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ABSTRACT 

Evolution of materials, following the design requirements of special structures, has shifted interest towards develop-
ment of composite members able to meet strength requirements “tailored” to specific applications. These members can 
provide appropriate, more cost effective structures, however absence of generic design guidelines raise constraints to-
wards derivation of optimized structures. Reliability-based assessment can overcome this limitation by ensuring that 
acceptable levels of target reliability are achieved throughout their service life. This paper presents a methodology for 
reliability assessment of composite members based on appropriate limit state functions derived according to fundamen-
tal failure criteria, Tsai-Hill and Tsai-Wu, applicable to composite materials. The methodology that is proposed em-
ploys a Stochastic Response Surface Method (SRSM) which combines in discrete steps FEA modelling, numerical 
simulations and analytical probabilistic assessment techniques, allowing use of commercial and custom developed spe-
cialized numerical tools. Application of the proposed methodology on a complex composite structural geometry will 
illustrate its efficiency and evaluate the reliability performance of the limit states derived and examined. 
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1. Introduction 

The increasing trend of the use of composite materials 
has shifted great interest lately towards optimization of 
corresponding design processes. The design of composite 
components is typically performed using deterministic 
methods in order to predict the local behaviour of the 
material under the specified conditions of loading and 
constraints. Limitation of this deterministic approach is 
related to the uncertainties inherent in the mechanical 
behaviour of materials and related to the load which the 
component is subjected during its service life. In practice 
these two aspects can be treated deterministically by in- 
troducing the use of safety factors, resulting to non-opti- 
mal employment of the materials and its characteristics, 
neglecting concepts of structural reliability. 

In order to overcome the above fact, probabilistic con- 
cepts can be employed accumulating in a single indicator, 
that of reliability, the level of structural integrity of a 
structure subject to stochastic loads. This practice has 
been successfully implemented over the last decades in 
applications with highly random inputs or minimum fail- 
ure tolerance such as nuclear [1], aviation [2], offshore 
[3,4], and critical infrastructure [5,6] 

This paper presents a methodology for probabilistic 
assessment of composite materials, which allows estima-  

tion of the reliability of composite structures based on 
relevant failure criteria, Tsai-Hill and Tsai-Wu, with a 
combination of a Stochastic Response Surface Method 
(SRSM), Finite Element Analysis (FEA) simulations and 
employment of analytical methods for calculation of re- 
liability, such as First Order Reliability Method (FORM). 
Application of the methodology on a typical F1 racing 
car front wing composite structure will illustrate its effi- 
ciency and evaluate the reliability performance of the 
different failure criteria that have been examined. 

2. Failure Criteria for Composite Members 

2.1. General 

A universal definition for failure, can describe the situa- 
tion “when the component can no longer fulfil the func- 
tion for which it was designed” [7]. In this general defi- 
nition, besides the state of complete fracture, secondary 
conditions, such as that of excessive deflection or a sim- 
ple matrix cracked should be considered. Among the 
numerous ways to describe failure, the most evident one 
seems to happen when complete separation occurs. It is 
quite evident that in such case the part will no more carry 
the loads it was designed to. To assess failure, an appro- 
priate criterion should be employed as for isotropic ma- 
terials. 
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For homogeneous isotropic materials, many reliable 
criteria exist, intending to evaluate different aspects. For 
example Rankine developed a criterion based on the ma- 
ximum normal stress, Tresca on the maximum shear 
stress and von Mises on maximum distortional (devia- 
toric) energy [8]. Criteria for composites have been de- 
rived based on those fundamental ones, introducing the 
anisotropic properties under the assumptions of stress- 
strain linearity and homogeneity of the material. 

Before considering laminates, it is necessary to start 
from the observation of one single ply, for which five 
basic failure modes have already been defined: Longitu- 
dinal tensile, Longitudinal compressive, Transverse ten- 
sile, Transverse compressive, Shear. The strengths in the 
principal material axes can be used as reference values to 
assess the failure.  

To define the strength of a loaded lamina, it is possible 
to apply failure criteria, generally classified into three 
categories [7]: 
 Limit criteria (simple with individual stresses); 
 Interactive criteria (interaction of multi-axial stresses 

allowed); 
 Hybrid criteria (combined selected aspects of the 

above two). 
This paper will examine interactive criteria in order to 

perform a structural reliability assessment; in particular 
the Tsai-Hill and Tsai-Wu failure criteria. These criteria 
are formulated in order to consider the interactions among 
actual and allowable stresses. 

