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ABSTRACT 

The Split Delivery Vehicle Routing Problem (SDVRP) allows customers to be assigned to multiple routes. Two hybrid 
genetic algorithms are developed for the SDVRP and computational results are given for thirty-two data sets from pre-
vious literature. With respect to the total travel distance and computer time, the genetic algorithm compares favorably 
versus a column generation method and a two-phase method. 
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1. Introduction 

The basic model for this paper is a vehicle routing prob- 
lem (VRP) variant, the split delivery vehicle routing 
problem (SDVRP). Standard forms of the VRP have 
been studied for decades as shown in the seminal paper 
by Dantzig and Ramser [1] and an algorithm developed 
by Clarke and Wright [2]. Recent surveys by Toth and 
Vigo [3] and Cordeau et al. [4,5] examine exact and 
heuristic procedures of the VRP, respectively. Golden 
and Assad [6] and Toth and Vigo [7] edited books solely 
devoted to the VRP and its variants, and Laporte and 
Osman [8] provide an extensive bibliography. Reimann 
[9] analyzed a vehicle routing problem with stochastic 
demands. 

The SDVRP is appropriate for many CVRP applica- 
tions where customers can be visited more than once. 
Numerous applications for the CVRP are noted in the li- 
terature [6,7], with the primary emphasis being the dis- 
tribution of various goods. Dror and Trudeau [10,11] 
formally introduced the SDVRP. The primary motivation 
to split a customer’s demand over multiple routes is to 
reduce the travel distance and the number of vehicle 
routes. If each vehicle has the same capacity, then the 
minimum number of routes is the total demand divided 
by the vehicle capacity rounded up to the nearest integer. 

Genetic algorithms have been used in a variety of 
areas [12]. There applications have been noted in many 
industrial engineering areas, including scheduling [13], 
vehicle routing [14], and the generalized orienteering 
problem [15]. 

2. Literature Review 

2.1. Split Delivery Vehicle Routing Problem  
Literature Review 

Dror and Trudeau [10,11] formally introduced the SD- 
VRP. The primary motivation to split a customer’s de- 
mand over multiple routes is to reduce the travel distance 
and the number of vehicle routes. If each vehicle has the 
same capacity, then the minimum number of routes is the 
total demand divided by the vehicle capacity rounded up 
to the nearest integer. They proved, given that the dis- 
tance between nodes follows the triangle inequality, there 
exists an optimal solution where no two routes can have 
more than one split demand point in common, and that 
there exists an optimal solution with no k-split cycles (for 
any k). Based on these proofs, Dror and Trudeau [11] 
devised a heuristic to solve the SDVRP given an initial 
CVRP solution by splitting a node’s demand to fill the 
routes to capacity. Dror et al. [16] extended the formu- 
lation of Dror and Trudeau [10,11] with additional con- 
straints, and developed a constraint relaxation branch and 
bound algorithm. The results from Dror and Trudeau [10, 
11] and Dror et al. [16] show that the percent reduction 
in travel distance, when compared to the CVRP, is most 
prominent among problems where customers have high 
demands (i.e., more than 10% of the vehicle capacity). 
The results showed that the SDVRP solution used fewer 
routes than the CVRP solution; however, the SDVRP 
solution did not always use the minimum number of 
routes. 

Frizzell and Giffin [17,18] solved the SDVRP with 
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time windows on grid networks and developed heuristics 
to generate solutions. Archetti et al. [19] and Aleman and 
Hill [20] developed tabu search procedures for the 
SDVRP. Archetti et al. [21] analyzed the worst-case pro- 
perties of the SDVRP. Archetti et al. [22] discussed 
when demand splitting is most beneficial. Lee et al. [23] 
developed a dynamic programming model for the vehicle 
routing problem with split pick-ups with an uncountable 
(infinite) number of state and action spaces. Belenguer et 
al. [24] performed a polyhedral study on the SDVRP to 
produce lower bounds through formulating the problem 
with undirected arcs by assuming symmetric distances. 
Using a cutting-plane algorithm in conjunction with a 
relaxed formulation, they were able to obtain feasibility 
gaps within 12% for problems with 50, 75, and 100 
customers. Jin et al. [25] developed a two-stage algo- 
rithm to solve the SDVRP using valid inequalities. Jin et 
al. [26,27] presented a column generation procedure that 
provides comparable lower and upper bounds for the data 
sets developed by Belenguer et al. [24]. Chen et al. [28] 
presented a mixed integer program and a variable length 
record-to-record travel algorithm. Burrows [29] showed 
that the SDVRP could be modified by splitting customer 
demand into smaller quantities on the same node, and 
then solved using CVRP methods. Wilck and Cavalier 
[30] developed a construction heuristic to quickly gene- 
rate feasible solutions to the SDVRP. Aleman et al. [31] 
present an adaptive memory algorithm for the SDVRP. 
Archetti and Speranza [32] and Gulczynski et al. [33] 
recently surveyed the SDVRP literature. Recent theses 
addressing the SDVRP include Aleman [34], Wilck [35], 
Liu [36], Nowak [37], and Chen [38]. 

