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ABSTRACT 

In this note, it is proved that if 0.24817  , then any digraph on n vertices with minimum outdegree at least n  
contains a directed cycle of length at most 5. 
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1. Introduction 

Let  be a digragh without loops or parallel 
edges, where  is the vertex-set and 

 ,G V E 
 V V G  E E G  

is the arc-set. In 1978, Caccetta and Häggkvist [1] made 
the following conjecture: 

Conjecture 1.1 Any digraph on n vertices with mini- 
mum outdegree at least r contains a directed cycle of 
length at most n r   .  

Trivially, this conjecture is true for , and it has 
been proved for  by Caccetta and Häggkvist [1], 

 by Hamildoune [2], 

1r 
2r 

3r  4r   and  by Hoáng  5r 
and Reed [3], 2r n  by Shen [4]. While the general  

conjecture is still open, some weaker statements have 
been obtained. A summary of results and problems re- 
lated to the Caccetta-Häggkvist conjecture sees Sullivan 
[5]. 

For the conjecture, the case 2r n  is trivial, the 
case 3r n  has received much attention, but this spe- 
cial case is still open. To prove the conjecture, one may 
seek as small a constant   as possible such that any 
digraph on n vertices with minimum outdegree at least 

n  contains a directed triangle. The conjecture is that 
1 3  . Caccetta and Häggkvist [1] obtained  

 3 5 2 0.3819    , Bondy [6] showed  

 2 6 3 5 0.3797    , Shen [7] gave  

3 7 0.3542    , Hamburger, Haxell, and Kostochka 
[8] improved it to 0.35312. Hladký, Král’ and Norin [9] 
further improved this bound to 0.3465. Namely, any di- 
graph on n vertices with minimum out-degree at least 
0.3465n contains a directed triangle. Very recently, Li- 

chiardopol [10] showed that for 0.343545 

n

, any di-
graph on n vertices with both minimum out-degree and 
minimum in-degree at least   contains a cycle of 
length at most 3. 

In this note, we consider the minimum constant   
such that any digraph on n vertices with minimum out- 
degree at least n  contains a directed cycle of length at 
most 5. The conjecture is that 1 5  . By refining the 
combinatorial techniques in [6,7,11], we prove the fol- 
lowing result. 

Theorem 1.2 If 0.24817  , then any digraph on n 
vertices with minimum outdegree at least n  contains 
a directed cycle of length at most 5.  

2. Proof of Theorem 1.2 

We prove Theorem 1.2 by induction on n. The theorem 
holds for 5n   clearly. Now assume that the theorem 
holds for all digraphs with fewer than n vertices for 

. Let G be a digraph on n vertices with minimum 
outdegree at least 

5n 
n . Suppose G contains no directed 

cycles with length at most 5. We can, without loss of 
generality, suppose that G is r-outregular, where r n   , 
that is, every vertex is of the outdegree r in G. We will 
try to deduce a contradiction. First we present some nota- 
tions following [7]. 

For any  v V G , let 

        N v u V G u E G   : ,v , 

and    deg v N v  , the outdegree of ; v

        : ,N v u V G u v E G    ,  

and    deg v N v  , the indegree of . v*Supported by NNSF of China (No. 11071233). 
#Corresponding author. We say , ,u v w  a transitive triangle if  
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      , , , , ,u v v w u w E G

   ,u v E G

( , )P u v N

   

 . The arc  is called 
the base of the transitive triangle. 

 ,u v

)

For any , let 

( ) (= \v N u ,  

and  , \p u v N v N u  , the number of induced 

2-path with the first arc ;  ,u v

   , \Q u v N u N  v ,  

and      , \q u v N u N v  , the number of induced 

2-path with the last arc ;  ,u v

   ,T u v N u N    v ,  

and      ,t u v N u N v   , the number of transitive 

triangles with base .  ,u v

Lemma 2.1 For any ,    ,u v E G 

,

0

    
   

1 1

deg , .

n r r r v

v q u v

 


      

 

 2 3
1 t u

    (1) 

Proof: To prove this inequality, we consider two cases 
according to  or  ,t u v   , 0t u v  . 

If , then substituting it into (1) yields   ,t u v 0

    2
1 1 d ,n r r r u v         eg v q .   (2) 

There exists some  w N v  with outdegree less 
than r  in the subdigraph of G induced by  N v  
(Otherwise, this subdigraph would contain a directed 
4-cycle by the induction hypothesis). Thus  

   \N w N v r r    . 

Consider the subdigraph of G induced by 
, by the induction hypothesis, some 

vertex 
   N v N w 

   x N v
  

N w  


 has outdegree less than 
N v N w    in this subdigraph. Thus, the set of 

outneighbors of x not in  satisfies    N v N  w

      
   

      
     

\

\

1 \ ,

N x N v N w

r N v N w

r N v N w

r N w N





 

  

 

 

 



  

  

  

N v

v


 

Since  has no directed 5-cycle, then G  N v , 
,  ,     \N w vN        \N x N v N w    N v  

and  are pairwise-disjoint sets with car-    \N u  v

   
N

dinalities r, \ N v N w ,  

      \N x N v N w   ,  and  deg v  ,q u v , we 

have that  

          
   

       
   

       2

\ \

deg ,

1 1 \

deg ,

1 1 deg , ,

n r N w N v N x N v N w

v q u v

r r N w N v

v q u v

r r r v q u v

 

 

    



 





   

 

    

 

      

 

Thus, the inequality (1) holds for  , 0t u v  . 
We now assume  ,t u v  0 . By the induction hy- 

pothesis, there is some vertex    w N u N v    that 
has outdegree less than  ,t u v  in the subdigraph of G 
induced by    N vN u , otherwise, this subdigraph 
would contain a directed 5-cycle. Also, w has not more 
than  ,p u v  outneighbors in the subdigraph of G in- 
duced by    N u\N v . Let    \N w N v 

 N v
 be the 

outneighbors of w which is not in . Noting that 
   p u v,v r  ,t u , we have that  

       
   

\ ,

1 , .

