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ABSTRACT 

The objective of this paper is to attempt to apply the theoretical techniques of probabilistic functional analysis to answer 
the question of existence and Uniqueness of a Random Solution to Itô Stochastic Integral Equation. Another type of 
stochastic integral equation which has been of considerable importance to applied mathematicians and engineers is that 
involving the Itô or Itô-Doob form of stochastic integrals. 
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1. Introduction 

We shall give some historical remarks concerning the 
development of this type of equation and point out the 
essential difference between them and other random in-
tegral equations. 

In 1930 N. Wiener introduced an integral of the form 

   d
b

a
g B   

where  g t


 a deterministic real-valued function and 
   ,B    b

d

,a  is a scalar Brownian motion process.  
Author of [1] in 1944 generalized Wiener’s integral to 

include those cases where the integrand is random. That 
is he obtained an integral of the form 

     
0

; d , 0,1
t
g w B t    

Which is referred to as the Itô stochastic integral or 
simply the stochastic integral. Since that time many 
scientists have contributed to the general development 
of this type of stochastic integral. For example see [2- 
10].  

In 1946 Author of [5] formulated a stochastic integral 
equation of the form  

    
    

0

0

; , ;

, ; d

t

t

x t w C f x w

g x w B

  

  

 






      (1.0) 

where  0,1t ,     ; 0,1B t t 

sample functions which can then be related to the sample 

 is a scalar Brownian 
motion process, and C is a constant Restrictions are usu-
ally placed on the functions f and g so that the first inte-
gral is interpreted as the usual Lebesgue integral of the 

integral of the process      , ; , 0,1f t x t w t  and the 
second integral is an Itô s

The principal feature which distinguishe
tochastic integral. 

s the type of 
equation studied from an equation of the Itô type is the 
fact that in the former case each of the integrals involved 
is interpreted as a Lebesgue integral for almost all 
w . That is, almost all sample functions are Lebesgue 

ble. Since in the Itô stochastic integral the limit is 
taken in the mean-square or in the probability sense, the 
theory of such integrals has been developed as self-con- 
tained and self-consistent. 

One of the main purpose

integra

 in con-
ne

s used by 
Itô

2. Preliminaries 

s of subsequent work

ximation wa

ction with the Itô stochastic integral equation has been 
to construct Markov processes such that their transition 
probabilities satisfy given Kolmogorov equations and to 
investigate the continuity of the processes, among other 
properties of the sample function. 

The method of successive appro
 and Doob to show the existence and uniqueness of a 

random solution to Equation (1.0). 

Let     ; ,B t t a b  be tion proc-

   (1.1) 

for a fairly general class 

 a scalar Brownian mo

   ; dt w B t a b        

of functions 

ess. e shall be concerned with the inte-
gral  

In this section w

b

a


 . This integral 
will be called the Itô stochastic integral as we mentioned 
previously. As is well known, almost all the sample 
functions of the Brownian motion process are of un-
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bounded variation and hence the integral (1.1) cannot be 
defined as an ordinary Stieltjes integral. 

First we shall define the integral (1.1) for the class of 
step functions. That is, functions   of the form 

0 t a
    1; ,

0
i it w w t t t

t b

  
 
 

 i       (1.2) 

where 0 1 2 1 ,n na t t t t t b         i w  are meas- 
urable with respect to the  -algebra 

it
A , and  

  2
E or such unctions we definei w    f  f  the Itô 

integral by  

i   (1.3) 

Now suppose that is any function satisfying 
th

uct-measurable function from 

         
1

1
0

; d
n

i ia
i

t w B t w B t B t 





   
b

 ;t w  
s. e following condition

1)  ;t w  is a prod
 ,b  , assuming the usual Lebesgue measure 

2 r

a
on 

) h, 

 
 . 

 Fo  eac  ,t a b ,  ;t w  is measurable with 
respect to  -alg tebra A , w there A  is the smallest 
 -algebra o   , suc hat  B sn h t , s t  is measur-

le. 