Direct applications of the SDVRP have been noted in 
literature. Mullaseril et al. [39] modeled a cattle feed 
distribution problem as an SDVRP with time windows. 
Sierksma and Tijssen [40] model a helicopter crew- 
scheduling problem using an SDVRP model, developed a 
relaxed linear program and column generation scheme to 
find a solution, and used a cluster-and-route procedure. 
Song et al. [41] modeled a newspaper distribution proc- 
ess as a SDVRP and solved using a two-phase pro- 
cedure. The first phase allocates customers using a binary 
program and the second phase generates vehicle routes. 

2.2. Genetic Algorithms in Vehicle Routing  
Problems Literature Review 

A genetic algorithm is a global search procedure that 
solves problems by emulating evolution. A pure genetic 
algorithm uses reproduction and mutation to develop a 
new generation of solutions from the current generation 
of solutions. The constraints of the VRP do not allow the 
application of pure genetic algorithms without an addi- 
tional step to ensure feasibility. 

The book by Goldberg [42] describes the solution 

process of genetic algorithms. The Fundamental Theo- 
rem of Genetic Algorithms states the conditions in order 
to achieve a global optimal solution [43]. These condi- 
tions describe the breeding process and insist that better 
solutions (or patterns) remain in future generations while 
weaker solutions (or patterns) are eliminated from future 
generations. The typical genetic algorithm follows these 
basic steps [43]. 

The procedure outlined here is a basic genetic algori- 
thm. Procedures for generating feasible offspring and 
feasibly mutating the new generation are problem-spe- 
cific. For example, given a problem that can be repre- 
sented by a binary string with four values. Then the fol- 
lowing example can occur: Parent 1: 0-1-1-0 and Parent 
2: 1-0-1-1. 

A crossover will occur between any of the four values 
(i.e., between the first and second, between the second 
and third, and between the third and fourth). Based on 
probability (e.g., generating a random number between 
0 and 1), the crossover point is chosen as between the 
second value and the third value. Thus the crossover 
will take 0-1 from Parent 1 and switch it with 1-0 from 
Parent 2, resulting in two offspring: Child 1: 1-0-1-0 
and Child 2: 0-1-1-1. The mutation stage will then, 
using probability, randomly select a small number of 
offspring (if any at all) and change a small portion of 
position values. For example, suppose that based on 
probability, Child 2 is to be mutated in the second 
position. Originally, Child 2 is 0-1-1-1; and with muta- 
tion she is 0-0-1-1. 

The preceding example assumed a binary string pro- 
blem structure with no limiting constraints. Unfortuna- 
tely, applying genetic algorithms directly to VRP va- 
riants is difficult due to the constraints of the problems. 
Therefore, additional steps or changes are necessary to 
ensure feasibility of created solutions. For VRP variants 
the reproduction stage (i.e., Step 4) can be modified to 
ensure feasible solutions or an additional step can be 
added after the mutation stage (i.e., Step 5) to fix in- 
feasible solutions. 

Gendreau et al. [44] described three approaches to the 
VRP with time windows, where each approach ensures 
feasibility differently. The first approach ensures feasi- 
bility while sacrificing the evolutionary aspects of the 
genetic algorithm; thus, it is considered a hybrid app- 
roach. This approach does not allow infeasible reprodu- 
ction or mutation. The second approach applies a genetic 
algorithm to the partitioning of customers to routes, but 
the routes are solved separately to ensure feasibility. The 
third approach applies a genetic algorithm directly, but 
incorporates a post-processing step to ensure feasibility. 
The third approach yielded the best results in terms of the 
objective; however, it was computationally expensive. 
Gendreau et al. [45] stated that accounting for the con- 
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straints of the VRP makes a genetic algorithm compu- 
tationally expensive. 