2.2. Deviatoric Strain Energy Theory (Tsai-Hill) 

The Tsai-Hill criterion is an extension to Hill’s anisot- 
ropic failure study that was derived from the Von Mises 
yield criterion for metals [9]. In it, deviatoric energy is 
used in an extensive way to assess isotropic ductile met- 
als. 

The von Mises criterion was the starting point for Hill 
to characterise failure in anisotropic ductile metals, con- 
sidering specific parameters to define the anisotropic pro- 
perties of the material. Azzi and Tsai [10] found the rela- 
tion between those parameters and the strength parame- 
ters of a lamina, adapting the criterion to orthotropic 
composites. 

The general expression of the Tsai-Hill criterion is 
[11]: 
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In this, as in all other interactive criteria, only one 
equation must be satisfied, while the limit criteria need 
five different equations to be considered. Drawback of 
the Tsai-Hill criterion is that it does not differentiate ten- 
sile from compressive stresses.  

2.3. Interactive Tensor Polynomial Theory  
(Tsai-Wu) 

Tsai and Wu modified the tensor polynomial theory pro- 
posed by Gol’denblat and Kopnov [12], by considering 
the existence of a failure surface in the stress space [13]. 
Their purpose was to overcome the disadvantages of the 
Tsai Hill criterion. The general notation expresses: 

1 with , 1, 2, ,6i i ij i jf f i j        

where i  and ijf f  are respectively the second and 
fourth order strength tensors. 

For a plane state of stress, after the expansion of all 
terms, the calculation and reduction of some of them, the 
Tsai-Wu criterion can be written as [11]: 
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This equation can be used to assess failure in a com-
posite lamina and the coefficients’ expressions can be 
found below [11]. 

Coefficients for longitudinal strengths: 
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Coefficients for transverse strengths: 
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Coefficient for shear strength: 
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Interaction coefficient: 
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This failure criterion can distinguish between tensile 
and compressive stresses due to appropriate coefficients 
and can be easily incorporated in automated computa- 
tional procedures. 

2.4. Comparison of Failure Criteria 

The left-hand side of the limit state inequalities of the 
failure criteria is referred to as Failure Index (FI) and can 
be used to define the reserve strength of the lamina. 
Starting from this, the strength of a component can be 
obtained by the Strength Ratio (SR), which is defined as 
“the ratio by which the load must be factored to just fail” 
[14]. It is important to point out that SR is not always the 
reciprocal of the FI. In fact, for Tsai-Hill criterion it can 
be defined as [14]: 
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while for Tsai-Wu criterion it is [14]: 
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which is solution for equation: 
2
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where, using the previous Tsai-Wu formulations for co- 
efficients , the following parameters can be calculated 
as: 

f
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Alternatively, the Margin of Safety (MoS) can be em-
ployed for both the criteria as: 

MoS SR 1                  (5) 

The margin of safety provides a more intuitive under-
standing, than FI and SR, of what is actually happening 
in the material. In fact, in a component subjected to a 
certain stress field, when  (negative or null 
value) there is a failure. Whereas, if  (positive 
value) the material will be safe and the larger it is the 
safer. 

MoS 0
MoS 0

3. Structural Reliability Assessment 

3.1. Introduction to Structural Reliability  
Analysis 

Traditionally, the methods used for the assessment or the 
design of a structure are based on safety factors, partial or 
global, usually derived from the experience gained on the 
field, and take into account the total uncertainty on the 
model. This practice, does not consider the effect of the 
scheme of calculation employed, or the uncertainties of 
the several design variables. A probabilistic approach, on 
the contrary, can deal in a systematic way with the dif- 
ferent types of uncertainties included in the design, 
through a methodological procedure, characterizing with 
a degree of confidence the level that the design specifica- 
tions are met.  

Reliability Analysis (RA) is the technique that allows 
the estimation of the joint probability of non-fulfilment 
for each of the functional requirements mathematically 
expressed through corresponding limit states. The RA 
does not estimate Risk (which is defined [15] as the pro- 
duct of the Probability of failure to the Loss given failure) 
but focuses on quantification of frequency of occurrence, 
leaving consequences of a failure in a separate techno- 
economical study. 

