# A Note on Directed 5-Cycles in Digraphs* 

Hao Liang ${ }^{1 \#}$, Junming $\mathbf{X u}^{2}$<br>${ }^{1}$ Department of Mathematics, Southwestern University of Finance and Economics, Chengdu, China<br>${ }^{2}$ School of Mathematical Sciences, University of Science and Technology of China,<br>Wentsun Wu Key Laboratory of CAS, Hefei, China<br>Email: "lianghao@mail.ustc.edu.cn

Received May 18, 2012; revised June 18, 2012; accepted June 25, 2012


#### Abstract

In this note, it is proved that if $\alpha \geq 0.24817$, then any digraph on $n$ vertices with minimum outdegree at least $\alpha n$ contains a directed cycle of length at most 5 .


Keywords: Digraph; Directed Cycle

## 1. Introduction

Let $G=(V, E)$ be a digragh without loops or parallel edges, where $V=V(G)$ is the vertex-set and $E=E(G)$ is the arc-set. In 1978, Caccetta and Häggkvist [1] made the following conjecture:
Conjecture 1.1 Any digraph on $n$ vertices with minimum outdegree at least $r$ contains a directed cycle of length at most $\lceil n / r\rceil$.
Trivially, this conjecture is true for $r=1$, and it has been proved for $r=2$ by Caccetta and Häggkvist [1], $r=3$ by Hamildoune [2], $r=4$ and $r=5$ by Hoáng and Reed [3], $r<\sqrt{n / 2}$ by Shen [4]. While the general conjecture is still open, some weaker statements have been obtained. A summary of results and problems related to the Caccetta-Häggkvist conjecture sees Sullivan [5].
For the conjecture, the case $r=n / 2$ is trivial, the case $r=n / 3$ has received much attention, but this special case is still open. To prove the conjecture, one may seek as small a constant $\alpha$ as possible such that any digraph on $n$ vertices with minimum outdegree at least $\alpha n$ contains a directed triangle. The conjecture is that $\alpha=1 / 3$. Caccetta and Häggkvist [1] obtained $\alpha \leq(3-\sqrt{5}) / 2 \approx 0.3819$, Bondy [6] showed $\alpha \leq(2 \sqrt{6}-3) / 5 \approx 0.3797$, Shen [7] gave $\alpha \leq 3-\sqrt{7} \approx 0.3542$, Hamburger, Haxell, and Kostochka [8] improved it to 0.35312 . Hladký, Král' and Norin [9] further improved this bound to 0.3465 . Namely, any digraph on $n$ vertices with minimum out-degree at least $0.3465 n$ contains a directed triangle. Very recently, Li-

[^0]chiardopol [10] showed that for $\beta \geq 0.343545$, any digraph on $n$ vertices with both minimum out-degree and minimum in-degree at least $\beta n$ contains a cycle of length at most 3 .

In this note, we consider the minimum constant $\alpha$ such that any digraph on $n$ vertices with minimum outdegree at least $\alpha n$ contains a directed cycle of length at most 5 . The conjecture is that $\alpha=1 / 5$. By refining the combinatorial techniques in $[6,7,11]$, we prove the following result.

Theorem 1.2 If $\alpha \geq 0.24817$, then any digraph on $n$ vertices with minimum outdegree at least $\alpha$ n contains a directed cycle of length at most 5 .

## 2. Proof of Theorem 1.2

We prove Theorem 1.2 by induction on $n$. The theorem holds for $n \leq 5$ clearly. Now assume that the theorem holds for all digraphs with fewer than $n$ vertices for $n \geq 5$. Let $G$ be a digraph on $n$ vertices with minimum outdegree at least $\alpha n$. Suppose $G$ contains no directed cycles with length at most 5 . We can, without loss of generality, suppose that $G$ is $r$-outregular, where $r=\lceil\alpha n\rceil$, that is, every vertex is of the outdegree $r$ in $G$. We will try to deduce a contradiction. First we present some notations following [7].