Alvarenga et al. [14] developed a two-phase approach 
for the VRP with time windows by using a hybrid ge- 
netic algorithm and a set-partitioning method to generate 
routes. The two-phase approach yielded good solutions 
when compared to best known solutions. Solution time 
was not compared or reported, but the genetic algorithm 
was given a time limit of 60 minutes. 

Baker and Ayechew [46] developed a pure genetic 
algorithm and a hybrid genetic algorithm for the CVRP 
while constraining the maximum distance of a route. The 
pure genetic algorithm produced poor solutions, when 
compared to previous simulated annealing and tabu 
search methods. The hybrid genetic algorithm provided 
comparable, although not superior, solutions when com- 
pared to previous methods in a reasonable amount of 
computer time. The hybrid genetic algorithm applied 
neighborhood search procedures to ensure a feasible so- 
lution. 

Wang et al. [15] developed a genetic algorithm for the 
generalized orienteering problem. The orienteering pro- 
blem is a VRP variant where a start point and an end 
point are specified and other points have associated 
scores. The objective is to determine a path that maxi- 
mizes the score while adhering to a time constraint. The 
generalized orienteering problem (GOP) adds a level of 
complexity where there are numerous attributes at a 
specific point that represent the total score. The GOP is 
similar to a VRP with one vehicle route. The genetic 
algorithm developed by Wang et al. [15] compared 
favorably to an artificial neural network solution proce- 
dure. The genetic algorithm procedure initially allowed 
infeasible solutions, but then corrected the solutions by 
truncating them to accommodate the time constraint. 

Jeon et al. [47] consider the VRP with multiple depots 
and up to two deliveries per node (i.e., split delivery). 
They developed a pure genetic algorithm and a hybrid 
genetic algorithm. The hybrid genetic algorithm ensured 
that no infeasible solutions were generated, and the hy- 
brid genetic algorithm provided consistently better re- 
sults in terms of objective value. Computation time was 
not provided for the pure genetic algorithm. 

2.3. Data Sets from Previous Literature 

Data sets from Belenguer et al. [24] and Chen et al. [28] 
were used to test the hybrid genetic algorithm procedure 
presented in this paper. The procedure was coded in 
FORTRAN 95 and compiled by GNU FORTRAN on an 
Intel Xeon Processor 2.49 GHz computer with 8 GB 
RAM. The number of customers and vehicles for 11 data 
sets from Belenguer et al. [24] are shown in Table 1. The 
number of customers ranged from 50 to 100, with an 
additional node for the depot. The data sets also differ by  

Table 1. Eleven data sets from Belenguer et al. [24]. 

Data Set Customers Vehicles 

S51D2 50 9 

S51D3 50 15 

S51D4 50 27 

S51D5 50 23 

S51D6 50 41 

S76D2 75 15 

S76D3 75 23 

S76D4 75 37 

S101D2 100 20 

S101D3 100 31 

S101D5 100 48 

 
amount of spare capacity per vehicle. The customers 
were placed randomly around a central depot and de- 
mand was generated randomly based on a high and low 
threshold. The number of customers and vehicles for 21 
data sets from Chen et al. [28] are shown in Table 2. The 
number of customers ranged from eight to 288, with an 
additional node for the depot. The data sets do not have 
any spare vehicle capacity. The customers were placed 
on rings surrounding a central depot and the demand was 
either 60 or 90, with a vehicle capacity of 100. Results 
from Jin et al. [26] and Chen et al. [28] were used as a 
comparison to the results from the hybrid genetic algo- 
rithm presented in this paper for these 32 data sets. 

3. Hybrid Genetic Algorithm Procedure 

A genetic algorithm is a global search procedure that 
solves problems by emulating evolution. A pure genetic 
algorithm uses reproduction and mutation to develop a 
new generation of solutions from the current generation 
of solutions. The constraints of the SDVRP do not allow 
the application of pure genetic algorithms without an 
additional step to ensure feasibility. A hybrid genetic 
algorithm allows for a genetic global search procedure 
while ensuring feasibility. The phrase hybrid genetic 
algorithm is sometimes used to describe memetic algo- 
rithms; however, for this paper hybrid refers to com- 
posing a solution from multiple sources. Coupling hybrid 
and genetic algorithms yields the term hybrid genetic 
algorithm. This section is organized as follows, Section 
3.1 describes the development of an initial population 
and the reproduction procedure is discussed in Section 
3.2. 