N w N v r p u v t u v

t u v





    

 

,
       (3) 

Because G has no directed triangle, all outneighbors of 
w are neither in  N v  nor in . Consider 
the subdigraph of G induced by 

   \N u N v 

   , by the 
induction hypothesis, there is some vertex 

N v N  w

 x N v   
 N w  that has outdegree less than    N v N w    

in this subdigraph. Thus, the set of outneighbors of x not 
in    wN v N   satisfies  

      
   

      
     

\

\

1 \

N x N v N w

r N v N w

r N v N w N v

r N w N v





 

  

 

  

 



  

  

   ,

      (4) 

Since G has no directed 4-cycle, all outneighbors of w 
are neither in  N v  nor in . Consider 
the subdigraph of G induced by  

   \N u N v 

    N v N w N x     , 

by the induction hypothesis, there is some vertex  

    y N v N w N x       

that has outdegree less than  

     N v N w N x      

in this subdigraph. Thus, the set of outneighbors of y not  

in      N v N w N x     satisfies  
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\

\

1 \

\ ,

N y N v N w N x

r N v N w N x

r N v N w

N x N v N w

r N w N v

N x N v N w





 



   

  

 

  

 

  

 

   

  

 

  

 

     (5) 

Because G has no directed cycle of length at most 5, 
then , ,   N v    \N w N v 

       \N x N v N w , 

       \ (N y N v N w N x    
 

, 

 N v  and  are pairwise-disjoint sets 
of cardinalities r, 

   \N u N v
   \N w N v  ,  

      \N x N v N w   , 

        \N y N v N w N x     , 

 deg v  and , we have that   ,q u v

   

      
        
   

\

\

\

deg ,

n r N w N v

N x N v N w

N y N v N w N x

v q u v

 

  

   



 

 

  

 

 

Substituting (3), (4) and (5) into this inequalities yields  

   

      
        
   

   

        
   

   
         

   
       

2

2

2

3

\

\

\

deg ,

| ( ) \ ( ) | (1 )

\

1 \

deg ,

1 1

1 \ deg

1 1

1 , deg ,

n r N w N v

N x N v N w

N y N v N w N x

v q u v

r N w N v r

N w N v

N x N v N w

v q u v

r r r

N w N v v q u v

r r r

t u v v q u v







 



 



 

  

   



 

 

  



  



 

 

  

 

   



  

 

    

   

    

   

,

 

as desired, and so the lemma follows.  

Connect to Proof of Theorem 1.2 
Recalling that   ,t u v r p u v  , , we can rewrite 

the inequality (1) as  

   

       

2 3

2

3 3 ,

4 3 deg , , .

t u v

r n v q u v p u v

  

  

 

      
  (6) 

Summing over all   ,u v E G  , we have that  

   
 

,

,
u v E G

t u v t


 ,               (7) 

where t is the number of transitive triangles in G, and  

   
   2 2

,

4 3 4 3 .
u v E G

r n nr r n   


          (8) 

By Cauchy’s inequality and the first theorem on graph 
theory (see, for example, Theorem 1.1 in [12]), we have 
that  

   
 

 
  

 
 

2

,

2

2

deg deg

1
deg ,

u v E G v V G

v V G

v v

v nr
n

 

 







 
   

 

 


 

that is  

   
  2

,

deg .
u v E G

v nr



              (9) 

Because 
   

 
,

,
u v E G

p u v

  and  are both 

equal to the number of induced directed 2-paths in G, it 
follows that  

   


,

,
u v E G

q u v

 

   
 

   
 

, ,

,
u v E G u v E G

p u v q u v
 

 , .         (10) 

Summing over all   ,u v E G   for the inequality (6) 
and substituting inequalities (7)-(10) into that inequality 
yields,  

   2 3 2 2 23 3 5 3t nr          .n r



   (11) 

Noting that  (see Shen [7]), we have that  
2

r
t n

 
  

 

  

 

2 3 2 3

2
2 3

3 3 3 3
2

3 3 .
2

r
t n

nr

     

  

 
     

 

  

    (12) 

Combining (11) with (12) yields  

   
2

2 2 2 2 35 3 3 3 .
2

nr
nr n r        

Dividing both sides of the inequality (13) by

  (13) 

 
2

2

nr
,  
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and noting that r n n     , we get  

  2 22 3 ,  


      

that is  

0.

btain that 

2 5 3 3 3 

4 3 25 9 10 2         

We o 0.248164  , a contradiction. This
completes the proof of the theorem. 
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