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ABSTRACT 

In this article, the problem of mixed convection boundary layer flow of viscous fluid along a heated vertical plate is 
examined. In the analysis radiative component of heat flux emulates the surface temperature. Appropriate set of vari- 
ables are embraced here which reduces the governing boundary layer equations into dimensionless form. Subsequently, 
a group of continuous transformation is applied on the dimensionless equations in order to obtain the parabolic partial 
differential equations for the regimes where modified Richardson number, Ri*, is 1) small i.e. when Ri*  1; 2) large 
i.e. when Ri*  1; and 3) covers all its values i.e. when 0 ≤ Ri* ≤ ∞. The system of equation for the corresponding re- 
gimes are thus integrated numerically via straightforward finite difference method along with Gaussian elimination 
technique. Its worth mentioning that results obtained here are valid particularly for the liquid metals for which Pr  1. 
Moreover, the numerical results are demonstrated graphically by showing the effects of important physical parameters, 
namely, the modified Richardson number (or mixed convection parameter), Ri*, surface radiation parameter, R, and 
Prandtl number, Pr, in terms of local skin friction and local Nusselt number coefficients. In addition, comprehensive 
interpretation of thermal energy distributions is also given in terms of heatlines which is termed as good tool to visual- 
ize the flow patterns.  
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1. Introduction 

Mixed convection (or combined convection), one of the 
transport phenomena, is the composition of both natural 
and forced convection flow. These flow patterns are dis- 
covered simultaneously by both an external forcing 
mechanism and internal volumetric forces. The interac- 
tion of mixed convection with thermal radiation has in- 
creased greatly during the last decade owing to its im- 
portance in many practical applications. However, in the 
literature the simplest physical model of such a flow is 
the two-dimensional laminar mixed convective flow 
along a vertical flat plate, extensive studies of which had 
been conducted by Sparrow, Eichorn and Gregg [1], 
Merkin [2], Lloyd and Sparrow [3], Wilks [4], Tingwei, 
Bachrum and Dagguent [5] and Raju, Liu and Law [6]. It 
has, generally, been recognized that, 2Rex xGr  (where 
Grx is the Grashof number and Rex is the Reynolds num-
ber) is the governing parameter for the laminar boundary 
layer forced-free convective flow, which represents the 
ratio of buoyancy forces to the inertial forces inside the 
boundary layer. However, forced convection exists when 
the limit of 2Rex xGr  goes to zero, which occurs at the 

leading edge, and the free convection limit can be re- 
ached if 2Rex xGr  becomes large. Gebhart, Jaluria, Ma- 
hajan and Sammakia [7] replaced the exponent of the 
Reynolds number by other values close to two in order to 
correlate their experimental results. 

Heat transfer for sufficiently high temperature surfaces 
needs a simultaneous analysis of the influence of several 
kinds of heat transfer mechanisms. One such mechanism 
through which heat can be transferred more rapidly is by 
the absorption, emission and scattering of radiation by 
the fluid. Radiation effects are important in context of 
space technology and processes involving high tempera- 
tures, Ozisik [8], Sparrow and Cess [9], Cess [10] and 
Arpaci [11] first studied the interaction of thermal radia- 
tion and natural convection which has been confined to 
the case of a vertical semi-infinite plate. Later, consider- 
ing the Rosseland diffusion approximation, investiga- 
tions on the natural convection flow as well as on the 
mixed convection flow of an optically dense gray viscous 
fluid past or along heated bodies of different geometries, 
such as, vertical and horizontal flat plate, cylinder, sphere, 
wavy surface and axisymmetic rotating and non-rotating  
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bodies under different boundary conditions have been 
accomplished by Hossain, Kutubuddin and Pop [12], 
Hossain, Anghel and Pop [13], Hossain and Munir [14], 
Hossain and Rees [15], Molla and Hossain [16] and Sid- 
diqa, Asghar and Hossain [17]. In these analysis consid- 
eration has been given to gray gases that emit and absorb 
but do not scatter thermal radiation. Very recently, Sid- 
diqa, Asghar and Hossain [18] investigated the effects of 
thermal radiation on mixed convection flow of an opti- 
cally dense viscous fluid along a vertical porous plate. In 
their analysis the usual Boussinesq approximation is ig- 
nored and all the physical quantities are considered to be 
constant except the fluid density, which exponentially 
vary with temperature. On the other hand, heat transfer 
can also be determined for a non-absorbing medium in 
which radiation absorption, emission and scattering proc- 
esses are neglected and the surface of the object uni- 
formly emits into the surrounding medium a constant 
thermal flux, which is carried off as convective-conduc- 
tive and radiative components. In this regard, Mar- 
tynenko, Sokovishin and Shapiro [19] examined the in- 
fluence of thermal radiation on the natural convective 
flow of a vertical surface situated in a non-absorbing 
medium. Later, Salomatov and Puzyrev [20] investigated 
the influence of thermal radiation on the laminar natural 
and forced convection boundary layer flow of a non- 
absorbing fluid with variable thermo-physical properties 
flowing around a heat emitting surface and obtain the 
solutions for the small and large values of thermal radia- 
tion parameter. Further, Sokovishin and Shapiro [21] 
analyzed the effect of thermal radiation on natural con- 
vective heat liberation from the surface of a vertical cyl- 
inder located in a transparent medium. They adopted 
finite difference method in order to obtain the solution of 
the problem in terms of Nusselt number. 

