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ABSTRACT 

Within the family of zero-inflated Poisson distributions, the data has Poisson distribution if any only if the mean equals 
the variance. In this paper we compare two closely related test statistics constructed based on this idea. Our results show 
that although these two tests are asymptotically equivalent under the null hypothesis and are equally efficient, one test is 
always more efficient than the other one for small and medium sample sizes. 
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1. Introduction 

The Poisson distribution is the standard model for count-
ing data, for example, the number of telephone calls 
within a specific time period [1]. One stringent condition 
for the Poisson distribution is that the mean equals vari-
ance. However, in practice, many counting data show 
some overdispersion, i.e. the variance is greater than the 
mean value. The Zero-inflated Poisson (ZIP) distribution 
[2] and the negative binomial distribution [3,4] have been 
proposed to catch this overdispersion in practical data. 
The ZIP and it’s related regression methods have been 
developed and used in many different areas, such as sub-
stance use [5], microbiology [6,7], psychology [8], health 
information management [9], dentistry [10], transporta-
tion engineering [11], and manufacturing [2]. 

Many tests have been proposed to test the overdisper-
sion in counting data [1,6,12-19]. El-Shaarawi [6] com-
pares the properties of the likelihood ratio test, the 
Cochran test [13], and the Rao test [17]. His simulation 
result indicates that the likelihood ratio is always the best 
to keep the significance level in the cases of small or 
medium sample sizes. However, the Cochan and Rao 
tests are much more powerful than the likelihood ratio 
test in those cases. 

In the Zero-inflated Poisson (ZIP) distribution an extra 
proportion of zeros is added to the probability of zeros in  

the Poisson distribution. Suppose that 
d

X ZV , where Z 
and V are independent variables with  
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Then X has the zero-inflated Poisson distribution. Note 
that  
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Remark 1. Although in the definition of ZIP distribu-
tion, the parameter p in the Bernoulli distribution is re-
quired to be in  0,1 , formula (1) always define a valid 
probability distribution as long as  
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               (3) 

This means that p can be greater than 1. For example, 
when 0.1  , 10.1p  , formula (1) still defines a valid 
probability distribution. The formulas for mean and 
variances in (mean) still hold as long as (3) is true. The 
valid range of  , p  is the range below the curve in 
Figure 1. 

Remark 2. The distribution in (1) can introduce both 
overdispersion and underdispersion.  

1) if 0 1p  , then      1 exp expp p        
and 2   (over dispersion). 

2) if   1 1p , then  1 exp    *Corresponding author. 
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Figure 1. The range of p and λ. 
 
    1 exp expp p       and 2   (under dis-
persion). 

Since the Poisson distribution is a special case of the 
distribution defined in (1), the likelihood ratio test (LRT) 
is a natural choice for testing the hypotheses  

0

1

: Data from Poisson distribution vs

: Data from distribution in (1),

H

H
      (4) 

which is equivalent to  

0 1: 1 vs : 1H p H p  .  

To construct LRT, we need to estimate two parameters 
  and p. There are no closed form solutions for the 
score equation. Some iteration methods are called for the 
solution. Secondly, under the null hypothesis, the pa-
rameter p is on the boundary of the parameter region. 

Many other methods have been proposed to test the 
hypotheses in (4). See, for example, [12] and [19]. 
Brown and Zhao [1] studied the hypotheses of the form  
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and compared the behavior of their newly developed test 
with likelihood ratio test and several other tests. Feng et 
al. [14] derived the asymptotic distribution of the likeli-
hood ratio test defined in [1] and corrected an error in 
that paper. 

In this paper we construct two nonparametric test sta-
tistics and compare the efficiency, the empirical size, and 
power of two closely related tests, especially for the 
cases of small and medium sample sizes.  

2. Test Statistics 

From (1) we know that the data is from Poisson if and 
only if 2 

i

. We can construct a test to study the dif-
ference between the sample mean and sample variance. 
Suppose , 1,X i 
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be the sample mean and sample variances, respectively. 
Simple algebra shows that  
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The asymptotic result in (5) still holds with   re-
placed by a consistent estimator of  . 

