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ABSTRACT 

We investigate correlations between neighbor degrees in the scale-free network. According to the empirical studies, it is 
known that the degree correlations exhibit nontrivial statistical behaviors. With using an analytical approach, we show 
that the scale-freeness and one of statistical laws for degree correlations can be reproduced consistently in a unified 
framework. Our result would have its importance in understanding the mechanisms which generate the complex net-
work. 
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1. Introduction 

It is known that a diversity of complex networks include- 
ing sociological, technological, and biological ones exhi- 
bit the scale-freeness [1-13]. These results pose us a pro- 
blem about the origin of this feature and about mechani- 
sms which produce such organized behavior in complex 
networks. Naturally it is considered that the complex 
networks are generated through processes in which nodes 
are correlated to each other. The experimental data which 
exhibits the organized and hierarchical structures en- 
hances the importance of the node correlations in the 
complex networks [14-18]. Indeed the model based stud- 
ies have shown that, in order to reproduce the network 
structure in the real world, additional ingredients other 
than the simple rule such as the preferential attachment 
are required in the simulation [11-18]. 

Recent empirical studies have revealed that there exist 
ordered structures of node correlations in real world 
complex networks. One example of these structures 
would be given by fractality which characterize geomet- 
rical structures of various complex systems, in which 
they show the self-similarity on all length scales [14,15]. 
On the other hand, more primitive relation between 
nodes would be represented by a joint probability 

 for two neighbor nodes of degree 1  and 2  
connected by an edge. In this paper, we investigate this 
basic statistics, the degree-degree correlation in the com- 
plex network. One characteristic feature of 

 1 2,P k k

power law 

12 ~ pkk


                (1) 

with a constant p  for the interaction and regulatory 
networks of proteins [16]. The same tendency is also 
confirmed with the Internet, another typical example of 
the complex networks [17]. 

The ubiquity of scale-free networks in the real world is 
one of the fundamental issues in the complex network 
studies. It would suggest that there exist common mecha- 
nisms which underlie complex networks. Then one of our 
final goals is to obtain a theory which can describe vari- 
ous complex networks and their statistical behaviors in a 
unified framework. For this aim, we have introduced in 
the recent study an analytical approach in which condi-
tions required for the scale-free degree distribution are 
considered [19]. Due to the ubiquity of the scale-freeness, 
it is expected that the analytical conditions are given by 
those which are independent to specific systems and 
common to a wide variety of networks. Indeed, it has 
been shown that the power law distribution can be ob- 
tained without introducing conditions except for general 
ones. In this paper we extend the framework given in this 
previous study and show that it gives the degree correla-
tion which agrees to the experimental measurement rep-
resented by Equation (1).  k k

 k1 2  
can be quantified by 

,P k

2k  for each fixed 1 , the aver- 
age of the neighbor degrees for a given value of 1 . It 
has been reported that the 

k
k

2k  profile is fitted with a  

2. Framework for P(k1, k2) 

With using a framework introduced in the recent study 
[19], we investigate the degree correlation  1 2,P k k

 1 2,k k
. At 

first we normalize the pair of degrees  and in- 
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troduce variables  , X Y  which take their values respe- 
ctively on the finite interval  , 0,1X Y  . For example, 
relations between X  and  are given by 1k

   1 1,min 1,max 1,min 1,min 1,k k k k X k k    X



   (2) 

where the former example is taken for cases such as 

1,min 1,max1   and the latter for 1,max . These 
normalizations are summarized by the expression 

,k kk   k  

  3

1 2ik                  (3) 

with constants 1 , 2 , and 3 . Under the transforms 
between  1 2  and (X, Y) given by the expression (3), 
the probability  is represented by 

,k k
 1 2, k P k  ,P X Y . 

In this approach we take an analytical expression of 
 ,P X Y  in the expanded form and consider the condi- 

tion required for this function. Then, for variables (X, Y) 
and the probability  ,P X Y , we require conditions that 
X  and  are continuous and that Y  ,P X Y

 ,
 is given 

by the smooth function with respect to X Y
P

. Also in 
order to investigate the scaling behavior of  ,X Y , we 
take ( , )x y  

,x yX e Y e  


             (4) 

where . Because  , 0,x y   ,P X Y  is a positive 
function which takes its value in the finite interval  0,1 , 
the analytical representation of  ,P X Y  as the function 
of ( , )x y  is given in the form 

  ( , ), x yP ex y              (5) 

with the scaling function ( , )x y  

1 2

1, 2
1 2,

( , ) n n
n n

n n

x y   x y          (6) 

where 
1 2,n n  are constant coefficients and  ( , )x y  is 

taken to satisfy the normalization 


0 0

1 d d ,x yP x y
 

              (7) 

For the single variable case,  is transformed to  1P k
( )( ) xP x e   with ( )x , the expansion of x. If  

is scale-free and given in the power law 
( )P X

~ X( )P X   
with a constant  , ( )x  is given by the first order 
expansion which satisfies 

2 ( ) 0x x                 (8) 

Although, according to the result given in the recent 
study [19], the converse fact has been shown that the 
condition (8) is derived without introducing special con- 
ditions except for the continuous conditions for x  and 

. The point of this result is that this condition (8) is 
obtained with using the identical relations which the con- 
tinuous distribution function satisfies generally. Then this 
condition is required for arbitrary variables such as 

