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ABSTRACT 

In the last decade, Daubechies’ wavelets have been successfully used in many signal processing paradigms. The con- 
struction of these wavelets via two channel perfect reconstruction filter bank requires the identification of necessary 
conditions that the coefficients of the filters and the roots of binomial polynomials associated with them should exhibit. 
In this paper, orthogonal and Biorthogonal Daubechies families of wavelets are considered and their filters are derived. 
In particular, the Biorthogonal wavelets Bior3.5, Bior3.9 and Bior6.8 are examined and the zeros distribution of their 
polynomials associated filters are located. We also examine the locations of these zeros of the filters associated with the 
two orthogonal wavelets db6 and db8. 
 
Keywords: Orthogonal; Biorthogonal Wavelets; Binomial Polynomials 

1. Introduction 

The Daubechies wavelets construction, requires the 
finding of a scaling function  t  and a wavelet func- 
tion  t  [1]. This construction is best described via a 
two-channel perfect reconstruction filter bank [1,2] and 
depends on the distribution of the zeros of some polyno- 
mials in the plane. The literature provides many theorems 
describing geometric locations of the roots of certain 
polynomials [3,4]. Identifying necessary conditions for 
the coefficients of the filters associated with the con-
struction is vital for orthogonality, Biorthogonality and 
alias cancellation. The distribution of the zeros of the 
binomial polynomial related to the construction of these 
wavelets were proved to reside inside the unit circle [5], 
and better limits for these roots based on a generalization 
of the Kakeya-Enestrom Theorem were derived in [6] 
where it was shown that if y is a root of a binomial poly-  

nomial of degree , then: 1p 
1

.
2 2

y
p
 

1
 A subclass  

of polynomials is derived from this construction process 
by considering the ratios of consecutive binomial poly- 
nomials’ coefficients essentials to these constructions. 
We showed mathematically that the roots of this class of 
polynomials reside inside the unit circle. In Section 3, the 
construction of Daubechies orthogonal wavelets is de- 
tailed. In Section 4, the new class of polynomials is in- 

troduced and the distribution of their zeros is examined 
and mathematically shown to reside inside the unit circle. 
An example is then presented illustrating the location for 
the zeros of the derived polynomial of the orthogonal 
mother wavelet db6. The case of db8 is then examined in 
Section 5 and results are obtained. Section 6 describe the 
conclusion of this work.  

2. Related Works 

A two-channel filter bank has a low-pass and a high-pass 
filter in the decomposition (analysis) phase and another- 
low-pass and a high-pass filter in the reconstruction 
(synthesis) phase. Let 0H  and 0  denote the low-pass 
filter coefficients and the high-pass filter coefficients 
respectively of the analysis phase, then given the coeffi- 
cients of 

G

0H , it is shown in [1,7] that the coefficients of 
the filters 1H , 0  and 1  that lead to orthogonality 
can easily be derived from the coefficients of 0

G G
H . 

Therefore, to construct a Daubechies orthogonal wavelet, 
all we need to do is to find the coefficients of the filters 

0H  associated with it. 
The distribution of the zeros of a family of polynomi- 

als having their coefficients as the ratios of those of the 
binomial polynomials is considered in Section 4 and 
proved to reside inside the unit circle. Similar discussions 
about Daubechies’ Biorthogonal wavelets family are also 
included along with the constructions of Bior3.5, Bior3.9 
and Bior6.8. In the orthogonal case, the scaling and 
wavelet functions are derived from the coefficients of the 
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filters 0H , 1H , 0  and 1 . They must satisfy re- 
spectively the following two equations [1]: 

G G

     
1

1
0

2 2
l

k

t h k t 




  k



           (1) 

     
1

1
0

2 2
l

k

W t g k t k




            (2) 

Biorthogonal filter banks produce Biorthogonal wave- 
lets. This calls for a new scaling function  t  and a 
new wavelet function . Here, one needs the follow- 
ing conditions: 

 w t
   1

1 0H z H z  and    1
1 1H zG z   

[8]. The wavelet filters for analysis banks are derived [1] 
from the scaling filters using the two relations: 

   1

1 1
n

h g
  0 n               (3) 

   1 01
n

g h n                 (4) 

The analysis scaling and wavelet equations thus be- 
come:  

     0
0

2 2
N

rt h k t  


  k



          (5) 

     0
0

2 2
N

rw t g k t k             (6) 

where 0  and 0
rh rg  are the reverse of the original filters 

h0 and g0 respectively. The construction of  t ,  w t , 
 t  and  w t  starts with imposing the Biorthogonal- 

ity conditions on the filters. The lowpass analysis coeffi- 
cients  k0  are the product of a double shift Bior- 
thogonal to the lowpass synthesis coefficients 

rh
 1h k : 

    1 02 2rh k h k n n            (7) 

    1 02 2r g k g k n n           (8) 

And the highpass filter is Biorthogonal to the lowpass 
filter: 

   
   

1 0

1 0

2 0 an

2 0

r

r

h k g k n

g k h k n

 

 

d


        (9) 

Figure 1 shows the frequency responses of the decom- 
position and reconstruction filters and, the decomposition 
and reconstruction scaling and wavelet functions of the 
Biorthogonal (Bior3.9) [9]. Figure 2 shows this Bior- 
thogonl wavelet zeros’ distribution of its decomposition 
and reconstruction filters. This wavelet possesses the 
propreties of being smooth with a linear phase and short 
length filters. Also, Table 1 displays the coefficients of 
the low-passes and high-passes filters of Bior3.9. Figure 
3 and Figure 4 show the zeros’ distributions for the fil- 
ters associated with Bior6.8 and Bior3.5 respectively. 