3) 

ab

  2
; dE t w t




   

In view of Equation (1.2) it is evident that the class of 
st

 conditions 1)-3) 
w

ep functions satisfy conditions 1)-3). 
For the function  ;t w  satisfying

e shall define their norm  follows:  as

    
1

2 2
; ;

b

a
t w E t w t      d      (1.4) 

For this case author of [2] has shown the following 
are 

sense 
1)  ;t w  can be approximated in the mean-squ

by a sequence of step functions   ;n t w . That is  

   ; ; 0t w t w    as n

2) The sequence of integrals 



Possesses a mean-square limit. That is there exists a 

    (1.5) 

as 
we shall define the integral (1.1) for a class of 

fu

1.6) 

As with the ordinary integrals, we shall de

  (1.7) 

Definition 1.1 Let 

n   

 b ; dna
t w B t  

 w  such that 

      2

; d 0
b

na
E w t w B t    

n   
Now 
nctions   ;t w  satisfying conditions 1)-3) by 

     ; d         (
b

a
t w B t w   

fine 

       ; d lim ; d
b

t w B t t w B t 


 , aa b  

G L , where L denote the c
tio

Lemma 1.1 The function 

ollec-
n of Lebesgue mea e subsets of  . Define a 

function Gχ  from  0,1   by 

   

surabl

 1 if ;
;

0 otherwiseG

w G
w





 


χ  

:G   χ  de-
fined by 

     ; ;G Gw w    χ χ  ; w

where   satisfies conditions 1)-3), and is as de-

lt of

Gχ  
fined earlier, also satisfies conditions 1)-3). 

Proof. The proof is a straightforward resu  the defi-
nition of Gχ  and the fact that   satisfies conditions 
1)-3). 

We are  in a position to ctly what is 
m

now define exa
eant by the expression 

   ; d
G

w B    
Definition 1.2 We define    ; d

G
w B  

   by  

 for G a 

Le



besgue-measurable subset of

       ; d ; dGG
w B w B    


  

Note that lemma 1.4 guarantees the expression on the 
rig


 

ht exists and is well defined  
Definition 1.3 We shall denote by  

    *
2, , , ,a b L P   the space of all continuous C

tions from 

func-

 ,a b  into  2 , ,L P  . We shall define the 

norm of     , , P   by*
2,C a b L  ,

    
1

2 2sup ; d
a t b

x t w P w
 
  

Lemma 1.2 

E     ; d 0E t w B t 



      

Lemma 1.3 

  22
; dE E t w t 




          

Lemma 1.4 If we define a distance between two func-
tions 1  and 2  each satisfying conditions 1)-3) by  

    
1

2 2

1 2 1 2; ; dE t w t w t   


    

and the distance between   and   1 1 ; dt w B t 



 

   2 2 ; dt w B t 


   by 

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 
1

2 2
1 2 1 2         

Then 

E

1 2 1 2      . 
e proof of the LemmFor th as see [2]. 

Lemm
t

a 1.5 Let    
a

x t w w B ; ; d    ,  ,t a b  

Then       *
2, , ,; ,x t w C a b L P   

For the proof see [4]. 

3. On an Itô Stochastic Integral Equation 

gral In this section we shall investigate a stochastic inte
equation of the type 

      
0

; , ; , ; d
t

x t w k t w f x w

   
0

; d 0
t

w B t

    
   

     (2.1) 

where  ;x t w  

  an
is the unknown random process 

for d 

 functions which constitute the stochastic integral 
Eq

  is contin

defined 
t w . 

We shall place the following restrictions on the ran-
dom

uation (2.1).  
1')  , ;k t w  is an element of  , ,L P    and 
 , ; :k t w L    , , P  


2')  ,

uous where  
  t    . 