Here, mixed convection flow along a semi-infinite ver- 
tical plate due to thermal radiation from the surface is 
analyzed in a non-absorbing medium which is not con- 
sidered yet to the best of authors knowledge. It has been 
considered that object is located in the optically trans- 
parent medium and processes of radiation absorption, 
emission and scattering are neglected. It is however 
noted that the relationship between convection and ther- 
mal radiation is developed with the help of a boundary 
condition of second kind on the thermally radiating ver- 
tical surface. It needs to mention here that in radio elec- 
tronic devices the measurement of the thermal regimes 
necessitate the inquiry of energy transfer from high tem- 
perature elements to the surrounding medium. Moreover, 
it is also necessary to examine not only the influence of 
transverse curvature on heat transfer but also the interac- 
tion of various forms of heat transfer while calculating 
heat liberation from the surfaces of bodies of semicon- 
ductor devices, thermo-resistors, micro-conductors etc. 

Particularly, in the field of electronics the transfer of 
thermal energy to an immobile medium is in practice 
with the help of two modes, namely, natural convection 
and radiation. Therefore, present study also aims to look 
at the simultaneous effects of thermal radiation and 
mixed convection in a nonabsorbing medium. The gov- 
erning boundary layer equations are reduced to parabolic 
partial differential equations due to the introduction of 
primitive variable formulation (PVF) which are then in-
tegrated numerically by employing straightforward finite 
difference method in contrast with Gaussian elimination 
method. Numerical results thus obtained are expressed 
graphically in terms of local skin friction and local Nus- 
selt number coefficients with effect of physical parame- 
ters, such as modified Richardson number (or mixed 
convection parameter), Ri*, surface radiation parameter, 
R, and Prandtl number, Pr. Furthermore, thermal energy 
distribution is also drawn in terms of heatlines which is 
well known tool used for the visualization of the flow 
patterns. 

2. Mathematical Formulation 

Consider the steady two dimensional mixed convection 
flow of a viscous incompressible gas along a semi-infi- 
nite vertical heated surface situated in the optically trans- 
parent medium. In addition, the processes of radiation 
absorption, emission and scattering are neglected. Fur- 
ther assume that 1) the temperature and the velocity of 
the free-stream is T∞ and u∞ respectively; and 2) the sur- 
face temperature of the flat plate, Tw, is sufficiently 
higher than the ambient fluid temperature, T∞. 

Thus the fundamental boundary layer equations under 
the usual Boussinesq approximation for steady flow may 
now be written as  
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where u, v are the velocity components in the x and y 
directions respectively, ν the kinematic coefficient of 
viscosity, g identifies the gravitational force, β the coef- 
ficient of thermal expansion, α the thermal diffusivity 
and T the temperature of the fluid in the thermal bound- 
ary layer. The coordinate system and the flow configure- 
tion of the problem are shown in Figure 1. 