3.1. Initial Population 

A construction heuristic [30] develops initial solutions 
for the SDVRP. The construction heuristic develops 72 
solutions, based on applying a different set of rules for  

Copyright © 2012 SciRes.                                                                                AJOR 



J. H. WILCK IV, T. M. CAVALIER 210 

Table 2. Twenty-one data sets from Chen et al. [28]. 

Data Set Customers Vehicles 

S1 8 6 

S2 16 12 

S3 16 12 

S4 24 18 

S5 32 24 

S6 32 24 

S7 40 30 

S8 48 36 

S9 48 36 

S10 64 48 

S11 80 60 

S12 80 60 

S13 96 72 

S14 120 90 

S15 144 108 

S16 144 108 

S17 160 120 

S18 160 120 

S19 192 144 

S20 240 180 

S21 288 216 

 
each of three controls. If the same set of rules is applied 
for three controls for each vehicle route, then up to 72 
different solutions can be created. However, a more 
diverse set of solutions can be created if a different set of 
rules for each control is applied for each specific vehicle 
route within a solution. By randomly selecting which rule 
to apply for each specific control for each vehicle route, a 
feasible solution can be generated. Using this approach, 
100 solutions with a random application of the rules were 
generated. These solutions were generated rather quickly, 
in less than 205 seconds for any particular data set. In 
order to provide the hybrid genetic algorithm with a 
strong and diverse start, the initial population for the hy- 
brid genetic algorithm included the 72 combination solu- 
tions (directly from the construction heuristic) and the 
100 solutions generated by randomly applying the rules 
for each vehicle route. 

3.2. Reproduction Procedures 

The 100 randomly generated solutions and the 72 solu- 
tions developed by the construction heuristic were used 
as the initial population. Subsequent offspring popula- 
tions were created route-by-route using a hybrid genetic 
algorithm to ensure feasibility. A variety of parameter 
settings were analyzed and tuned based on the 32 data 

sets. The results from two fitness approaches are given, 
shortest route and largest demand unit per distance unit. 

3.2.1. Fitness Approach 1: Shortest Route 
In order to build a single feasible solution a number of 
steps must be completed. The current population of so- 
lutions provides a set of vehicle routes, and these routes 
are sorted from shortest to longest based on travel dis- 
tance. The first fitness approach is to select shorter routes 
that meet a certain capacity threshold with a greater pro- 
bability of being selected than longer routes. The shortest 
feasible route is selected with a probability Pg, and this 
probability is the same for all solutions and routes. If the 
vehicle route is selected, then it is added to the current 
solution and is not included in any further solutions 
(neither the current solution nor any future solutions) for 
the current population. If the route is not selected, then 
the next shortest feasible route is selected with pro- 
bability Pg. If there are no feasible routes remaining, then 
the solution is completed using the construction heuristic 
with a random rule selection for the remaining vehicle 
routes. By using the construction heuristic, feasibility is 
ensured. In addition, a number of good solutions from the 
previous generation are included in the current gene- 
ration, and bad solutions generated were discarded. This 
is often referred to as memory [48,49]. This procedure 
ensures that each generation is better than the previous, 
and builds a set of good solutions. 

The parameters are capacity threshold, probability of 
route being selected Pg, and the number of solutions from 
the previous generation kept in the current generation. 
These parameters were tuned using the 32 data sets. The 
results of this analysis were to set the capacity threshold 
as the average vehicle slack (rounded up). The proba- 
bility, Pg, of a route being selected was set to 20%. The 
number of solutions kept from the previous generation 
was set at 10%, which means that the worst 10% of the 
next generation solutions were discarded (unless they 
were more favorable than the best 10% from the previous 
generation). The population size for a generation was set 
at 100 solutions (except for the initial population which 
was 172 solutions) and the number of new generations is 
20. These values were used to ensure the entire proce- 
dure was completed in a timely fashion. 

Usually, genetic algorithms incorporate a mutation 
stage which randomly alters a small portion of the solu- 
tions from generation to generation. The SDVRP has side 
constraints (i.e., capacity, demand) that make mutation 
difficult while ensuring feasibility. Using the constru- 
ction heuristic to finish building solutions where no 
feasible route existed provided a method to alter solu- 
tions from generation to generation. This is not a direct 
mutation, but this method does allow for a portion of the 
current population to be randomly altered while main-  
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taining feasibility. 
The final solution outputted by the hybrid genetic 

algorithm is the best solution from the last generation. 
However, it is possible to find this solution in a previous 
generation, but it would have remained in the current 
generation since it would have been better than the worst 
10% of solutions. This concept goes along with the sur- 
vival of the fittest goal of genetic algorithms. 