For any $v \in V(G)$, let

$$
N^{+}(v)=\{u \in V(G):(v, u) \in E(G)\},
$$

and $\operatorname{deg}^{+}(v)=\left|N^{+}(v)\right|$, the outdegree of $v$;

$$
N^{-}(v)=\{u \in V(G):(u, v) \in E(G)\},
$$

and $\operatorname{deg}^{-}(v)=\left|N^{-}(v)\right|$, the indegree of $v$.
We say $\langle u, v, w\rangle$ a transitive triangle if
$(u, v),(v, w),(u, w) \in E(G)$. The arc $(u, v)$ is called the base of the transitive triangle.

For any $(u, v) \in E(G)$, let

$$
P(u, v)=N^{+}(v) \backslash N^{+}(u),
$$

and $p(u, v)=\left|N^{+}(v) \backslash N^{+}(u)\right|$, the number of induced 2-path with the first arc $(u, v)$;

$$
Q(u, v)=N^{-}(u) \backslash N^{-}(v),
$$

and $q(u, v)=\left|N^{-}(u) \backslash N^{-}(v)\right|$, the number of induced 2-path with the last arc $(u, v)$;

$$
T(u, v)=N^{+}(u) \cap N^{+}(v),
$$

and $t(u, v)=\left|N^{+}(u) \cap N^{+}(v)\right|$, the number of transitive triangles with base $(u, v)$.

Lemma 2.1 For any $(u, v) \in E(G)$,

$$
\begin{align*}
n> & r+(1-\alpha) r+(1-\alpha)^{2} r+(1-\alpha)^{3} t(u, v)  \tag{1}\\
& +\operatorname{deg}^{-}(v)+q(u, v)
\end{align*}
$$

Proof: To prove this inequality, we consider two cases according to $t(u, v)=0$ or $t(u, v)>0$.
If $t(u, v)=0$, then substituting it into (1) yields

$$
\begin{equation*}
n>r+(1-\alpha) r+(1-\alpha)^{2} r+\operatorname{deg}^{-}(v)+q(u, v) \tag{2}
\end{equation*}
$$

There exists some $w \in N^{+}(v)$ with outdegree less than $\alpha r$ in the subdigraph of $G$ induced by $N^{+}(v)$ (Otherwise, this subdigraph would contain a directed 4 -cycle by the induction hypothesis). Thus

$$
\left|N^{+}(w) \backslash N^{+}(v)\right| \geq r-\alpha r .
$$

Consider the subdigraph of $G$ induced by $N^{+}(v) \cup N^{+}(w)$, by the induction hypothesis, some vertex $x \in N^{+}(v) \cup N^{+}(w)$ has outdegree less than $\alpha\left|N^{+}(v) \cup N^{+}(w)\right|$ in this subdigraph. Thus, the set of outneighbors of $x$ not in $N^{+}(v) \cup N^{+}(w)$ satisfies

$$
\begin{aligned}
& \left|N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right)\right| \\
& \geq r-\alpha\left|N^{+}(v) \cup N^{+}(w)\right| \\
& =r-\alpha\left(\left|N^{+}(v)\right|+\left|N^{+}(w) \backslash N^{+}(v)\right|\right) \\
& =(1-\alpha) r-\alpha\left|N^{+}(w) \backslash N^{+}(v)\right|,
\end{aligned}
$$

Since $G$ has no directed 5-cycle, then $N^{+}(v)$, $N^{+}(w) \backslash N^{+}(v), \quad N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right), \quad N^{-}(v)$ and $N^{-}(u) \backslash N^{-}(v)$ are pairwise-disjoint sets with cardinalities $r,\left|N^{+}(w) \backslash N^{+}(v)\right|$,
$\left|N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right)\right|, \operatorname{deg}^{-}(v)$ and $q(u, v)$, we have that

$$
\begin{aligned}
n> & r+\left|N^{+}(w) \backslash N^{+}(v)\right|+\left|N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right)\right| \\
& +\operatorname{deg}^{-}(v)+q(u, v) \\
\geq & r+(1-\alpha) r+(1-\alpha)\left|N^{+}(w) \backslash N^{+}(v)\right| \\
& +\operatorname{deg}^{-}(v)+q(u, v) \\
\geq & r+(1-\alpha) r+(1-\alpha)^{2} r+\operatorname{deg}^{-}(v)+q(u, v),
\end{aligned}
$$