3.2. Fundamental Reliability Problem 

It is assumed that design variables are expressed by an 
n-dimensional vector X , which has a known continuous 
joint distribution  Xf X . Each functional requirement 
must necessarily be expressed by  jg X , called limit- 
state function, which associates a negative value if the 
state identified by the variables results in failure, a posi- 
tive for safe and a null value for the critical limit condi- 
tion [16]. There should be as many limit-state functions as 
the number of functional requirements and a global func- 
tion  g X , usually expressed as combination of all the 

 jg X , which is satisfied if all requirements are. The 
probability of failure fP  is the likelihood that the vari- 
ables satisfy or not each of the limit-states, and is given 
by [17]: 

    
  0

Prob 0 df X
g X

P g f xX


    x     (6) 

Reliability is defined as the complementary of the pro- 
bability of failure, which is 1 fP . Based on the defini-
tion of resistance (supply) and stress limit (demand), the 
failure area could be defined as their difference.  

3.3. Stochastic Response Surface Method (SRSM) 

Complicated failure mechanisms can impose significant 
difficulties on the derivation of the corresponding limit 
state expression as a function of the variables considered 
stochastically. Towards this and depending on the nature 
of the limit state, the Stochastic Response Surface Me- 
thod (SRSM) can be employed in order to provide an 
effective and precise estimate of the reliability of a stru- 
cture [16]. According to this method, the real limit-state 
function is estimated by a simpler mathematical function, 
such as polynomial quadratic, obtaining an approximated 
limit-state function, constructed by using some design- 
nated sample points, where the response surface is suited 
to the limit-state.  

Once the approximation has taken place, fP  and all 
the other quantities can be evaluated with both stochastic 
and analytical methods, such as FORM, SORM or MCS. 
These, in fact, act in much more efficient way when 
working with the response surface than with the actual 
limit-state [18]. Therefore, SRSM is considered to be the 
link between input and output of a process, since it plays 
a role in the construction of functions and variables that 
are simulated. 

One of the drawbacks of this method is the lack of ac- 
curacy in cases of limit-state functions to be approxi- 
mated being strongly non-linear. It has been investigated 
in [18] how the use of higher order polynomials or the 
relocation of the sample points in second-order polyno- 
mials provides significant benefits. The present work 
does not discuss alterations of the method, but refers to 
the quadratic SRSM, which is suitable for the limit states 
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under consideration. In fact, quadratic functions can 
match the tail curvature of response surface with good 
approximation and also restrict the number of required 
simulations [19]. 

The real limit-state function  g X  is approximated 
by  g X

g

 that usually is a k-th order polynomial func-
tion having unknown coefficients. By evaluating the 
value of  X  at a certain number of samples of X , 
it is possible to calculate the coefficients that minimize 
the difference between real and approximated function. 
A generic quadratic polynomial form can be denoted as 
[18]: 
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where the coefficients , i  and i  are the a b c  2 1n   
unknowns that can be found solving a set of equations 
obtained by some sample points from  g X .  

3.4. Analytical Reliability Methods 

Among available methods for the approximation of the 
reliability values, First and Second Order Reliability Meth- 
ods (FORM/SORM) are proven to be efficient by trans-
forming the stochastic variables in a multidimensional 
U-space and using Taylor series expansions of the corre-
sponding order, modifying the problem to that of finding 
the shortest distance from the origin to the intersection of 
the transformed set of axes. The transformation of the 
basic variables {X} in standard and normal uncorrelated 
Gaussians {Z} is follows [16]: 
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Several methods such as discussed in [17] have been 
proposed to transform the variables {X} into {Z} and 
then perform the approximation. Without describing into 
detail these methods, it is possible to state that the best 
approximation should be obtained near the design point, 
in order to reduce errors or number of iterations required. 
Since this point is not known a priori, it is often neces- 
sary to use iterative procedures. An efficient FORM 
method is the one proposed by Hasofer and Lind [20], 
and can be summarized in the following six steps: 

1) Definition of the stochastic variables Xj (i.e., type 
and characteristics of the distribution) to represent the 
limit-state functions; 

2) Transformation of the variables into standard normal 
Gaussian Zj; 

3) Calculation of 
j

g
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4) Calculation of j  with equation: 
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5) Calculation of   by solving: 
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j
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6) Calculation of  fP    . 
After performing steps I and II and defining limit state 

function 0g   in terms of   and j , the iterative 
process starts with a guess of   and j . The initial 
values are used in the limit state function to obtain new 
values of   and j  that are compared firstly with the 
initial ones and then with those cyclically obtained using 
procedure described in steps 4 and 5, until the values 
converge (at the chosen level of accuracy).  