 

 

Figure 1. Bior3.9 impulse response for the decomposition and reconstruction filters. 
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Figure 2. Bior3.9 zeros distribution of the decomposition and reconstruction filters. 
 

 

Figure 3. Bior6.8 zeros distribution of the decomposition and reconstruction filters. 
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Figure 4. Bior3.5 zeros distribution of the decomposition and reconstruction filter. 
 

3. Construction of Daubechies Orthogonal 
Wavelets 

Table 1. Filter coefficients of the biorthogonal wavelet 
Bior3.9. 

0H  1H  
0H  

1H  

−0.0007 0 0 −0.0007 

0.0020 0 0 −0.0020 

0.0051 0 0 0.0051 

−0.0206 0 0 0.0206 

−0.0141 0 0 −0.0141 

0.0991 0 0 −0.0991 

0.0123 0 0 0.0123 

−0.3202 0 0 0.3202 

0.0021 −0.1768 0.1768 0.0021 

0.9421 0.5303 0.5303 −0.9421 

0.9421 −0.5303 0.5303 0.9421 

0.0021 0.1768 0.1768 −0.0021 

−0.3202 0 0 −0.3202 

0.0123 0 0 −0.0123 

0.0991 0 0 0.0991 

−0.0141 0 0 0.0141 

−0.0206 0 0 −0.0206 

0.0051 0 0 −0.0051 

0.0020 0 0 0.0020 

−0.0007 0 0 0.0007 

Wavelets such as db6 and db8 have played a very essen- 
tial role in a variety of speech recognition and compres- 
sion paradigms introduced last decade [10,11]. The 
low-pass and high-pass filters in the decomposition phase 
of a two channel filter bank are depicted in Figure 5 and 
two more filters of the reconstruction phase are displayed 
in Figure 6. 

Let  0h n  and  0g n  denote the low-pass filter co- 
efficients and the high-pass filter coefficients respec- 
tively in the analysis phase. To obtain perfect reconstruc- 
tion, these two filters must satisfy the following condi- 
tions [1,2]: 

1) For the low-pass filter :   0h n

   

     

2
0 0

0 0

1 1

2 2
n n

n

h n h n

h n h n k k

 

 

2 


        (10) 

2) For the high-pass filter  0g n :  

   

     

2
0 0

0 0

1 1

2 2
n n

n

g n g n 2

g n g n k k

 

 

 


        (11) 

where  k  is the Dirac delta function defined by: 
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Figure 5. Analysis phase filters of a two-channels filter 
bank. 
 

 

Figure 6. Synthesis phase filters of a two-channels filter 
bank. 
 

 
1 if 0

or

0 otherwise

k

k


 

 .

 

Given the coefficients of , it is shown in [1,7] that 
the coefficients of the filters , 

0h

1h  n  0g n  and  1g n  
that lead to orthogonality can easily be derived from the 
coefficients of 0 . Therefore, to construct a Daubechies 
orthogonal wavelet, all we need to do, is to find the coef- 
ficients of the filter  associated with it. 

h

0

The construction of the filter bank amounts to [1]: 
h

1) Design a product low-pass filter  satisfying:  0P

   0 0 2 lP z P z z             (12) 

2) Factor 0  in 1 0P H H , then find 1  and . And 
can be reduced even further by defining:  

0  and substituting 

G 0G

  lP z z P  z  P z  by  z 0
lz P . 

Hence, the perfect reconstruction condition becomes [8]:  

    2P z P z               (13) 

which implies that  is a half band filter [1] with all 
of its the coefficients zeros except the constant term 1. 
Furthermore, the odd powers cancel when we add 

 P z

 P z  
to . The design of the low-pass and the high-pass 
filters of the synthesis and analysis filter banks of a 
Daubechies orthogonal wavelet, considers the following 
two properties [1]: 

 P z

1) These wavelets filters must be orthogonal.  
2) And must have maximum flatness at 0w   and 

 in their frequency responses.  πw 

The low-pass filters will have p zeros at , and have 
a total of 2p coefficients, (length of the filters). This filter 
bank is orthogonal and the product filters 

π

 0P z  and 
 1P z  have a length of . The construction of 

Daubechies orthogonal wavelets begins by choosing the 
number of zeros p at . The zeros the filters associated 
with the db6 are depicted in Figure 7. Here, we also need 
to choose the binomial polynomial p  associated 
with it which has a degree of  The coefficients of 
these polynomials can be found recursively for p by us- 
ing the following equation: 

4 p 

p 

2

π

B y
1.