, : 0t  
 ; ;x t w  f t x t w  is an operator on the set S 

with ce B satisfying  values in the Banach spa

     
   

, ; , ;

; ;

B

D
x t w y t w 

for 

f t x t w f t y t w
 

   ; , ;x t w y t w S . 
3') Conditions 1)-3) of section 1 hold. 

hus with the given assumptions the first integral of 
(2 integral and the 
se

 integral. More pre-
ci

T
.1) can be interpreted as a Lebesgue 
cond as an Itô stochastic integral. 
We shall now proceed to state and prove a theorem 

concerning the behavior of the Itô
sely, if we show that the Itô integral is an element of 

the space   2, , ,CC L P   , we can apply the the-
ory of admissibility to Equation (2.1) to show the exis-
tence of a  a random solution to 
Equation (2.1) we mean a random function 

random solution. By
 ;x t w  

from   into  2 , ,L P   such that for each t  , 
 ;x t w  satisfies the integral equation P-a.e. sh  

that th  integr ent of  2, ,CC L   
ke feasible the assumption that we wish to make 

that the integral is an element of D, 
tained in the topological space mentioned 

For convenient we shall denote the Itô integral by  
t

owing
, Pe Itô

a
al is an elem 

a Banach space con-

Theorem 2.1 For  

will m

     
0

; ; d , 0h t w w B t     

   2, ; , , ,Ct h t w C L P       
Proof Fix t   Then 

           0,0
; ; d ;

t

th t w w B w Bd    



   χ  

Thus 

       

   

22

0,

2

0,

; ;

; d

t

t

E h t w E x w B

E x w

d  

  
















 

by lemma 1.3. 
Hence   2

;E h t w   . 
ore for fixed t,   2; ,h t w L P   , . Now let Theref

nt t  in  ow that    ; ;t wnh t w h. To sh  in 
 L P , it is sufficient to show t2 , ,  hat  

   0,0, n tt χ χ

 arbitrarily small. That is, w

 

can be made e must show 
that 

       

2

0,0, ; ; d
n ttE w w t   


 χ χ  

Ca



n be made arbitrarily small. Choose 0  . Consider  

the nonnegative function     2
; ;q w E w   . By con-  

dition 3)  ;q w  is integrable over  . Hence there 
exists a 0   such that for every set of Lebesgue meas-
ure less than  ,  ; dq w    . Thus  

G

       

        

   

2

0,

0,

2

;

; d ; d

n

n

n n

t

t

t t

t t

w

E w q w

0,

2

0,

; ; d

; d

n tt

tt

t

E w w

E w 

    




 



 χ χ  


χ χ

      
Since for n N  and nt t    and since the Lebes-

gue measure nterval is its length, we con-
clude that the gue m of is less than 

 of the i
 Lebes

 , nt t  
easure  , nt t  

 . 
Hence 

 ;nt

t
q wd     

Im  ;t h t w  is continuous from   plying that 
into  , ,

Since we have
2L  P  and the 

 shown that  
proof is complete. 

    2; , ,Ch t w C L P  
the stochastic integral Equatio

, , we can conclude that 
que

4. oc

e shall study the existence and unique-

n (2.1) possesses a uni  
random solution 

 On Itô-Doob-Type St hastic Integral 
Equations 

In this section w
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ness of a random solution to a stochastic integral e
n of the form 

qua-
tio

         
0 0

; , ; d , ; d
t t

x t w f x w x w B         (3.1) 

where  0,1t . As before, the first integral is a Lebes-
gue in while the second is an Itô-type stochastic 
integral defi d with respect to a scalar Brownian m

tegral, 
ne

  
otion 

process   , 0,1t . 
Recall that  


B t

      *
2 20,1 , , , , , ,CC L P C L P    , We shall 

define the m  


 operators 1W  and 2W  fro
  20,1 , ,L *C , P  into    ,*

20,1 , ,C L  
t

P  by  

d    
0

; ;w x t w x w1       

and  

     (3.2) 

     2 0
; ; d

t
w x t w x w B           (3.3) 

Note that in view of lemma 1.5  
      *

2; 0,1 , , ,x t w C L P  
2W  are linear operators. 

