20 

14→11 
14→15 
14→5 
14→12→17 
14→6→20 

14→11 
14→15 
14→5 
14→12→17 
14→6→20 

14→11 
14→15 
14→5 
14→12→17 
14→6→20 

HC 1.2 1.4 1.4 1.4 1.4 1.4 
DL 240.52 280.35 280.35 280.35 280.35 280.25 
PLR 0.097278 0.09291 0.09291 0.09291 0.09291 0.09016 
JIT 48.462 46.835 46.835 46.835 46.835 43.37 
BW 21.521 21.672 21.672 21.672 21.672 22.006 
BP 0.0 0.0 0.0 0.0 0.0 0.0   
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results obtained after every 25 simulations were recorded, 
the multicast tree obtained and the QoS parameter values 
at that instance have been represented in this table. From 
the table it can be observed that the multicast tree pro-
duced by this method does not change after 50 iterations 
and stabilizes. Please note that the values given in Table 
4 for HC, DL, PLR, JIT, BW, and BP are the mean val-
ues of the different multicast trees represented in the 
population for the respective generation. These values 
converge after 150 generations. 
 
4.3. Performance Analysis 

For the purpose of comparison, we have simulated the 
approach presented in [18] and the performance results 
have been represented as Model 1 results. The simulation 
results of the current study have been presented as Model 
2 results. In a typical simulation we have taken the total 
number of nodes in the network as 20, one source and 5 
destinations, with a population size 10, the GA was al-
lowed to run for 250 generations. The QoS metric values 
of the population are recorded after every 25 generations. 

The results of Model 1 are presented in Figures 3, 5, 7, 
9, 11 and that of Model 2 in Figures 4, 6, 8, 10 and 12. 
  The objective of this experimentation (given in Equa-
tion 11) is to maximize the bandwidth (BW) and to mi-
nimize all other parameters. From Figures 3 and 4, we 
can see that optimal bandwidth allocation in the current 
study is 22.01 Kbps as against 5.98 Kbps in Model 1, 
giving performance improvement of 267.99%. 

One of the objectives is to minimize the delay while 
optimizing all other parameters. The Pareto fronts for 
delay in Model 1 and Model 2 have been presented in 
Figures 5 and 6 respectively. The optimal delay was 
rounded to be 794.47 ms in Model 1 as against 280.25 ms 
in Model 2, which shows a performance improvement of 
64.72 % in delay parameter. 

The Pareto fronts for HC have been presented in Fig-
ures 7 and 8 respectively for Model 1 and Model 2. The 
Pareto fronts for jitter have been presented in Figures 9 
and 10 respectively. The optimal level of jitter was 
149.87 ms for Model 1 and 43.37 ms for Model 2, giving 
an improvement in performance of 71.06 %. The Pareto 
fronts for PLR have been presented as Figures 11 and 
12. 

The optimal level of PLR for Model 1 is 0.4368 and for 
Model 2 is 0.09016, giving an improvement of perform-
ance of 79.36%. 

The performance of this work is compared with the 
performance of the models suggested by other research-
ers. On comparing our results with that of Roy et al. [19], 
we find that our approach outperforms the approach pre-
sented in [19]. However, Roy et al. has considered only 
three parameters such as bandwidth requirement, band-
width utilization and end-to-end delay. The bandwidth 
requirement and bandwidth utilization possibly relates to 

one parameter, resulting multi-objective for two parame-
ters only as against 5 distinct parameters considered in 
our study. 

The non-dominated solution of bandwidth utilization 
and end-to-end delay converges almost in the same num-
ber of generations as pointed by Roy et al. [20]. The call 
blocking (BP) percentage was found to be 10% with 10 
requests per second in [20]. However in our study, we 
have obtained 0.0 BP with network size in the range of 
[10, 100] where the respective maximal group size is one 
fourth of the network size. 