The present work also consider that the vertical sur- 
face transmit uniform thermal flux, qw, into the surround- 
ing medium. Moreover, the relationship between convec- 
tion and thermal radiation is developed with the help of a  
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Figure 1. Physical model and coordinate axis. 
 
boundary condition of second kind on the vertical surface 
which is supposed to be a gray diffusion radiator with 
emissivity ε. The radiative heat flux component on the 
wall is expressed with the help of Stefan-Boltzmann law. 
Therefore the boundary conditions can be written as (see 
[19]). 
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where σe is the Stefan-Boltzmann constant and κ the 
thermal conductivity of the fluid. 

In order to obtain the governing equations in dimen- 
sionless dependent and independent variables, we intro- 
duce the following parameters 

1/2

1/2
1 2

, ,
Re

Re
, R

L

wL
L

u L x
u v v x

u

q L
y y T T

L



e

L









  

  

      (5) 

where ReL u L   is the dimensionless Reynolds 
number and L the characteristic length of the vertical 
surface. 

Substituting the variables given in (5) into the Equa- 
tions (1)-(4), the following set of dimensionless govern- 
ing equations (dropping bars) are obtained 
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The boundary conditions to be satisfied are 
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where 
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In Equation (10) Ri is the mixed convection parameter 
or sometimes called buoyancy parameter (or Richardson 
number). It can be observed that for Ri > 0 (Tw > T∞) we 
have assisting buoyancy flow in which Ri accelerates the 
fluid motion whereas for Ri < 0 (Tw < T∞) the flow is 
termed as opposing buoyancy flow. Further, in case 
when Ri = 0 we have purely forced convection flow in 
which buoyancy effects are not present. R is the surface 
radiation parameter that measures the ratio of total heat 
flux transported from the surface of the wall to the radia- 
tive component. Moreover, ξ is termed as radiative length 
parameter that measures the degree of intensity of the 
ratio of radiative component and Reynolds number. It 
should be noted that for ξ = 0 the surface becomes non- 
radiating. Thus ξ establishes the connection between the 
radiative and convective components of the heat flux. 
The dimensionless Prandtl number, Pr, calculates the 
strength of momentum diffusivity to the thermal diffu- 
sivity. 

The method of solution of the present problem posed 
through the set of Equations (6)-(9) follows after adopt- 
ing the primitive variable formulation (PVF) which is 
discussed below. 

3. Solution Methodologies 

In this section, primitive variable formulation is initiated 
to reduce the boundary layer Equations (6)-(9) into a set 
of parabolic equations which are integrated by applying 
straightforward finite difference method together with 
Gaussian elimination technique. It should be noted that 
parabolic equations are obtained for 1) the entire range of 
Ri* (=Ri/ξ3, the modified Richardson number); 2) the 
region where Ri* is small and 3) the region in which Ri* 
is termed as large.  

3.1. Solution for Small Ri* (1) 

For small Ri*, the region is termed as forced convection 
dominated regime. So, for this region following group of 
transformations can be adopted  


            (8) 
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Substituting (11) in Equations (6)-(9) one obtains 
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The corresponding boundary conditions are 
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Once the quantities U and Θ and their derivatives are 
evaluated, one can calculate local skin friction coefficient, 

1 2Rex xCf  and local Nusselt number coefficient 1 2Rex xNu   
which are significant from engineering point of view. 
Below are the expressions for these physical quantities, 
respectively. 
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where τw and qw are the dimensional skin friction and 
heat flux at the plate respectively, and are defined as 
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Using the transformations given in Equations (5) and 
(11), in order to acquire the following dimensionless ex-
pressions for the coefficients of local skin friction and 
local Nusselt number, respectively. 
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It can be seen, from the relations given in (18) that the 
local skin friction coefficient and the local Nusselt num- 

ber coefficient varies locally with the parameter, χ. Fur- 
ther, the equations valid for large Ri* are now obtained 
with the help of appropriate transformations. 

3.2. Solution for Large Ri* (1) 

It is observed that the region away from the leading edge 
of the surface is dominated by natural convection flow. 
So, for this region governing equations can be obtained 
with the help of following group of transformations 
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Introducing the transformation given in (19) into the 
Equations (12)-(15) in order to obtain the following gov- 
erning equations for large Ri*. 
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The corresponding boundary conditions are 
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It can be noted that for large Ri*, the physical quanti- 
ties like local skin friction coefficient, 1 2Rex xCf , and 
local Nusselt number coefficient, 1 2Rex xNu  , can be re- 
spectively evaluated from the expressions given below. 
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Likewise, the equations valid for all values of Ri* are 
now obtained in the following subsection. 