In the Hasofer-Lind reliability index method, the ran-
dom variables X are assumed to be normally distributed. 
In cases of non Gaussian variables, one of various avail-
able methods [21,22] for conducting transformations to 
the normalized space should be employed. An extension 
of FORM attempts to approach the limit-state area at the 
second order. Second Order Reliability Method describes 
the limit-state function through a second order Taylor 
expansion [23,34]. The probability integral is solved us-
ing an approximate solution (asymptotically true for β 
tending to infinity), which depends on the curvatures of 
the limit-state function at the design point. 

To solve the integral in exact way it is possible to pro- 
ceed to Level III methods: analytically in simpler cases; 
numerically or through simulation methods in more com- 
plicated ones. The numerical integration methods have 
limitations in the number of variables that can be consid- 
ered, due to computational difficulties. The Monte Carlo 
Simulation (MCS) [25], involves the random generation 
of many variables iX  according to the actual distribu- 
tion of X [3]. Then fP  is estimated simply by the fre- 
quency with which   0i g X . Its direct implementa- 
tion is computationally very costly, since in order to es- 
timate sufficiently accurate results (1% to 10%), the 
number of events to be generated is of the order of 104 ÷ 
102 times the inverse of the probability of failure [16]. 
Furthermore, in MCS, the design point is not calculated. 
This is the reason why the method is not always suitable 
for such optimization problems in its general case. 

4. Reliability Analysis of a Racing Car Wing 

4.1. Simulation Procedure 

The discrete steps that have been presented so far will be 
combined in a unified methodology for the reliability  
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assessment of a reference composite structure. Figure 1 
presents in a block diagram form the steps followed. 

The procedure starts with building the complicated 
CAD model; for the case that will be examined, which is 
categorized as a complicated geometry, Dassault Systems 
CATIA software was employed and the corresponding 
model was imported in ABAQUS [26] Finite Element 
Analysis Software where composite material properties 
were assigned in order to proceed to simulations. After 
determining the variables that will be considered sto- 
chastically, load properties should be assigned and a de- 
sign variables’ matrix should be constructed. For each set 
of the design variables an FEA simulation should be 
executed and results for each element should be extracted. 
The results of stresses for each case are then imported in 
a separate routine in order to calculate the values of the 
two different limit states. Once those values have been 
obtained for each element, quadratic polynomial regres-
sion takes place in order to evaluate the performance of 
each limit state as a function of the basic stochastic vari- 
ables. Once this is completed, a separate Matlab routine 
will provide the values of reliability index for each ele- 
ment based on FORM method and a set of specified sta- 
tistical distributions for each of the stochastic variables. 
In the absence of software able to post-process results 
providing reliability contours, extraction of the geometry 
from the FEA software and using a dedicated Matlab  
 

 

Figure 1. Simulation procedure block diagram. 

routine will produce appropriate plots as will be pre- 
sented in the later sections. 

4.2. Reference Structure 

The structure that has been selected for application of the 
methodology is a typical F1 racing car front wing due to 
its complicated geometry and the fact that this is a com- 
mon application of composite materials where reliability 
based design has specific interest. The geometry that has 
been created in CATIA software is presented in Figure 2, 
while in Table 1 the properties of the considered stochas- 
tic variables are listed.  

The variables that have been selected are four, one for 
the loads applied and three for the material properties. It 
can be seen how for mean and standard deviation of each 
pair, the load has been changed proportionally for hori-
zontal and vertical direction of 1  and the same be-
tween tensile and compressive with regard to strengths 

2

X


X


 and 3X


. The shear strength, is defined by a single 
statistical distribution. The methodology that has been 
followed can accommodate numerous variables in a more 
analytical reliability assessment.  

4.3. Material Selection and Composite Lay-Up 

Carbon fibres are generally classified in groups depend- 
ing on their modulus, which can be: standard, intermedi- 
ate, high, and ultra-high. Composites that are based on 
intermediate modulus (IM) are quite new, starting to find 
 

 

Figure 2. Reference structure geometry. 
 

Table 1. Statistical properties of design variables. 