3.2.2. Fitness Approach 2: Ratio of Demand Unit  
Versus Distance Unit 

The first fitness approach uses only distances and does 
not take demand into account during the selection of 
routes. The second fitness approach sorts the feasible 
routes based on demand units divided by distance units. 
The larger this ratio, the more likely the route is selected. 
The route with the largest demand unit per distance unit 
is selected with probability Pg. All other parameters re- 
mained the same as Fitness Approach 1. 

3.2.3. Step-by-Step Procedure for Hybrid Genetic  
Algorithm 

Step 0: Build the initial population using the construc- 
tion heuristic and 100 random solutions by randomly 
applying the rules for each of the three controls. The total 
initial population size is 172. 

Step 1: Build the current generation. Sort the routes in 
the previous population based on the fitness approach. 
Build a new solution iteratively by route by using Step 2. 

Step 2: Select a feasible route with the best fitness 
value with probability Pg = 0.20. If the feasible route is 
selected, then add it to the current solution and discard it 
from being used in later solutions in the current genera-
tion. If the feasible route is not selected, then repeat Step 
2 (the feasible route is not discarded, but it is not allowed 
to be selected during the current iteration when selecting 
a vehicle route). 

Step 3: Repeat Step 2 until a complete solution is built 
or until all feasible routes have been exhausted. If all 
feasible routes have been exhausted, then use the con- 
struction heuristic (by randomly applying the set of rules 
for each control) to build the remaining routes for the 
solution. 

Step 4: Repeat Steps 2 and 3 until the entire population 
of 100 solutions is built. 

Step 5: Compare the worst 10% of the current popula- 
tion of solutions to the best solutions from the previous 
generation. Select the best solutions (in terms of shortest 
travel distance) to remain in the current generation. At 
most 10 solutions from the current generation will be 
replaced. 

Step 6: Repeat Step 1 until 20 generations are com- 
pleted. 

Step 7: Select the best solution from the final genera- 

tion. Output as final solution. 

4. Computational Experience of the Hybrid  
Genetic Algorithm 

The hybrid genetic algorithm was applied to the data sets 
from Belenguer et al. [24] and Chen et al. [28] based on 
the Hybrid Genetic Algorithm Procedures described in 
Section 3 for both fitness approaches. The procedure was 
coded in FORTRAN 95 and compiled by GNU FORT- 
RAN on an Intel Xeon Processor 2.49 GHz computer 
with 8 GB RAM. The best solution was outputted as the 
final solution. 

Section 4.1 describes the performance of the first fit- 
ness approach, with the 100 randomly generated solu- 
tions and the 72 solutions developed by the construction 
heuristic as the initial population. Section 4.2 describes 
performance, with the 100 randomly generated solutions 
and the 72 solutions developed by the construction heuri- 
stic as the initial population, using the second fitness 
approach. 

4.1. Computational Experience Fitness 
Approach One 

Comparative results for 11 data sets from Belenguer et al. 
[24] are shown in Table 3. The fitness approach one 
hybrid genetic algorithm time is separated into initial po- 
pulation time and reproduction time, and a total algori- 
thm time is provided. The genetic algorithm produced a 
solution in the least amount of computer time for each 
data set (bold), except S51D5. The hybrid genetic algo- 
rithm produced the solution with the least amount of 
travel distance in four cases (bold). Jin et al. [26] found a 
better solution for three data sets (bold) and Chen et al. 
[28] in four cases (bold). However, Jin et al. [26] allowed 
for additional vehicles in their solution, above the mini- 
mum number required for the SDVRP, which increases 
the cost of the overall system. 