Under the null hypothesis, both X  and  are con-
sistent estimators of 

2
nS

 . In fact, X  is the MLE of   
under 0H . Based on this idea, we define two test statis-
tics  
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Since the exact variance of 2
nS X  is  22 1n   

[Bo], the test statistic proposed by Böhning [12] is  
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which is asymptotically equivalent to . This test is 
also called Neyman-Scott test in [1]. 

1T

In the next section we study the relative efficiency of 

1  and 2T  and compare their empirical size and power 
for small and medium sample sizes. 
T

3. Comparison of T1 and T2 

Note that algebraically these two tests satisfy the relation  
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If  or 1 0T  1 2T   n , then 1T T 2 . Otherwise 

1 2T T . 
In this section we study the Pitman asymptotic relative 

efficiency (ARE) of 1  with respect to 2T . The ARE is 
a large sample property of a test statistic. We also com-

T
n , is a random sample. Let  

Copyright © 2012 SciRes.                                                                                  AM 



H. Y. WANG  ET  AL. 797

pare the empirical sizes and powers of these two test sta-
tistics by simulations for the cases of small and medium 
sample sizes if the asymptotic distributions are used in 
those cases. 

3.1. Relative Efficiency 

In this subsection we study the Pitman efficiency of  
with respect to . Note that  
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This means that these two test statistics have the same 
efficiency in the large sample case. 

3.2. Empirical Sizes and Powers 

In this part we compare the empirical sizes and powers 
by simulations when the asymptotic distributions of 1  
and 2  are used in the cases of small and medium sam-
ple sizes. The theoretical significance level is set at 0.05. 
We compare 1  and 2T  for different p and 

T
T

T  . Table 
1 shows the simulation results (from 100,000 Monte 
Carlo repetitions). 

Empirical size: Except for very small   (for example, 
0.1  ), the empirical size of 1  is very close to the 

theoretical significance level, even when . On the 
other hand, the empirical size of 2  is far away from the 
theoretical value. For example, when 

T

T
20

0.1

n

 
n 

, the em-
pirical size of 2T  is 0.03 even when . When 500

1  , 2 and 5, the empirical sizes of  are well above 
the theoretical value for sample size .  

2

50
T
n

Empirical Power: As p decreases, the distribution goes 
far and far away from the Poisson distribution. The pow-
ers of these two test statistics increase as p decreases. 
However, the power of 1  increases much faster than 
that of 2T . For example, when , 

T
0.7p  1.0   and 

100n  , the powers are 0.519 and 0.297, respectively. 
When 0.9p  , 2.0   and , the powers are 
0.498 and 0.337, respectively. 

200n

The simulation results show that although these two 
test statistics are asymptotically equivalent under 0H , 
and have the same efficiency in the large sample case, 

1  is more efficient than  in the small and medium 
sample cases. 
T 2T

Since  
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we also compare the behave of  

2 3
4 1 1 1

2 2
T T T T

n n
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with 1  and  (not reported here). We find that 4  is 
very similar to 1 . This means the remainder term in (9) 
plays a very significant role in the cases of small and 
medium sample sizes. 

T 2T
T

T

4. Real Data Study 

In this section, we apply these two test statistics to four 
real data sets. These data sets have sample sizes from 
relatively small n = 44 to relatively large n = 539. The 
results are summarized in Table 2. 

Example 1: This data set is used in [1]. It contains the 
number of daily calls for standard services between 4:30 
pm to 4:45 pm in an Israel call center within 44 consecu-
tive days. More information about this data set can be 
found in Section 2 of [1]. We want to test if the data has 
a Poisson distribution. Here we assume that the number 
of calls from different days are independent. The sample 
mean and sample variances are 18.66 and 25.95. The 
p-value of 1  is 0.07, which shows marginally signifi-
cant overdispersion of the data. This is consistent with 
our impression. See Figure 2 in [1] for the histogram of 
the data. However, the p-value of  is 0.19. 

T

2

Example 2: This is another data set used in [1]. It con-
tains the number of daily calls for internet services be-
tween 4:30 pm to 4:45 pm in an Israel call center within 
107 consecutive days. Here we also assume that the 
number of calls from different days are independent. The 
sample mean and sample variances are 2.18 and 2.47. 
The p-values of 1  and 2T  are 0.33 and 0.39, which 
show the Poisson distribution is a good approximation 
for the data. This is consistent with our impression. See 
Fi ure 1 in [1] for the histogram of the data.  