Variable Mean (
jX

  ) Std Dev (
jX

  ) 

1 1 1,
H V

X X X   
 

  

 3 37.5 10 3.75 10,     4 4,5.0 10 2.5 10  

2 2 2,
T C

X X X   
 

  

 2400,1300   480,260  

3 3 3,
T C

X X X   
 

  

 50,250   10,50  

4X


 85  17  
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wider employment in the aerospace industry. In F1 stru- 
ctures, on the contrary, their use is well established [27]. 
IM fibres are usually combined with a specific polymer 
matrix. A laminate that uses the mixture of these two 
materials has been selected and it is denoted with IM7/ 
8552 Carbon/Epoxy composite. Its three dimensional 
elastic properties [28] have been entered in Abaqus as 
engineering constants and are listed in Table 2. 

In F1 cars, the nose of the front wing is mainly manu- 
factured using a honeycomb structure coated with com- 
posite laminates [27]  In Abaqus its section has been de- 
fined and assigned homogenous. The wings and the end- 
plates have been modeled using the composite lay-up tool. 
A standard thickness of the layers [29] was set to be iden- 
tical for all plies equal to 0.125 mm. The stacking se- 
quence used for the wings and for the endplates are re- 
spectively: 

 wings 2
45 45 0 90

s
s    

 endplates 4
45 45 0 90

s
s    

4.4. Mesh 

The procedure for mesh optimization is very important, 
since it represents the compromise between the accuracy 
of results and the computational time. The latter is not just 
referred to Finite Element Analysis, but also to the de- 
manding execution of iterations of the algorithm proposed 
by Hasofer and Lind. 

Mesh optimisation was performed through a conver- 
gence study on the different meshes created. The maxi- 
mum displacement of the structure in some reference 
points has been measured as variable, considering loca- 
lised mesh refinements. For all of them, different element 
types have been chosen for the subparts: tetrahedrals for 
the nose, and hexahedrals for the wings and endplates. 
The connection of the different meshes is automatically 
done by Abaqus. 

According to the convergence study, and [30], the fi- 
nal mesh has been defined. It has a global seeding size of 
6.6 mm and a number of elements for edges along the 
thickness equal 2 for the wings, 4 for the endplates. Fur-
thermore, taking into consideration the symmetry of the 
problem, only half of the structure has been considered, 
resulting in a mesh comprising of 22,127 elements as 
shown in Figure 3. 

4.5. FEA Set Up 

Two time steps have been set: the initial for the applica- 
tion of boundary conditions (BC) and the latter to apply 
loads, both horizontal and vertical pressures. With regard 
to BCs, the use of half the front wing requires to set a fixed 
constraint on the free surface generated by the removed 
half. In addition, to reproduce the cantilever behavior 

Table 2. Carbon/Epoxy (IM7/8552): engineering constants. 

Young’s moduli [MPa] E2 = 153,753 E2 = 8,963 E2 = 8,963

Poisson’s ratios v12 = 0.32 v13 =0.32 v23 = 0.5 

Shear moduli [MPa] G12 = 5309 G13 =5309 G23 = 2965

 

 

Figure 3. Optimized mesh. 
 
of the whole front wing (as a free end), a fixed support 
condition has been applied on the rear surface of the nose, 
ideally joined to the monocoque. 

4.6. Results and Discussion 

Following the methodology that has been developed and 
presented in the previous sections, values for reliability 
indices have been obtained according to each of the two 
limit states corresponding to the different failure criteria. 
Figures 4 and 5 present contours of reliability for the 
centroid of each element.  

Table 3 summarizes the statistical properties of the 
values derived by each criterion. From those results it 
can be concluded that the Tsai Wu criterion presents a 
smaller mean value of β underestimating reliability and 
producing more conservative results, however the stan-
dard deviation of those results is greater implying tails 
that fade out in a greater distance from the mean value. It 
can be noticed that for both criteria, the reliability critical 
areas are in the same locations and can be considered to 
be more concentrated than the corresponding stress con-
centration ones, however for the regions near the mid 
span of the wing, smooth reliability variation can be 
clearly observed. Figure 6, presents the distributions of 
the two sets of results by fitting a normal and a Weibull 
distribution, countersigning the latter fact. 