Comparative results for 21 data sets from Chen et al. 
[28] are shown in Table 4. The hybrid genetic algorithm 
produced a solution in the least amount of computer time 
for each data set (bold), except S20 and S21. The first 
fitness approach hybrid genetic algorithm found the solu- 
tion with the least amount of travel distance in 18 cases 
(bold) Chen et al. [28] found a better feasible solution for 
three data sets (bold). Both methods found a solution 
with the same objective for data set S1. Chen et al. [28] 
reported pseudo lower bounds based on a graphical esti- 
mation described in Chen [38]. Chen et al. [28] finds a 
feasible solution that matches this pseudo lower bound 
for four instances (italic). The hybrid genetic algorithm 
finds a feasible solution that matches this pseudo lower 
bound for five data sets (italic), and finds a feasible 
solution lower than this bound for ten data sets (italic and 
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Table 3. Comparing the hybrid genetic algorithm (good start) versus the two-phase method of Chen et al. [28] and the column 
generation method of Jin et al. [26] for 11 data sets for the first fitness approach. 

Data Set 
Genetic 
Solution 

Initial  
Population 
Time (s) 

Reproduction 
Time (s) 

Total Genetic 
Algorithm Time 

(s) 

Chen et al. 
[28] Objective

Time (s) 
Jin et al. [26] 

Objective 
Time (s)

S51D2 727.66^ 53.093 46.125 99.218 - - 722.93* 10741 

S51D3 998.75 4.609 5.922 10.531 - - 968.85 833 

S51D4 1647.25 0.641 21.296 21.937 1586.5 201.74 1605.64* 789 

S51D5 1388.75^ 0.672 13.312 13.984 1355.5 201.62 1361.24* 10 

S51D6 2267.08 0.328 71.000 71.328 2197.8 301.9 2196.35* 478 

S76D2 1143.16 255.000 292.844 547.844 - - 1146.68* 75074 

S76D3 1471.76 19.375 22.640 42.015 - - 1474.89 3546 

S76D4 2166.86 15.937 55.172 71.109 2136.4 601.92 2157.87* 369 

S101D2 1458.76 356.734 248.203 604.937 - - 1460.54* 189392

S101D3 1945.23 38.969 46.453 85.422 - - 1956.91* 36777 

S101D5 2881.35 6.969 117.547 124.516 2846.2 645.99 2885* 5043 

*Jin et al. [26] starred-solutions used more than the minimum number of vehicles, computer specifications unavailable, and computer solution time includes 
time to compute both lower and upper bounds; Chen et al. [28] cpu specifications: Visual Studio C++, CPLEX 9.0, Intel Pentium 4, 1.7 GHz, 512 MB RAM; 
Genetic Algorithm cpu specifications: FORTRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM; ^Genetic Algorithm improves upon the Initial Population from 
the Construction Heuristic and 100 Random Solutions. 

 
Table 4. Comparing the results of the hybrid genetic algorithm (good start) versus the two-phase method of Chen et al. [28] 
for 21 data sets for the first fitness approach. 

Data Set 
Genetic  
Solution 

Pre-Genetic Time 
(s) 

Reproduction 
Time (s) 

Total Genetic  
Algorithm Time (s) 

Chen et al. [28]  
Objective 

Time (s) 

S1 228.28 <0.001 0.266 0.266 228.28 0.7 

S2 708.28 0.015 1.922 1.937 714.4 54.4 

S3 430.58 <0.001 1.937 1.937 430.61 67.3 

S4 631.05^ 0.031 6.203 6.234 631.06 400 

S5 1390.57 0.094 14.406 14.500 1408.12 402.7 

S6 860.46 0.079 14.437 14.516 831.21 408.3 

S7 3640.00 0.157 28.109 28.266 3714.4 403.2 

S8 5068.28 0.266 48.015 48.281 5200 404.1 

S9 2071.05 0.250 48.125 48.375 2059.84 404.3 

S10 2768.19^ 0.593 113.672 114.265 2749.11 400 

S11 13280.00 1.266 219.641 220.907 13612.12 400.1 

S12 7279.97 1.453 219.922 221.375 7399.06 408.3 

S13 10110.57 2.219 428.531 430.750 10367.06 404.5 

S14 10786.52 4.250 746.922 751.172 11023 5021.7 

S15 15160.04 7.500 1273.985 1281.485 15271.77 5042.3 

S16 3434.81 6.016 1272.734 1278.750 3449.05 5014.7 

S17 26559.92 10.235 1743.890 1754.125 26665.76 5023.6 

S18 14302.22 9.750 1743.688 1753.438 14546.58 5028.6 

S19 20152.53 17.500 3019.203 3036.703 20559.21 5034.2 

S20 39706.51 47.547 6164.688 6212.235 40408.22 5053 

S21 11461.20 63.297 10628.437 10691.734 11491.67 5051 

Chen et al. [28] cpu specifications: Visual Studio C++, CPLEX 9.0, Intel Pentium 4, 1.7 GHz, 512 MB RAM; Genetic Algorithm cpu specifications: FOR-
TRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM; ^Genetic Algorithm improves upon the Initial Population from the Construction Heuristic and 100 Ran-
dom Solutions. 
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underline). 