Thus, the inequality (1) holds for $t(u, v)=0$.
We now assume $t(u, v)>0$. By the induction hypothesis, there is some vertex $w \in N^{+}(u) \cap N^{+}(v)$ that has outdegree less than $\alpha t(u, v)$ in the subdigraph of $G$ induced by $N^{+}(u) \cap N^{+}(v)$, otherwise, this subdigraph would contain a directed 5-cycle. Also, $w$ has not more than $p(u, v)$ outneighbors in the subdigraph of $G$ induced by $N^{+}(v) \backslash N^{+}(u)$. Let $N^{+}(w) \backslash N^{+}(v)$ be the outneighbors of $w$ which is not in $N^{+}(v)$. Noting that $t(u, v)=r-p(u, v)$, we have that

$$
\begin{align*}
\left|N^{+}(w) \backslash N^{+}(v)\right| & \geq r-p(u, v)-\alpha t(u, v)  \tag{3}\\
& =(1-\alpha) t(u, v) .
\end{align*}
$$

Because $G$ has no directed triangle, all outneighbors of $w$ are neither in $N^{+}(v)$ nor in $N^{-}(u) \backslash N^{-}(v)$. Consider the subdigraph of $G$ induced by $N^{+}(v) \cup N^{+}(w)$, by the induction hypothesis, there is some vertex $x \in N^{+}(v) \cup$ $N^{+}(w)$ that has outdegree less than $\alpha\left|N^{+}(v) \cup N^{+}(w)\right|$ in this subdigraph. Thus, the set of outneighbors of $x$ not in $N^{+}(v) \cup N^{+}(w)$ satisfies

$$
\begin{align*}
& \left|N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right)\right| \\
& \geq r-\alpha\left|N^{+}(v) \cup N^{+}(w)\right| \\
& =r-\alpha\left(\left|N^{+}(v)\right|+\left|N^{+}(w) \backslash N^{+}(v)\right|\right)  \tag{4}\\
& =(1-\alpha) r-\alpha\left|N^{+}(w) \backslash N^{+}(v)\right|,
\end{align*}
$$

Since $G$ has no directed 4-cycle, all outneighbors of $w$ are neither in $N^{-}(v)$ nor in $N^{-}(u) \backslash N^{-}(v)$. Consider the subdigraph of $G$ induced by

$$
N^{+}(v) \cup N^{+}(w) \cup N^{+}(x)
$$

by the induction hypothesis, there is some vertex

$$
y \in N^{+}(v) \cup N^{+}(w) \cup N^{+}(x)
$$

that has outdegree less than

$$
\alpha\left|N^{+}(v) \cup N^{+}(w) \cup N^{+}(x)\right|
$$

in this subdigraph. Thus, the set of outneighbors of $y$ not in $N^{+}(v) \cup N^{+}(w) \cup N^{+}(x)$ satisfies

$$
\begin{align*}
& \left|N^{+}(y) \backslash\left(N^{+}(v) \cup N^{+}(w) \cup N^{+}(x)\right)\right| \\
& \geq r-\alpha\left|N^{+}(v) \cup N^{+}(w) \cup N^{+}(x)\right| \\
& =r-\alpha\left(\left|N^{+}(v) \cup N^{+}(w)\right|\right.  \tag{5}\\
& \left.+\left|N^{+}(x) \backslash N^{+}(v) \cup N^{+}(w)\right|\right) \\
& =(1-\alpha) r-\alpha\left|N^{+}(w) \backslash N^{+}(v)\right| \\
& \quad-\alpha\left|N^{+}(x) \backslash N^{+}(v) \cup N^{+}(w)\right|,
\end{align*}
$$

Because $G$ has no directed cycle of length at most 5 , then $N^{+}(v), N^{+}(w) \backslash N^{+}(v)$,

$$
\begin{gathered}
N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right), \\
N^{+}(y) \backslash\left(N^{+}(v) \cup N^{+}(w) \cup N^{+}(x),\right.
\end{gathered}
$$

