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ABSTRACT 

We study a firm that has a conventional plant and considers introducing a new plant as an alternative to generate elec-
tricity. The firm’s decision includes the optimal entry time for the new plant, and the optimal dispatch between the ex-
isting plant and the new plant after it has been constructed to maximize the expected profit over an infinite time horizon. 
Under geometric Brownian motion, we formulate the problems as non-regular mixed optimal stopping/control problem. 
Due to the intractability of the mixed problem, we decompose it into two auxiliary problems, and characterize the opti-
mal strategies in closed-form by standard value-matching and smooth-pasting conditions. Our numerical example con-
firms our theoretical results. 
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1. Introduction 

Climate change is now recognized as the major environ-
mental problem facing the world. The factor of most 
concern that causes climate change is the increase in 
carbon dioxide levels due to emissions from fossil fuel 
combustion. Therefore, construction of an alternative 
power plant is crucial to reducing carbon dioxide emis-
sion. By introducing an alternative plant, the firm there-
fore has an energy portfolio. A decision on when a new 
plant should be built must consider this uncertainty due 
to fluctuations in electricity prices. We study this prob-
lem with the optimal entry decision for the new plant, 
given fixed capital investment and the optimal dispatch 
decision for the conventional plant and the alternative 
plant with the objective of maximizing the long-term 
expected profit under geometric Brownian motion for the 
electricity prices over an infinite horizon. 

Investments in and operations of power plants have 
been widely studied. Deng et al. [1] valued electricity 
derivatives by futures-based replication due to the non- 
storable nature of electricity. Tseng and Barz [2] evalu-
ated a power plant in the short-term with unit commit-
ment constraints using a real-options approach. By the 
same approach, Tseng and Lin [3] evaluated a power 
plant involving processes of electricity and fuel prices. 
Thompson et al. [4] studied the valuation and optimal 
operations of hydroelectric and thermal power generators 
through an optimal control and partial-integral-differen- 

tial-equations (PIDEs) approach. Takashima et al. [5] 
analyzed the optimal entry strategy of two firms under 
price uncertainty and competition with real options and 
game theory. Recently, Deng et al. [6] studied the same 
problem over a finite time horizon, and solved the re-
sulting partial differential equation (PDE) by finite dif-
ference method. Liu [7] studied the optimal time to 
abandon a plant of a firm with a portfolio of two plants 
over an infinite horizon by stochastic control approach, 
and the optimal policy is obtained in closed-form. 

This paper studies the timing that a firm invests in a 
new technology. We assume the firm owns a plant, and 
considers adding a new plant while maximizing the ex-
pected long-term profit. Since the firm can generate elec-
tricity by a portfolio of two plants, the optimal dispatch 
of these two plants needs to be determined after the new 
plant is constructed. (Admittedly, it is possible to include 
more plants with various generating methods; we discuss 
this extension in Section 5. Under the geometric Brownian 
motion of long-term electricity prices [8], we formulate 
the decision problem as a mixed stochastic control prob-
lem. Due to the intractability of the mixed problem, we 
decompose it into two auxiliary problems: one is a regu-
lar stochastic control problem, the other one is an optimal 
stopping problem. The solution to the auxiliary problems 
is equivalent to the original control problem, and is ob-
tained in closed-form.  

Our contribution is two-fold: First, we formulate the 
problem as a mixed stochastic control problem. There-
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fore, the optimal entry decision and optimal dispatch are 
addressed accordingly. To the best of our knowledge, the 
mixed control problem cannot be solved directly. Second, 
we decompose the intractable mixed problem into two 
auxiliary problems, and the corresponding value func-
tions satisfy a standard Hamilton-Jacobi-Bellman (HJB) 
equation or variational inequality (VI). We obtain the 
closed-form solutions to the value functions. 

The rest of the paper is organized as follows. We for-
mulate the decision problem as a non-standard stochastic 
control problem in Section 2. In Section 3, we write the 
equivalent form of the value function to the control 
problem. By standard arguments, we obtain the closed- 
form of the value function. In Section 4, we provide a 
numerical example to confirm our results and sensitivity 
analysis. Finally, conclusions and future research direc-
tions are presented in Section 5.  

2. Problem Formulation 

We introduce the following notation to formulate the 
problem. 
 tX : Electricity price [$/MWh] 
  : the risk-adjusted discount rate 
 max : maximum proportion of total wealth invested 

in alternative method (AL) 
  max0, : proportion of total wealth invested in 

AL [Decision variable] 
 

 1c : Production rate of the conventional method 
(CON) 

 2c : Production rate of AL 
 1D : Total cost of generating 1c  units of electricity 

from CON 
 2D : Total cost of generating 2c  units of electricity 

from AL 
  : time to construct AL [Decision variable] 
 K : capital investment for constructing AL [\$] 

We assume the long-term electricity price follows the 
standard geometric Brownian motion [8]:  

d d d ,Xt Xt t Xt Bt                (1) 

where μ and σ are expected growth rate and volatility of 
the electricity price respectively, and {Bt} is a Wiener 
processes. Assume x is the initial position of electricity 
price. That is, X0 = x. 