In the following, we compare our work with some of 
the other related work. Gomathy et al. [11] have evaluated 
the packet delivery ratio and end-to-end delay of ODMRP, 
CAMP, and NTPMR multicast routing protocols after 
incorporation of a fuzzy based priority scheduler. Pinto 
et al. [21] has considered maximum end-to-end delay, 
average delay, maximum link utilization and cost of 
multicast tree as the four multi objective parameters for  
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Figure 3. Pareto front of bandwidth allocation in Model 1. 
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Figure 4. Pareto front of bandwidth allocation in Model 2. 
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Figure 5. Pareto front of delay in Model 1. 
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Figure 6. Pareto front of delay in Model 2. 
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Figure 7. Pareto front of HC in Model 1. 

0 50 100 150 200 250 300

1.2

1.4

1.6

1.8

2

2.2

Number of Iterations

N
um

be
r 

of
 I

nt
er

m
ed

ia
te

 n
od

es
 f

ro
m

 S
ou

rc
e 

to
 D

es
tin

at
io

n

 

(m
s)

 

Figure 8. Pareto front of HC in Model 2. 
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Figure 9. Pareto front of jitter in Model 1. 
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Figure 10. Pareto front of jitter in Model 2. 
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Figure 11. Pareto front of PLR in Model 1. 
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Figure 12. Pareto front of PLR in Model 2. 

 
optimization, where the maximum end-to-end delay and 
average delay may be considered as related features. 
Maximum delay, average delay, maximum link utilization, 
cost of the tree are the four multi objective features con-
sidered by Crichigno et al. [22]; where the first two ob-
jectives belong to one feature. Fabregat et al. [4] consid-
ered a static network and they have optimized maximal 
link utilization, hop count, average delay, and bandwidth 
consumption parameters. Marwaha et al. [23] have con-
sidered end-to-end delay, packet delivery ratio, packet 
loss ratio, routing load and route failure as the optimiza-
tion parameters for a mobile ad-hoc network with 900 
seconds as the network pause time, where the packet de-
livery ratio and the packet loss ratio are related features. 
Whereas in our work, we have considered 5 distinct pa-
rameters such as bandwidth allocation, end-to-end delay, 
jitter, packet loss rate, and blocking probability as our 
multi-objective optimization criterion. Further the simula-

tion environments considered by these researchers are not 
compatible to ours to make a meaningful performance 
comparison. 
 
5. Conclusions 
 
We have proposed a multi-objective multicast model for 
wireless ad-hoc network using GA. In this model we 
have considered five QoS parameters such as bandwidth, 
end-to-end delay, jitter, packet loss rate and blocking 
probability for multi-objective optimization. Simulation 
studies were carried out with a network of 100 nodes 
moving in a 3D space of volume: 5000 × 6000 × 300 
cubic meters with the number of multicast destination 
nodes varying in the range 5 to 30. Our model estab-
lished near optimal relationships among the QoS pa-
rameters to satisfy multi-objective optimization. Irre-
spective of increase in group size our model could opti-
mize path length between any sources to its group mem-
bers. Selection of min-cost paths from source to multiple 
destinations for multicasting is a NP-hard problem. Our 
approach could effectively obtain near optimal solution 
for QoS multicast applications in varying network condi-
tions. As per our knowledge no relationships among the 
QoS parameters have so far been established. We pro-
pose a fuzzy-based parameter setting approach which 
establishes a Sigmoidal relationship among the parame-
ters. Due to the dynamism of the network there is a pos-
sibility of sudden change of the network type and status 
of resources. The empirical results show superiority over 
the randomly selected resource values. As a future work, 
we plan to consider biological-inspired optimized tech-
niques for estimation of multicast cost arising from 
queuing delays and propagation error. 
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	The Genetic Operators:
	3) Mutation: We observe that using the standard mutation technique we do not obtain the requisite level of performance. When the mutation probability is bit low it does not yield any result. In our model we have kept the mutation probability very high, i.e., 0.2 and slowly decrease it with the progress of the generations using the following method.

	2) Simulation Parameters: The Network and GA parameter values considered for our simulation are given in the Table 1 and Table 2 respectively. During initial stage of our simulation, we have given a constant low value to the mutation probability, which did not yield 
	network converges to an optimal solution to narrow down the search in the close proximity. 