$N^{-}(v)$ and $N^{-}(u) \backslash N^{-}(v)$ are pairwise-disjoint sets of cardinalities $r,\left|N^{+}(w) \backslash N^{+}(v)\right|$,

$$
\begin{gathered}
\left|N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right)\right|, \\
\left|N^{+}(y) \backslash\left(N^{+}(v) \cup N^{+}(w) \cup N^{+}(x)\right)\right|,
\end{gathered}
$$

$\operatorname{deg}^{-}(v)$ and $q(u, v)$, we have that

$$
\begin{aligned}
n> & r+\left|N^{+}(w) \backslash N^{+}(v)\right| \\
& +\left|N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right)\right| \\
& +\left|N^{+}(y) \backslash\left(N^{+}(v) \cup N^{+}(w) \cup N^{+}(x)\right)\right| \\
& +\operatorname{deg}^{-}(v)+q(u, v)
\end{aligned}
$$

Substituting (3), (4) and (5) into this inequalities yields

$$
\begin{aligned}
n> & r+\left|N^{+}(w) \backslash N^{+}(v)\right| \\
& +\left|N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right)\right| \\
& +\left|N^{+}(y) \backslash\left(N^{+}(v) \cup N^{+}(w) \cup N^{+}(x)\right)\right| \\
& +\operatorname{deg}^{-}(v)+q(u, v) \\
= & r+\left|N^{+}(w) \backslash N^{+}(v)\right|+(1-\alpha) r \\
& -\alpha\left|N^{+}(w) \backslash N^{+}(v)\right| \\
& +(1-\alpha)\left|N^{+}(x) \backslash\left(N^{+}(v) \cup N^{+}(w)\right)\right| \\
& +\operatorname{deg}^{-}(v)+q(u, v) \\
\geq & r+(1-\alpha) r+(1-\alpha)^{2} r \\
& +(1-\alpha)^{2}\left|N^{+}(w) \backslash N^{+}(v)\right|+\operatorname{deg}^{-}(v)+q(u, v) \\
\geq & r+(1-\alpha) r+(1-\alpha)^{2} r \\
& +(1-\alpha)^{3} t(u, v)+\operatorname{deg}^{-}(v)+q(u, v)
\end{aligned}
$$

as desired, and so the lemma follows.

## Connect to Proof of Theorem 1.2

Recalling that $t(u, v)=r-p(u, v)$, we can rewrite the inequality (1) as

$$
\begin{align*}
& \left(3 \alpha-3 \alpha^{2}+\alpha^{3}\right) t(u, v) \\
& >\left(4-3 \alpha+\alpha^{2}\right) r-n+\operatorname{deg}^{-}(v)+q(u, v)-p(u, v) \tag{6}
\end{align*}
$$

Summing over all $(u, v) \in E(G)$, we have that

$$
\begin{equation*}
\sum_{(u, v \in E(G)} t(u, v)=t \tag{7}
\end{equation*}
$$

where $t$ is the number of transitive triangles in $G$, and
$\sum_{(u, v) \in E(G)}\left(4-3 \alpha+\alpha^{2}\right) r-n=n r\left[\left(4-3 \alpha+\alpha^{2}\right) r-n\right]$.
By Cauchy's inequality and the first theorem on graph theory (see, for example, Theorem 1.1 in [12]), we have that

$$
\begin{aligned}
\sum_{(u, v) \in E(G)} \operatorname{deg}^{-}(v) & =\sum_{v \in V(G)}\left(\operatorname{deg}^{-}(v)\right)^{2} \\
& \geq \frac{1}{n}\left(\sum_{v \in V(G)} \operatorname{deg}^{-}(v)\right)^{2}=n r^{2},
\end{aligned}
$$

that is

$$
\begin{equation*}
\sum_{(u, v) \in E(G)} \operatorname{deg}^{-}(v) \geq n r^{2} \tag{9}
\end{equation*}
$$

Because $\sum_{(u, v) \in E(G)} p(u, v)$ and $\sum_{(u, v) \in E(G)} q(u, v)$ are both equal to the number of induced directed 2-paths in $G$, it follows that

$$
\begin{equation*}
\sum_{(u, v) \in E(G)} p(u, v)=\sum_{(u, v) \in E(G)} q(u, v) . \tag{10}
\end{equation*}
$$