3.3. Solutions for All Ri* 

In order to obtain a system of equations applicable to the 
entire regime of modified Richardson number (or mixed 
convection parameter), Ri*, we compare the transforma- 
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tions (11) and (19) and obtain 
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and, hence, a convenient switching from one system to 
the other. Introducing the above transformation in the 
Equations (12)-(15) to acquire the following governing 
equations for entire values of Ri*. 
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Boundary conditions are 
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For entire range of Ri*, the physical quantities of in- 
terest like local skin friction coefficient, 1 2Rex xCf , and 
local Nusselt number coefficient, 1 2Rex xNu  , can be pre- 
sented respectively from the following expressions. 
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The system of Equations (12)-(15), (20)-(23), (26)-(29) 
are solved numerically by employing straightforward 
finite difference method. For this, discretization process 
is initiated and central-difference quotients are used for 
diffusion terms whilst backward difference quotients are 
employed for the convective terms. Finally a system of 
algebraic equations is obtained as given below.  
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for 2 1i N    and 1 k N  . Subscripts i and k 
represent the grid points along the  and Y   direction, 
respectively; whereas 1k k        and 1i iY Y Y      
are the step size in their respective directions. The 
boundary conditions take the form 
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 

1,
    (34) 

where P1 = Ri*/(1 + Ri*), P2 = (1 + Ri*)−1/4 and P3 = (1 + 
Ri*)−1/2 for all Ri*. However, for sufficiently small and 
large values of Ri* the expressions for Pi’s i = 1, 2, 3 can 
be taken as P1 = Ri*, P2 = 1 and P3 = 1 and P1 = 1, P2 = 
Ri*−1/4 and P3 = Ri*−1/2, respectively. 

The computation has been started from 0.0   and 
then it marched up to 5.0   taking the step length 

0.001  . At every 

Y

 station, the computations are 
iterated until the difference of the results of two success- 
sive iterations become less or equal to 10−6. By compare- 
ing the results for different grid size in  direction, we 
reached at the conclusion to choose  and 
maximum value is taken to be  in order to get 
accurate results. Very recently, this method has been 
used successfully by Siddiqa, Asghar and Hossain [22] in 
order to investigate high Prandtl number effects on the 
natural convection flow over an inclined flat plate with 
internal heat generation and variable viscosity. Molla, 
Hossain and Gorla [23] also used this numerical scheme, 
efficiently, to study natural convection boundary layer 
flow over a vertical wavy frustum of a cone in the pre- 
sence of thermal radiation. 

Y
Y

.0
0.005 

10

4. Heat Function 

1 



    (31) Heatlines is the well known tool which is broadly used to 
show the paths followed by heat. Thus it gives a well 
bordered and non-crossed passageway where heat flows. 
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The heat function  , H x y  for two-dimensional bound- 
ary layer flow in Cartesian coordinates was defined by 
Morega and Bejan [24] while studying the forced con- 
vection flow in the boundary layer region. The particular 
dimensional relation for the heat function  ,H x y  
which is valid within the boundary layer is (see [24]): 

 0p

H T
c T T v k

x y
 

   
 

          (35) 

 0p

H
c T T u

y


 


            (36) 

where ρ is the density of the fluid, cp the specific heat at 
constant temperature, κ the thermal conductivity and T0 
the lowest temperature in the boundary layer region 
which is taken to be T0 = T∞. It can be noted that the term 

T x   is not present in Equation (36), as the boundary 
layer approach neglects the longitudinal x diffusion when 
compared with the longitudinal convection. This does not 
represent any limitation from the general heat function 
formulation (see Kimura and Bejan [25]), as the term 

T x   can be considered and ultimately taken as zero 
at the end of the development. It is convenient to intro- 
duce the following dimensionless heat function H 

w

H
H

q L
                 (37) 

Due to (5) and (37) the dimensional heat gradient 
Equations (35)-(36) becomes (dropping bars) 

Pr
H

v
x y


  
 


            (38) 

Pr
H

u
y





               (39) 

The analytical expressions for heat function H(x, y) 
can be obtained by defining the following forms 

 1 2 ,H x G Y x y               (40) 

Conclusively, using (11) and (40) in Equations (38)- 
(39) and doing some algebraic manipulations we get the 
following analytical expressions for heat functions 

 , 2 Pr
2

UY
H Y x V

Y
         





    (41) 

It can be observed that relation (41) is valid for small 
values of Ri*. Further, one can firmly noted from the 
analytical expression of the function G(Y) in (41) that 
heat transfer processes are simultaneously governed by  

heat convection 
2

UY
V

   
  


  and conduction 

Y

 
  

  

phenomena. It is further seen from the Equation (41) that 
numerical values of the heat function are closely associ- 

ated with the total Nusselt number. That is why they are 
important tools to analyze, as a whole, the heat transfer 
processes. 