The objective of the firm is to choose an optimal stop-
ping time τ to construct AL, and an optimal proportion α 
after τ in order to maximize the expected profit. If we 
define the expected discounted profit functional J given 
initial electricity price x, proportional investment in AL α, 
and the time to construct AL τ as 
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subject to (1), where Ex is the expectation with respect to 
x and αt is obviously a function of time t, then the value 
function u is defined as 
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where Γ is the set of stopping times. 

3. Solution Methods 

In order to solve the non-standard stochastic control 
problem (3), we proceed as follows: By introducing an 
auxiliary function x, we obtain the equivalent function w 
to the value function u, which solves an optimal stopping 
problem. We then get the closed-form solution of w by 
value-matching and smooth-pasting conditions.  

3.1. Equivalent Problem to (3)  

We define the auxiliary function v as the expected profit 
from the portfolio assuming AL is constructed: 

     

 
max 1 10, 0

2 2

sup 1

d

x t t

t
t t

v x E c X D

c X D e t

 













 
  

 
    (4) 

It is easy to get 
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by the fact that   t
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If we define the value function w as 
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we can formally prove that w is equivalent to u in (3) 
(See [9]). 

The value function w satisfies the combination of 
variational inequality of optimal stopping problem as 
follows 

  1 1max , 0,Lw c x D w w v K          (8) 

where the generator L is defined as 
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3.2. Closed-Form Solution to w 

First we consider the solution to the following ordinary 
differential equation (ODE): 

 1 1 0.Lw c x D w               (10) 

A special solution  to (10) can be easily identified 
as 

0w
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If we try a function w of the form  

 w x Cx , for some constant β,      (12) 

we get 

 Lw w x h               (13) 

where 
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Note that 
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Therefore if we assume   , then we can get there 
exists 1 1,   such that   1  0.h

Next we solve for the explicit form of solution to 
Problem (7). With the value of 1 , we put  
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for constants C and x  to be determined. 
By value matching condition [10] at x x , we have 

   1
0 ,Cx w x v x K              (17) 

and smooth pasting condition [10] at x x , we have 
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It is easy to see that 
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(20) requires that 
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Plugging (22) into (20) yields 
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In summary, the value function u is equivalent to w, 
which has the closed-form (16). The unknown constants 
are determined by (22) and (24) with constraints (23). 

4. Numerical Example and Sensitivity 
Analysis 

A numerical example with the following parameters 

max 1

2 1 2
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3, 100, 130, 500.

c
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The results are as follows 

1 12.5746, 0.034 0,

30, 91.97.x x
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    
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They indicate that when electricity price is higher than 
91.97, it is optimal to construct the alternative plant. 
Otherwise, the decision-maker needs to keep the conven-
tional method.  

Next we carry about sensitivity analysis by changing 
one of the given parameters to see how it affects the 
threshold level x  as in (22).  

First we change the capital investment K from $400 to 
$600 with other parameters fixed. Figure 1 shows the 
threshold level x  increases linearly from $81.76 to 
$102.2 as K increases. This confirms the result of (22) 
and is consistent with the intuition that higher capital 
investment discourages the firm from constructing the 
new plant. 

Second, if the electricity price growth rate μ changes 
from 1% to 3% with other parameters fixed, then the 
threshold level x  decreases from $84.38 to $77.47 as 
shown in Figure 2. This result explains the fact: the 
higher the electricity price, the earlier a firm tends to 
construct the new plant. Figure 2 also shows a nonlinear 
relationship between the growth rate μ and the threshold 
level x  as in (14) and (22).  

       (22) 

Third, if the electricity price volatility σ changes from 
10% to 200% with other parameters fixed, then the 
threshold level x  increases drastically from $84.38 to 
$2372.1 as shown in Figure 3. This impact of price vola-
tility can be explained analytically from (14) and (22): as 
volatility σ is the leading term of quadratic Equation (14), 
it has huge impact on the solution β and the threshold 
level x  through (22). 
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Figure 1. Sensitivity analysis with capital investment K. 
 

 

Figure 2. Sensitivity analysis with electricity price growth 
rate μ. 
 

 

Figure 3. Sensitivity analysis with electricity price volatility σ. 

We omit the sensitivity analysis with other parameters 
as it is straightforward to carry out given (22). 

5. Conclusions 

We study the optimal entry decision for alternative plant 
given a fixed capital investment, and the optimal dispatch 
decision between the conventional plant and the alterna-
tive plant. By introducing two auxiliary problems, we 
solved the mixed stochastic control problem in closed 
form. 

This paper can be generalized in the following ways. 
First, the analysis in this paper is just based on one sto-
chastic process (the electricity price); we admit that there 
are other stochastic processes that can affect the deci-
sions, such as the cost of the carbon dioxide emission. 
We would have more stochastic processes in addition to 
electricity prices process, and we need to solve the mul-
tidimensional optimal control problem. Second, switch-
ing costs will be incurred when we abandon the conven-
tional method, and singular control technique would be 
employed to study this problem.  
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