Summing over all $(u, v) \in E(G)$ for the inequality (6) and substituting inequalities (7)-(10) into that inequality yields,

$$
\begin{equation*}
\left(3 \alpha-3 \alpha^{2}+\alpha^{3}\right) t>\left(5-3 \alpha+\alpha^{2}\right) n r^{2}-n^{2} r . \tag{11}
\end{equation*}
$$

Noting that $t \leq n\binom{r}{2}$ (see Shen [7]), we have that

$$
\begin{align*}
t\left(3 \alpha-3 \alpha^{2}+\alpha^{3}\right) & \leq n\binom{r}{2}\left(3 \alpha-3 \alpha^{2}+\alpha^{3}\right)  \tag{12}\\
& <\frac{n r^{2}}{2}\left(3 \alpha-3 \alpha^{2}+\alpha^{3}\right)
\end{align*}
$$

Combining (11) with (12) yields

$$
\begin{equation*}
\left(5-3 \alpha+\alpha^{2}\right) n r^{2}-n^{2} r<\frac{n r^{2}}{2}\left(3 \alpha-3 \alpha^{2}+\alpha^{3}\right) \tag{13}
\end{equation*}
$$

Dividing both sides of the inequality (13) by $\frac{n r^{2}}{2}$,
and noting that $r=\lceil\alpha n\rceil \geq \alpha n$, we get

$$
2\left(5-3 \alpha+\alpha^{2}\right)-\frac{2}{\alpha}<\left(3 \alpha-3 \alpha^{2}+\alpha^{3}\right)
$$

that is

$$
\alpha^{4}-5 \alpha^{3}+9 \alpha^{2}-10 \alpha+2>0
$$

We obtain that $\alpha<0.248164$, a contradiction. This completes the proof of the theorem.

## REFERENCES

[1] L. Caccetta and R. Häggkvist, "On Minimal Digraphs with Given Girth," Proceedings of the 9th Southeast Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, 1978, pp. 181-187.
[2] Y. O. Hamidoune, "A Note on Minimal Directed Graphs with Given Girth," Journal of Combinatorial Theory, Series B, Vol. 43, No. 3, 1987, pp. 343-348.
[3] C. Hoáng and B. Reed, "A Note on Short Cycles in Digraphs," Discrete Mathematics, Vol. 66, No. 1-2, 1987, pp. 103-107. doi:10.1016/0012-365X(87)90122-1
[4] J. Shen, "On the Girth of Digraphs," Discrete Mathematics, Vol. 211, No. 1-3, 2000, pp. 167-181. doi:10.1016/S0012-365X(99)00323-4
[5] B. D. Sullivan, "A Summary of Results and Problems

Related to the Caccetta-Häggkvist Conjecture," 2006. http://www.aimath.org/WWN/caccetta/caccetta.pdf
[6] J. A. Bondy, "Counting Subgraphs: A New Approach to the Caccetta-Häggkvist Conjecture," Discrete Mathematics, Vol. 165-166, 1997, pp. 71-80. doi:10.1016/S0012-365X(96)00162-8
[7] J. Shen, "Directed Triangles in Digraphs," Journal of Combinatorial Theory, Series B, Vol. 74, 1998, pp. 405407.
[8] P. Hamburger, P. Haxell and A. Kostochka, "On the Directed Triangles in Digraphs," Electronic Journal of Combinatorics, Vol. 14, No. 19, 2007.
[9] J. Hladký, D. Král' and S. Norin, "Counting Flags in Tri-angle-Free Digraphs," Electronic Notes in Discrete Mathematics, Vol. 34, 2009, pp. 621-625. doi:10.1016/j.endm.2009.07.105
[10] N. Lichiardopol, "A New Bound for a Particular Case of the Caccetta-Häggkvist Conjecture," Discrete Mathematics, Vol. 310, No. 23, 2010, pp. 3368-3372. doi:10.1016/j.disc.2010.07.026
[11] Q. Li and R. A. Brualdi, "On Minimal Regular Digraphs with Girth 4," Czechoslovak Mathematical Journal, Vol. 33, 1983, pp. 439-447.
[12] J.-M. Xu, "Theory and Application of Graphs," Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.


[^0]:    *Supported by NNSF of China (No. 11071233).
    "Corresponding author.