Likewise, expressions for large and all values of Ri* 
can be obtained by using the relations (19) and (25) re- 
spectively. These relations come out to be: 

  1 4, 2 Pr
2

UY
H Y x Ri V

Y
     

        
  (42) 

and 

   1 4
, 2 1 Pr

2

UY
H Y x Ri V

Y
     

         

    
  (43) 

respectively. 

5. Results and Discussion 

In the present investigation, the effect of thermal radia- 
tion on mixed convection flow along a semi-infinite ver- 
tical plate is analyzed in the nonabsorbing medium. The 
vertical plate is located in the optically transparent me- 
dium and particularly the processes of radiation absorp- 
tion, emission and scattering are neglected. The relation- 
ship between convection and thermal radiation is how- 
ever established with the aid of second kind of boundary 
condition on the thermally radiating vertical surface. The 
interaction of various forms of heat transfer is much im- 
portant while calculating heat liberation from the sur- 
faces of bodies of semiconductor devices, thermo-resis- 
tors, micro-conductors etc. Keeping this in mind, the 
present study is initiated. A group of continuous trans- 
formation is applied on the dimensionless equations in 
order to obtain the parabolic partial differential equations 
for the regimes where modified Richardson number, Ri*, 
1) is small; 2) is large; and 3) ranges from 0 to ∞. The 
system of equations thus obtained for small, large and all 
values of Ri* are integrated numerically by employing 
straightforward finite difference method in contrast with 
Gaussian elimination method. The resultant numerical 
solutions are depicted graphically in terms of local skin 
friction and local Nusselt number coefficients with effect 
of various physical parameters, such as, mixed convec- 
tion parameter, Ri*, and surface radiation parameter, R, 
for low Prandtl number fluids. Moreover, thorough study 
of thermal energy distribution is also given in terms of 
heatlines which are significantly used to visualize the 
flow patterns. 

The literature survey shows that for a 8 N sulphuric 
acid (1.9 mhos/in) with moderate temperature difference 
i.e. ΔT = 50˚F, a magnetic field of 25,000 gauss would be 
needed to get the considerable effect on heat transfer rate. 
Formation of such an extensive amount of magnetic field 
may not be considered outside the range of ordinary 
laboratory practice. Similarly, for salt water (0.64 mhos/ 
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in), equivalent amount of strength of magnetic field is 
required in order to see the influence of heat transfer. 
However in the case of gases, electrical conductivities of 
technically interesting magnitudes are not achieved until 
the gas temperatures are very high. For example, even at 
a temperature of 5500˚F and a density corresponding to 
100,000 ft altitude (l/70 of standard sea level density), the 
electrical conductivity of air is only about 10−4 mhos/in. 
For these circumstances, a strength of about 20,000 gauss 
magnetic field is sufficient to significantly effect the free 
convection heat transfer. The combination of such high 
temperatures and high magnetic fields is difficult to 
achieve and is not commonly encountered. However, 
moderate temperatures and comparatively smaller mag- 
netic fields would be required if the air were seeded with 
potassium. At the other end of the scale from these illus- 
trations is the case of liquid metals. For liquid mercury 
(2.5 × 104 mhos/in), a 25 percent reduction in the local 
heat flux can be achieved with a magnetic field of 1000 
gauss for ΔT = 50˚F. Thus, it would seem that among all 
the fluids, the liquid metals appear to be most susceptible 
to the effects of a magnetic field (see Sparrow and Cess 
[26]). One can analyze the significance of liquid metals 
in the nuclear field where it is used extensively in the 
conception of fission and fusion reactions. Specifically in 
nuclear fusion lithium or lithium alloys allow to merge 
the fuel generation problem with the heat removal from 
the fusion reaction. For power plants which are exerted at 
extensively high temperature, sodium is treated as heat- 
engine fluid. Hence, because of technical importance and 
tempting applications in industries, the present investiga- 
tion deals with small Prandtl number, Pr, i.e., Pr = 0.05 
(that is appropriate for lithium). 