4.2. Computational Experience Fitness  
Approach Two 

Comparative results for 11 data sets from Belenguer et al. 
[24] are shown in Table 5. The second fitness approach 
hybrid genetic algorithm time is separated into initial 
population time and reproduction time, and a total gene- 
tic algorithm time is provided. Both fitness approaches 
produced the solution with the least amount of travel 
distance in four cases (bold). Jin et al. [26] found a better 
solution for three data sets (bold) and Chen et al. [28] in 
four cases (bold). However, Jin et al. [26] allowed for 
additional vehicles in their solution, above the minimum 
number required for the SDVRP, which increases the 
cost of the overall system. 

Comparative results for 21 data sets from Chen et al. 
[28] are shown in Table 6. The second fitness approach 
found the solution with the least amount of travel dis- 
tance in 19 cases (bold). Chen et al. [28] found a better 
feasible solution for one data set (bold) (i.e., S6). Both 
methods found a solution with the same objective for 
data set S1. Chen et al. [28] reported pseudo lower 
bounds based on a graphical estimation described in 
Chen [38]. Chen et al. [28] finds a feasible solution that 
matches this pseudo lower bound for four instances 
(italic). The hybrid genetic algorithm (both fitness app- 
roaches) finds a feasible solution that matches this 
pseudo lower bound for five data sets (italic), and finds a 
feasible solution lower than this bound for ten data sets 
(italic and underline). 

4.3. Fitness Approach Comparison 

The second fitness approach found a better solution, 
when compared to the first approach, in six of the 11 data 
sets from Belenguer et al. [24], they tied in four cases 
(S76D2, S76D3, S101D2, S101D3), and the first app- 
roach found a better solution in only one data set 
(S51D2). In the four cases in which they tied, these were 
the four data sets in which the hybrid genetic algorithm 
outperformed Jin et al. [26] and Chen et al. [28]. For the 
21 data sets from Chen et al. [28], when comparing the 
two fitness approaches, neither is consistently faster than 
the other in reproduction time. However, the second 
fitness approach finds a better solution in three cases (S6, 
S9, S10). 

Based on the comparison between the two fitness app- 
roaches (with good initial solutions), neither approach 
seems to be faster than the other. Based on the 32 data 
sets the two methods were always within 5% of each 
other in reproduction runtime. However, the second fit- 
ness approach provides a better improvement in most 
cases, with the only exception being S51D2. The two 
approaches tie in many cases. 

5. Summary 

This paper focused on solving the SDVRP using a hybrid 
genetic algorithm. The primary research result of this 
paper are two fitness approaches for a hybrid genetic 
algorithm procedure that provide comparable solutions 
based on objective value and computer time for the SD- 
VRP when compared to a column generation procedure  

 
Table 5. Comparing the hybrid genetic algorithm (second fitness approach) versus the two-phase method of Chen et al. [28] 
and the column generation method of Jin et al. [26] for 11 data sets. 

Data Set 
Genetic  

Solution (2nd 
Approach) 

Initial 
Population 
Time (s)

Reproduction 
Time (s) 

Total 2nd 
Approach 
Time (s) 

Genetic Solution 
(1st Approach)

Total 1st 
Approach 
Time (s)

Chen et al. 
[28]  

Objective
Time (s) 

Jin et al. [26] 
Objective

Time (s)