. Its clear that  and 

 defi d by 
(3.2) and ( .3) respectively, 
from

 W

ne

1

Theorem 3.1 The operators 1W  and 
3 e continuous operators 

 

2W
ar

   20,1 , , ,C L P    o*  int    * 0,1 , , ,C L P . 2

op


Lemma 3.1 Let T be a continuous erator from 
  2, , ,CC L P    into itself. If B and D are Banach 

spaces st i-
ble

ronger than CC  and the pair (B, D) is admiss

from B to D. 
 with respect to T. Then T is a continuous operator 

Proof of theorem 3.1 The fact that 1W  is a continuous 
operator from     *

20,1 , , ,C L P   into  
    *

20,1 , , ,C L P   follows from lemma 3.1. From 
(3.3) we have  

          
0

d ; dP w x w B 
   

2

22

2 , ,

2

0

;

d ; d

t

L P

t

w x t w

x w P w

 


  
 

 




  



Furthermore  

        

    
 

2

2

2 2

2 , , , ,0 0

2

, ,0 0

22

0

; d sup ;

sup ; d

( ; ) d ;

t

L P L P
t

t

L P
t

t

w x t w x w

x w

x t w x t w





 
2

 



  

 





 







 


 

Therefore  

    2 ; ;w x t w x t w  

Thus 1W  an


d  are continuous operators from 2W
 *

20,1 ,  P  into  , ,C L    * 0,1 , , ,C L   . 2 P

An Existenc

We shall assume that le .1 holds with respect to the 

erefore there exist positive 

e Theorem 

mma 3

operators 1W  and 2W . Th
constants 1K  and 2K  less than one such that  

    1 1; ;
D B

w x t w k x w  and  t

    2 2; ;
D B

ves suffi
o

w x t w k t w  x

The following theorem gi cient conditions for 
the existence of a unique rand m solution, a second order 
stochastic process, to the Itô-Doob stochastic integral 
Equation (3.1). 

Theorem 3.2 Consider the stochastic integral equation 
(3.1) under the following condition: 

1) B and D are Banach spaces in  

    *
20,1 , , ,C L P   which are stronger than  

    *
20,1 , , ,L P   such that    is admissible ,B DC

with respect to the oper
2) a) 

ators 1W  and 2W   
    , ;;x t w f t x t w  is a ator on 

     
n oper

 a ;D w; : ; ndS x t w x t w x t 
D

    

With values in B satisfying 

         1, ; , ; ; ;
DB

f t x t w f t y t w x t w y t w    

b)     ; , ;x t w t x t w  is an operator on S into B 
satisfying  

         2 ; ;, ; , ;
DB

t x t w y t w    

where 

x t w t y t w

1  and 2  are constants. Then there exists a 
unique ndom tion to Equation (3.1) provided th   ra

2 2

 solu at

1 1 1k k   . A  nd 

     1 1 2 2,0 ,0 1
B B

f t t k k        

Proof. Define an operator U from the set S into D as 
follows 

      ; , ; d
t

Ux t w f x w  

    
0

0
, ; d

t
x w B    

 
 

We need to show that U is a contraction operator on S 
and that US S . 

Let    ; , ;x t w y t w S . 
Then      ; ;Ux t w Uy t w D   because D is a Ba-

nach space. Further, we have  

     

     

       

     
     

         

0

0

1

2

1 1 2 2

; ;

, ; , ; d

, ; , ; d

, ; , ;

, ; , ;

; ; ; ;

D

t

Ux t

D

t

D

B

B

D

w Uy t w

f x w f y w

x w y w B

k f t x t w f t y t w

k t x t w t y t w

k k x t w y t w x t w y t w

    

      

 

 



   

   

 

 

    



  

Copyright © 2012 SciRes.                                                                                  AM 



H. A. ALAFIF, C. S. WANG 

Copyright © 2012 SciRes.                                                                                  AM 

804 

Thus U is a contraction operator. 
For any element in S we have  

   

       

     
   
   

0 0

1 2

1 1 2 2

1 2

;

, ; d , ; d

, ; , ;

; ;

,0 ,0

D

t t

D D

B B

D D

B B

Ux t w

f x w x w B

k f t x t w k t x t w

k x t w k x t w

k f t k t

      



 



 

 

 

 

 
 

Since ; x t w S  it follows that  

  
     1 1 2 2

;

,0 ,0

D

B B

Ux t w

k k f t t       
 



from the assumptions in the theorem. 
Thus the existence and uniqueness of a random solu-

tion to Equation (3.1) follow from the Banach fixed-
theorem. 