A sensitivity analysis of the results was executed by 
increasing each of the statistical parameters of the sto-
chastic variables by 25% in order to measure the relative 
change in values of beta and the results are presented in 
Table 4. It is worth mentioning at this point that each 
iteration, in order to obtain the values of reliability in the 
total of the 22,127 elements, required a time of approxi- 
mately 5500 seconds in a personal desktop computer. 
The sensitivity analysis concludes that larger mean va- 
lues of the strengths leads to an increase in reliability, 
while higher standard deviations that represent uncertain- 
ties entail a reliability decrease. The variable that more  
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Figure 4. Reliability contours of Tsai-Hill criterion. 
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Figure 5. Reliability contours of Tsai-Wu criterion. 
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Figure 6. Statistical distributions of beta values. 
 

Table 3. Statistical properties of betas. 

 Mean Stdev Min Max 

Tsai-Hill 5.87 0.31 0 6.4 

Tsai-Wu 5.75 0.49 0 7.8 

Table 4: Statistics of sensitivity analysis. 

 Tsai-Hill Tsai-Wu 

 Mean Stdev Mean Stdev 

CASE-1 (Baseline) 5.87 0.31 5.75 0.49 

CASE-2 
1X


  4.83 0.26 4.72 0.34 

CASE-3 
2X


  6.05 0.40 5.90 0.56 

CASE-4 
3X


  6.48 0.58 6.35 0.78 

CASE-5 
4X


  6.48 0.54 6.33 0.60 

CASE-6 
1X

 
  5.73 0.29 5.61 0.43 

CASE-7 
2X

 
  5.73 0.47 5.62 0.55 

CASE-8 
3X

 
  5.33 0.55 5.16 0.63 

CASE-9 
4X

 
  5.33 0.56 5.24 0.68 

 
than others affects globally the front wing’s reliability is 
the transvers strength of the material, for the stochastic 
variables under consideration. 

5. Conclusion 

This paper has documented a methodology for the effi- 
cient reliability assessment of composite structures based 
on a combination of Finite Element Simulations, Sto- 
chastic Response Surface Method and First Order Reli- 
ability Methods for the estimation or reliability indices, 
based on Tsai Hill and Tsai Wu failure criteria. Applica- 
tion of the method in a typical composite structure has 
illustrated its efficiency and simplicity in implementation 
since each step can be executed in specialized software 
without requiring one unified numerical procedure. Re- 
sults of the comparative study, expressed as spatial reli- 
ability contours as well as statistical distributions, dis- 
tinguish Tsai Wu criterion as more conservative one 
(smaller values of β) in mean values but with a greater 
standard deviation implying marginal results in a greater 
distance from the mean value of β. 
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Nomenclature 

1 : Longitudinal stress 

1̂ : Longitudinal strength 

2 : Transverse stress 

2̂ : Transverse strength 

1T
̂ : Longitudinal tensile strength 

1C
̂ : Longitudinal compressive strength 

2T
̂ : Transverse tensile strength 

2ˆ
C

 : Transverse compressive strength 

12 : In-plane shear stress 

12̂ : In-plane shear strength 

if : Second order strength tensor 

ijf : Fourth order strength tensor 

TH

FI
SR : Strength ratio for Tsai-Hill criterion 

TH

SR
: Failure index for Tsai-Hill criterion 

TW

MoS
: Strength ratio for Tsai-Wu criterion 

: Margin of safety 
 jg X : Generic limit-state function 
 g X : Global limit-state function 
f X X : Continuous joint distribution 

fP : Probability of failure 
 Xg : Approximated limit-state function 

jX : Basic stochastic variable 

jZ : Standard normal Gaussian 

jX : Mean of jX  

jX : Standard deviation of jX  

j : Direction cosine 
*Z : Design point of the limit-state function 

 : Safety index (or reliability index) 
 : Cumulative normal distribution 

1 1 1,H VX X X 
 

   








: Load variable (Horizontal, Vertical) 

2 2 2,T CX X X 
 

  
: Longitudinal strength variable (Ten-

sile, Compressive) 

3 3 3,T CX X X 
 

  
: Transverse strength variable (Tensile, 

Compressive) 

4X


: In-plane shear strength variable 

iX

 : Increased mean in sensitivity analysis 

iX
 

 : Increased standard deviation in sensitivity 
analysis 

iE : Young’s modulus 

ij : Poisson’s ratio 

ij

: Layer’s thickness 
G : Shear modulus 
t

wingss
s

: Stacking sequence for wings 

endplates : Stacking sequence for endplates 
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