Further, discussion has been carried out on the nu- 
merical results which are obtained in terms of coefficient 
of local skin friction, 1 2Rex xCf , and coefficient of local 
Nusselt number, 1 2Rex xNu  , for several parameters that 
controls the underlying physical situation. 

5.1. Effect of Physical Parameters R, Ri* and χ on 
Coefficients of Local Skin Friction and Local 
Nusselt Number 

The influence of surface radiation parameter, R is dis- 
cussed initially on local skin friction coefficient,  

1 2Rex xCf , and local Nusselt number coefficient,  
1 2Rex xNu  , in Figure 2 for R = 0.0, 2.0, 4.0 while other 

parameters are Pr = 0.05 and Ri* = 10.0. It can be seen 
from these figures that coefficient of local skin friction 
and coefficient of local Nusselt number decreases con- 
siderably owing to the increase in the surface radiation 
parameter, R. Physically it happens due to the reason that 
R is acting as source term which increases energy at the 
vicinity of the fluid and as a result coefficients of local 

skin friction and local Nusselt number enhances. In addi- 
tion, Figures 2(a) and (b) show that momentum as well 
as thermal boundary layer thicknesses decreases signify- 
cantly as R enhances. 

Further, the variation of local skin friction coefficient,  
1 2Rex xCf , and local Nusselt number coefficient,  

1 2Rex xNu  , is inspected for Ri* = 10.0, 50.0, 100.0 and 
150.0 whereas Pr = 0.05 and R = 2.0 in Figure 3. One 
can observe that wall shear stress increases substantially 
as buoyancy force is intensified. However, opposite ef- 
fects are examined on the rate of heat transfer. Physically 
it happens due to the reason that Ri* > 0 acts like suppor- 
tive driving force which accelerates the fluid flow with in  
 

 
(a) 

 
(b) 

Figure 2. (a) Variation of local skin friction and (b) Local 
Nusselt number with χ for R = 0.0, 2.0, 4.0 while Pr = 0.05 
and Ri* = 10.0. 
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(a) 

 
(b) 

Figure 3. (a) Variation of local skin friction and (b) Local 
Nusselt number with χ for Ri* = 10.0, 50.0, 100.0, 150.0 
while Pr = 0.05 and R = 2.0. 
 
the boundary layer and consequently skin friction en- 
hances and heat transfer rate reduces significantly. 

Likewise in Figure 4 the effect of surface radiation 
parameter, R, and locally varying parameter, χ, is shown 
graphically on local skin friction coefficient, 1 2Rex xCf  
and local Nusselt number coefficient, 1 2Rex xNu   against 
the modified Richardson number Ri* which ranges from 
0.0 to 20.0. In this figure R takes the values 0.0 and 0.5 
and χ is equal to 1.0 and 2.0 for the Prandtl number Pr = 
0.05. It is observed that both coefficient of local skin 
friction and coefficient of local Nusselt number enhances 
considerably owing to the increase in the value of χ. In 
this figure the graphs are compared for small, large and  

 
(a) 

 
(b) 

Figure 4. (a) Variation of local skin friction and (b) Local 
Nusselt number with Ri* for χ = 1.0, 2.0, R = 0.0, 0.5 while 
Pr = 0.05. 
 
all values of modified Richardson number, Ri*, and an 
excellent agreement is observed. Figure clearly indicates 
that flow develops more rapidly as χ increases from 1.0 
to 2.0, therefore, locally varying parameter, χ, plays im- 
portant role in the establishment of the fluid flow and 
motion of the fluid increases as locally varing parameter, 
χ, increases. However the effect of surface radiation pa- 
rameter is different. Due to the increment in R, it is ob- 
served that shear stress decreases in magnitude while rate 
of heat transfer gets stronger within the boundary layer. 
This depreciation in magnitude of skin friction coeffi- 
cient happens due to the stronger influence of modified 
Richardson number, Ri*, on the fluid flow. 
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5.2. Effect of R on Velocity and Temperature 
Profiles  

Temperature and velocity profiles are also plotted in 
Figure 5 for various values of surface radiation parame- 
ter, R, against  It is observed that both velocity and 
temperature tends to increase when surface radiation pa- 
rameter is intensified. It is expected since R adds more 
heat near the vicinity of the plate which allows the fluid 
to move faster and as a result both temperature and ve- 
locity of the fluid increases within the boundary layer 
region. The reason for this behavior is discussed in the 
earlier discussion. In addition, it is also inspected that 
thermal and momentum boundary layer thicknesses 
slightly increases as well due to the increment in surface 
radiation parameter, R. 