S51D2 730.87^ 53.093 46.064 99.157 727.66^ 99.218 - - 722.93* 10741 

S51D3 994.80^ 4.609 5.785 10.394 998.75 10.531 - - 968.85 833 

S51D4 1637.47^ 0.641 21.468 22.109 1647.25 21.937 1586.5 201.74 1605.64* 789 

S51D5 1385.08^ 0.672 13.266 13.938 1388.75^ 13.984 1355.5 201.62 1361.24* 10 

S51D6 2229.64^ 0.328 74.122 74.450 2267.08 71.328 2197.8 301.9 2196.35* 478 

S76D2 1143.16 255.000 284.721 539.721 1143.16 547.844 - - 1146.68* 75074 

S76D3 1471.76 19.375 22.145 41.520 1471.76 42.015 - - 1474.89 3546 

S76D4 2165.25^ 15.937 53.572 69.509 2166.86 71.109 2136.4 601.92 2157.87* 369 

S101D2 1458.76 356.734 248.894 605.628 1458.76 604.937 - - 1460.54* 189392

S101D3 1945.23 38.969 45.486 84.455 1945.23 85.422 - - 1956.91* 36777 

S101D5 2873.08^ 6.969 120.897 127.866 2881.35 124.516 2846.2 645.99 2885* 5043 

*Jin et al. [26] starred-solutions used more than the minimum number of vehicles, computer specifications unavailable, and computer solution time includes 
time to compute both lower and upper bounds; Chen et al. [28] cpu specifications: Visual Studio C++, CPLEX 9.0, Intel Pentium 4, 1.7 GHz, 512 MB RAM; 
Genetic Algorithm cpu specifications: FORTRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM; ^Genetic Algorithm improves upon the Initial Population from 
the Construction Heuristic and 100 Random Solutions. 
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Table 6. Comparing the hybrid genetic algorithm (second fitness approach) versus the two-phase method of Chen et al. [28] 
for 21 data sets. 

Data Set
Genetic  

Solution (Second 
Approach) 

Initial  
Population 
Time (s) 

Reproduction 
Time (s) 

Total Second  
Approach Time (s)

Genetic Solution 
(First Approach)

Total First  
Approach Time (s) 

Chen et al. [28] 
Objective 

Time (s)

S1 228.28 <0.001 0.272 0.272 228.28 0.266 228.28 0.7 

S2 708.28 0.015 1.935 1.950 708.28 1.937 714.4 54.4 

S3 430.58 <0.001 1.939 1.939 430.58 1.937 430.61 67.3 

S4 631.05^ 0.031 6.207 6.238 631.05^ 6.234 631.06 400 

S5 1390.57 0.094 14.104 14.198 1390.57 14.500 1408.12 402.7 

S6 833.58^ 0.079 14.887 14.966 860.46 14.516 831.21 408.3 

S7 3640.00 0.157 28.453 28.610 3640.00 28.266 3714.4 403.2 

S8 5068.28 0.266 47.994 48.260 5068.28 48.281 5200 404.1 

S9 2054.84^ 0.250 48.655 48.905 2071.05 48.375 2059.84 404.3 

S10 2746.54^ 0.593 113.564 114.157 2768.19^ 114.265 2749.11 400 

S11 13280.00 1.266 230.377 231.643 13280.00 220.907 13612.12 400.1 

S12 7279.97 1.453 225.656 227.109 7279.97 221.375 7399.06 408.3 

S13 10110.57 2.219 419.732 421.951 10110.57 430.750 10367.06 404.5 

S14 10786.52 4.250 714.396 718.646 10786.52 751.172 11023 5021.7

S15 15160.04 7.500 1270.850 1278.350 15160.04 1281.485 15271.77 5042.3

S16 3433.83^ 6.016 1219.865 1225.881 3434.81 1278.750 3449.05 5014.7

S17 26559.92 10.235 1711.962 1722.197 26559.92 1754.125 26665.76 5023.6

S18 14302.22 9.750 1726.084 1735.834 14302.22 1753.438 14546.58 5028.6

S19 20152.53 17.500 3075.671 3093.171 20152.53 3036.703 20559.21 5034.2

S20 39706.51 47.547 6160.615 6208.162 39706.51 6212.235 40408.22 5053 

S21 11461.20 63.297 10502.406 10565.703 11461.20 10691.734 11491.67 5051 

Chen et al. [28] cpu specifications: Visual Studio C++, CPLEX 9.0, Intel Pentium 4, 1.7 GHz, 512 MB RAM; Genetic Algorithm cpu specifications: FOR-
TRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM; ^Genetic Algorithm improves upon the Initial Population from the Construction Heuristic and 100 Ran-
dom Solutions. 
 
[26] and a two-step method [28]. Of the two fitness 
approaches, the second fitness approach performed better 
for most of the 32 data sets in terms of solution quality. 
Neither fitness approach was better than the other in 
solution time. The hybrid genetic algorithm does not 
assume symmetric distances, and a future research dire- 
ction would be to test this heuristic with asymmetric data 
sets. 
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