( )P x

X  
and . Y

3. The Representation of P(k1, k2) 

Extending the analysis with the single variable given in 
the reference [19], we can show that  represen- 
tation is uniquely determined in our framework. At first 
we take a conditional probability , the function 
with respect to  for each fixed value of 

( , )P x y

( )xP y
y x , defined as 

   
0

( ) d,xP y P yP ,x y x


  y

)

x

x y

         (9) 

It apparently satisfies . 
0

1 d (xyP y


 
For convenience of calculation, we introduce the cu- 

mulative distribution of  by ( )xP y

.0 ( ) d ( )x
y

P y yP y


             (10) 

Then we can represent it as 
( )

.0 ( ) x y
xP y e             (11) 

with an expansion 

,
1

( ) ( ) n
x x n

n

y 


          (12) 

where , ( )x n x  is given by the other expansion of x . 
According to these definitions,  is given by ( )xP y

( )
,0( ) ( ) ( ) x y

x y x y xP y P y y e           (13) 

Applying the condition (8), it is required that 

2 ( ) 0y x y               (14) 

and 

,1 ( )
,1( ) ( ) x x y

x xP y x e          (15) 

For ( , )( , ) x yP x y e  , we can show that the same 
condition (11) requires that 

2 2( , ) ( , ) 0x yx y x y           (16) 

If we take the conditional probability  with re-
spect to x, then from the condition (11) it is required to 
have the form 

( )yP x

,1 ( )
,1( ) ( ) y y x

y yP x y e
          (17) 

Introducing  and  by ( )yN y ( )xN x

    
0 0

1 ( ) d ,1 d, ,y xN y xP N yP x y xx
 

   y  (18) 

 ,P x y  is represented by the equivalent two forms 

 
 
 

 
 

,1 ,1( ) ( ),1 ,1, y xy x x yy x

y x

y x
P e ex y

N Ny x

      (19) 

and we obtain the identical relation 
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 
 

,1

,1 ,1

( )

( ) ( )ln ( )

y

x x x

y x

x N x c y



  
     (20) 

Because 

,1( ) ( )ln y yy N y 

 yN y  and  xN x  are independent to x 
and y respectively, the condition (16) for  ,x y  is 
given by comparing each side of Equation (20 we 
obtain the  ,

). Thus 
x y  representation 

  0ln , x y cP x y      , xx y     y (21) 

with constants 

xy

0 , x , y  and c . 

4. Degree Correlations in Real World  

In order to confirm our result in the previous section, we 

Networks 

give a comparison to the experimental measurement of 
the real world networks. For the degree-degree correla- 
tions  1 2,P k k  given from Equation (21), we calculate 

2k  f ixed value of 1k  and compare it to the 
experimental representation (1).

At first, with using the expression (3) for the normali- 
za

or each f
 

tion of 1k , the correspondence between 1k  and x  is 
given by 

  1,0 1,11 1ln xk               (22) 

with constants 1 , 1,0 , and 1,1 . While, from the rep- 
resentation (21) nsform tween 2k  and , the tra  be  ,x y  
is generally given by 

 2ln     2,0 2,12 yk x x           (23) 

where  2,0 x  and  2,1 x  are given by linear equa- 
tions of x  and 2  i stant. 

Then 
s a con

2 2k   is given by 

     2 2 2 2
0

xPk y
y

 


   
   (24) 

Using the representation of 

2 2d
k

yk
 

 xP y  
age is g

given by Equation 
(9) and Equation (21), the aver iven by 

       2,0 2,1

2 2

( ) ( )2
2,1

0

d y c xx x y y
y c xy e ex

    


   
 (25) 

with constants 

k 

y  and c  and this is calculated as 

 
 

2,02,1 2 ( )( )y c

2,12 ( )
x

y c

e
x x

 
   

        (26) 

Because 

x x  

2,0 ( )x  and  2,1 x  are represented by the 
linear equations of x , th erm in the above equa- 
tion is estimated as 

e first t

   

   
2,1

1
2,1

~ ~ ln
2

y c

y c

x x
x k

x x

  
  



 
    (27) 

for . Furthermore, using the approximation  1 1k 

 1 11ln ~ lnnk kk , Equation (26) is approximateln l
a power law 

d by 

12 ~ kk                  (28) 

with a constant   fo 1k .r a large  Then behavior of 

2k  tail for a lar  1k  agrees to e experimental rep-
tation (1). 

ge  th
resen

5. Discussions 

ned in the introduction, our final goal 

of the 
fr

As we have mentio
is to give a description of the complex network in a uni- 
fied framework. For this aim, it is required to obtain a 
theory which explains the organized structure of the 
complex network and allows to deal with different net- 
works. In this final section, we discuss this issue. 

In this paper we have shown that the extension 
amework introduced in the recent study [19] consis- 

tently produces the degree correlation in the form which 
agrees to the experimental data. Applying the analytical 
condition (8) for the single variable distribution to the 
joint probability, we obtain a unique representation for 
 1 2,P k k , the distribution of the neighbor degrees. We 

tice that some properties of the complex net- 
work, the scale-free distribution and the degree correla- 
tion represented by Equation (1), can be derived from the 
same condition (8). It would suggest that the rules which 
generate scale-free networks and their correlated struc- 
tures can be described in a unified framework. 

Also we should notice that our framework w

should no

hich gives 
th

r final goal, further investigations 
sh
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