Theorem 3.4 (S. Banach’s fixed-point princi
([11]). 

 a contrac a complete m
space H. then there exists a unique point 

point 

ple) 

If T is tion operator on etric 
x H   for

which 

5. Conclusion 

ich ri
ry of prob ilit nally to 
and unify ory of stochastic or random

. 

 
 T x x  . 

We investigated the existence and uniqueness of Itô sto-
chastic integral equation by applying the theoretical 
techniques of probabilistic functional analysis. In fact 
author of [12] refers to probabilistic functional analysis 
as being concerned with the applications and extensions 
of the methods of functional analysis to the study of the 
various concepts, processes, and structures wh a se in 
the theo ab y and its applications. Fi
develop  the the  
equations see [13-15]

REFERENCES 
[1] K. Ito, “Stochastic Integral,” Proceedings of the Imperial 

Academy, Vol. 20, No. 8, 1944, pp. 519-524.  

doi:10.3792/pia/1195572786 

[2] J. L. Doob, “Stochastic Processes,” Wiley, New York, 
1953, pp. 426-432. 

[3] Y. Dynkin, “M demic Press, New 
York, 1964, pp

l. 64, Aca-
 pp. 97-105 

y, Vol. 22, No. 2, 1946, pp. 32-35. 

arkov Processes,” Aca
. 9-13. 

[4] A. Jazwinski, “Stochastic Processes and Filtering Theory. 
Mathematics in Science and Engineering,” Vo
demic Press, New York, 1970,

[5] K. Ito, “On a Stochastic Integral Equation,” Proceedings 
of the Japan Academ
doi:10.3792/pja/1195572371 

[6] H. P. Mckean, “Stochastic Integrals,” Academic Press, 

- 
. 

nal of SLAM Control, Vol. 

lation between Ordi-

(65)90045-5

New York, 1969, pp. 21-25.  

[7] T. L. Satty, “Modern Nonlinear Equations,” McGrow- 
Hill, New York, 1967, pp. 216-226. 

[8] L. Gikhmann and A. V. Skorokhod, “Introduction to the 
Theory of Random Process-Saunders,” Philadehphia, Pe
nnsylvania, 1969, pp. 378-391

[9] R. L. Stratonovich, “A New Representation for Stochastic 
Integrals and Equations,” Jour
4, 1966, pp. 362-371.  

[10] E. Wong and M. Zakai, “On the Re
nary and Stochastic Differential Equations,” International 
Journal of Engineering Science, Vol. 3, No. 2, 1965, pp. 
213-229. doi:10.1016/0020-7225  

On the Theory of Random Equa-

ysics, Vol. 

[11] I. P. Natanson, “Theory of Functions of a Real Variable,” 
Vol. II, Ungar, New York, 2010. 

[12] A. T. Bharucha-Reid, “
tions,” Proceedings of Symposia in Applied Mathematics, 
Vol. 16, 1964, pp. 40-69.  

[13] G. Adomain, “Random Operator Equations in Mathe-
matical Physics,” Journal of Mathematical Ph
11, No. 3, 1970, pp. 1069-1074. doi:10.1063/1.1665198 

[14] G. Adomain, “Linear Random Operator Equations in 
Mathematical Physics III,” Journal of Mathematical 
Physics, Vol. 12, No. 9, 1971, pp. 1944-1948.  
doi:10.1063/1.1665827 

[15] G. Adomain, “Theory of Random Systems,” Transactions 
of the fourth Prague Conference on Information Theory, 
Statistical Decision Functions, Random Processes, Pra-
gue, 31 August-11 September 1965, pp. 205-222.  

 