.Y

5.3. Effect of R and Ri* on Heatlines  

Here heatlines are drawn in Figures 6-7 for different 
values of physically important parameters R and Ri*. It 
should be noted that in both figures Pr is taken to be 0.05 
which is appropriate for liquid metals.  

In Figure 6 the influence of modified Richardson 
number, Ri* = 0.0, 2.0 and 5.0 is expressed on heatlines 
so that one can visualize the phenomena of rate of heat 
transfer. In this case surface radiation parameter assumes 
the value 0.1. It is observed from the figure that the 
process of heat transfer get stronger as modified Richard- 
son number increases from 0.0 to 5.0. Therefore, Ri* 
serves to sustain the strength of the fluid flow and ulti- 
mately rate of heat transfer increases within the boundary 
layer. 

Lastly, in Figure 7 attention has been given to observe 
the behavior of heatlines for several values of surface 
radiation parameter, R which is equal to 0.0, 0.25 and 0.5. 
The numerical results for the specified values of R are 
plotted against Y while χ varies between 0.0 to 4.0 and 
Ri* is chosen as 20.0. From the Figures 7(a)-(c), it is 
inferred that heat transfer diminishes as surface radiation 
parameter is intensified. 

6. Conclusions 

In the present article, the effect of thermal radiation on 
mixed convection flow along a semi-infinite vertical sur- 
face is analyzed in the nonabsorbing medium. The verti- 
cal plate is located in the optically transparent medium 
and particularly the processes of radiation absorption, 
emission and scattering are neglected. The relationship 
between convection and thermal radiation is however 
established with the aid of second kind of boundary con- 
dition on the thermally radiating vertical surface. In this 
problem consideration has been given to those working 
fluids which act as liquid metals by taking Pr = 0.05 
which is appropriate for lithium. The governing equa- 

tions are obtained for the regimes where modified 
Richardson number, Ri*, is termed as small (i.e. when Ri* 

 1), sufficiently large (i.e. when Ri*  1) and also in 
the regime where Ri* covers all values from 0 to ∞. The 
corresponding governing equations for each regime are 
reduced to parabolic partial differential equations using 
PVF which are then integrated numerically by employing 
an efficient implicit finite difference method in connec- 
tion with Gaussian elimination technique. The numerical 
results are acquired in terms of local skin friction coeffi- 
cient, 

 

1 2Rex xCf , and local Nusselt number coefficient, 
1 2Rex xNu  , for different values of the parameters, such as, 

surface radiation parameter, R, modified Richardson 
number, Ri*, and locally varying parameter, χ, for fluids  
 

 
(a) 

 
(b) 

Figure 5. (a) Velocity and (b) temperature profiles with  
for R = 0.0, 2.0, 4.0 while Ri* = 30.0, Pr = 0.05.  

Y
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(a) 

 
(b) 

 
(c) 

Figure 6. Heatlines for (a) Ri* = 0.0, (b) Ri* = 2.0, (c) Ri* = 
5.0 while Pr = 0.05 and R = 0.1. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Heatlines for (a) R = 0.0, (b) R = 0.25, (c) R = 0.5 
while Pr = 0.05 and Ri* = 20.0. 
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having Pr = 0.05. From the above investigation we may 
conclude that 1) coefficient of local skin friction and co- 
efficient of local Nusselt number diminishes owing to the 
increase in the surface radiation parameter, R; 2) both 
coefficient of local skin friction and coefficient of local 
Nusselt number enhances significantly owing to the in- 
crease in the locally varying parameter, χ; 3) increment 
in the modified Richardson number is responsible for up- 
rising the wall shear stress of the fluid while on the other 
hand rate of heat transfer decreases. 
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