T

T

g 
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Table 1. Power comparison of T1 and T2. Results were obtained from 100,000 MC replications. 

Binomial parameter (p) 

p = 1.0  p = 0.9 p = 0.7  p = 0.5 n 

T1 T2  T1 T2 T1 T2  T1 T2 

λ = 0.1 

20 0.021 0.001  0.023 0.001 0.028 0.001  0.032 0.001 

50 0.044 0.007  0.052 0.008 0.067 0.012  0.077 0.017 

100 0.045 0.016  0.056 0.021 0.090 0.031  0.123 0.051 

200 0.044 0.023  0.058 0.032 0.090 0.056  0.136 0.095 

500 0.049 0.032  0.057 0.042 0.109 0.084  0.177 0.139 

λ = 1.0 

20 0.047 0.087  0.080 0.048 0.189 0.018  0.324 0.026 

50 0.046 0.067  0.096 0.034 0.316 0.091  0.587 0.268 

100 0.049 0.059  0.126 0.052 0.519 0.297  0.848 0.674 

200 0.048 0.052  0.181 0.100 0.790 0.654  0.985 0.964 

500 0.048 0.050  0.351 0.264 0.991 0.982  1.000 1.000 

λ = 2.0 

20 0.046 0.092  0.122 0.027 0.438 0.028  0.746 0.126 

50 0.048 0.068  0.196 0.044 0.765 0.408  0.979 0.853 

100 0.050 0.049  0.303 0.129 0.961 0.869  1.000 0.999 

200 0.049 0.054  0.498 0.337 1.000 0.998  1.000 1.000 

500 0.049 0.051  0.854 0.789 1.000 1.000  1.000 1.000 

λ = 5.0 

20 0.050 0.099  0.387 0.037 0.930 0.426  0.998 0.889 

50 0.050 0.071  0.631 0.311 0.999 0.988  1.000 1.000 

100 0.050 0.061  0.855 0.700 1.000 1.000  1.000 1.000 

200 0.051 0.056  0.983 0.962 1.000 1.000  1.000 1.000 

500 0.050 0.052  1.000 1.000 1.000 1.000  1.000 1.000 

 
Table 2. Results from real data. 

T1  T2 
Example n X  

2

nS  
Statistic p-value  Statistic p-value 

1 44 18.66 25.95 1.83 0.07  1.32 0.19 

2 107 2.18 2.47 0.97 0.33  0.86 0.39 

3 366 6.36 6.82 0.98 0.33  0.91 0.36 

4 539 12.03 184.52 235.44 <0.0001  15.35 <0.0001 
  



H. Y. WANG  ET  AL. 799

 
Example 3: This data set is reported in [12]. It contains 

the number of daily deaths of women with brain vessel 
disease during the year 1989 in West Germany. The 
sample mean and sample variances are 6.36 and 6.82. 
The p-values of 1  and 2T  are 0.33 and 0.36, which 
shows the Poisson distribution is a good approximation 
for the data.  

T

Example 4: This data is from a HIV prevention study 
finished at the University of Rochester School of Nursing. 
The study participants were 621 sexually active girls of 
ages 15 - 19 years. For more details about the study, please 
refer to [7]. One of the primary outcomes is the number 
of unprotected vaginal sex over the past 3 months. After 
3 months of intervention, the number of unprotected 
vaginal sex wase available for 539 girls. The sample 
mean and sample variances are 12.03 and 184.52. Al-
though both tests show very significant over-disper- sion 
for the data set (p-values < 0.0001), the values of the test 
statistics are very significantly different with T1 = 235.44 
and T2 = 15.35. This phenomena can also be seen from 
(means) as  1M p  can be arbitrarily large, while  

 2M p  is bounded above by 1. 

5. Discussion 

In this paper we compare two test statistics which can be 
easily used to test the Poisson distribution versus the 
zero-inflated Poisson distributions. Both test statistics are 
asymptotically equivalent under null hypothesis and the 
relative Pitman efficiency is 1. However, they have very 
significantly different behaviors for small and medium 
sample sizes. While T1 always has reasonable empirical 
size (under null hypothesis) and power (under alternative 
hypothesis) for small and medium sample sizes, T2 shows 
some erratic behaviors even for medium sample sizes 
and may lead to wrong conclusion in practice (example 
1). Therefore we should never use it in practice. 
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