     
 

2 1
1

4

p i
b i b i

p i

 
  

 
          (14) 

For a given value p, the coefficients of  pB y  are in 
an ascending order [5]. To get the roots of  ypB , one 
scales b by 4 and to facilitate the numerical calculations, 
one uses the variable 4y instead of y. The ratio of any two 
consecutive coefficients is: 

 
   

 
 1

2 ! 1 ! !

1 ! 1 ! 1 !
k

k
k

p k p kb
r

b p k p k

  
  

    


    (15) 

Which in its simplest form can be expressed as:  

1
, 0,1, 2, ,i

i
r i p

i p


2 


 

2

        (16) 

This equation will be used in Section 5 to construct the 
family of polynomials with coefficients equal to the ra- 
tios of this polynomial consecutive coefficients. 

Now to compute the  zeros of 2 p   P z  other 
than −1, we note that according to [1,9] the frequency 
response of the half-band filter  is given by:  P w

     2 1
p

P w y B  y  

where  cos 1 2w y   or   1 cos 2y w  .  

 

 

Figure 7. Zeros of B(y) for db6. 

Copyright © 2012 SciRes.                                                                                  AM 



J. KARAM 783

On the unit circle we have:  

   1 2 cos 1 2z z w    y . 

Also, off the unit circle we use the same relation be- 
tween z and y. Rearranging these terms leads to: 

    21 2 1 2 1z z y z    0        (17) 

Now let 1 2x y   and  2 1u x   then, 

  21 2 1 0z z xz    

with , this implies that: 0z 
z x u   

and  

z x u   

are the two roots of  for each root y of  P z  B y . 

Note that 
1

x u
x u

 


. 

That is, we have  roots and their inverses, 

namely:  

1p 

1 2x y    

and 

2 1u x   

and 

 ,z x u x u   . 

The distribution of these zeros in the plane is shown in 
Figure 8. From ,  is then derived and all is 
left is to factorize 0 . Daubechies did the following 
factorization found in [1]: 

 P z
P z

 0P z


   
21

0

1

2

p

p

z
P z Q z





 
  
 

2 2         (18) 

where  is a polynomial of degree  2 2pQ z 2 2p  . 

The Construction of db6 

For p = 6, the db6 wavelet is obtained. Figure 8 shows 
the location in the complex plane for the zeros of  6B y  
associated with the Daubechies db6 orthogonal wavelet. 
The frequency responses of the analysis lowpass filter 

 0H z  and synthesis lowpass filter  1H z  of this wave- 
let are depicted in Figure 9. Therefore completing the 
construction of the scaling function along with the 
mother wavelet. The decomposition and reconstruction 
functions for the mother wavelet db6 are plotted in Fig- 
ure 9, while Figure 10 shows the impulse response of 
the four filters associated with it. 

Now, given the coefficients      0 , 1 , , 1h h h n   
of the low-pass filter 0 , it is shown in [1,7] that the 
coefficients of the filters 

h
 1h n ,  0g n  and  1g n  that  

 

Figure 8. Zeros of P(z) for db6 and the frequency responses 
of the filters P, H0 and H1. 
 

 

Figure 9. The db6 analysis and synthesis scaling and wavelet 
functions. 
 
lead to orthogonality can be derived from the coefficients 
of  as follows: 0

First, the coefficients of the high-pass filter 
h

 0g n  of 
the analysis bank are obtained from those of the low-pass 
filter  0h n  by the “alternating flip”.  

This can be represented by three operations on the co- 
efficients of  0h n . 

1) Reverse the order;  
2) Alternate the signs;  
3) Shift by an odd number l.  
This takes the low-pass filter coefficients into an or- 

thogonal high-pass filter [1] which is represented in the   

Copyright © 2012 SciRes.                                                                                  AM 
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Figure 10. Impulse response for the reconstruction and decomposition filters of db6. 
 
following equation: 

     
1

1
0

2 2
l

k

W t g k t k




         (23) 
     0 01

n
g n h l   n            (19) 

Then, the coefficients of the high-pass filter  1g n  of 
the synthesis bank are obtained by the reverse of the co- 
efficients of the high-pass filter  0g n  of the analysis 
bank. They can be generated by the following equation: 

4. Zeros of Ratio Coefficients Polynomials 

Now we consider the class of polynomials with coeffi- 
cients those of the ratios obtained in Equation (4). An op- 
timal limit of these zeros in the complex plane was pre- 
sented in [12]. Other theorems and alternative approach 
to proving this distribution can be found in [13]. Now the 
rations can be expressed as follows: 

   1 0g n h l n                (20) 

The coefficients of the low-pass filter  1g n  of the 
synthesis bank are the alternating flip of the coefficients 
of  0g n . They can be generated by the following equa- 
tion:   1 2

2

3 2

1 1
0

2

3 2
.

4 2 2

p

p

Q z z z
p p

p
z z

p p






   




  
 


 

     1 11
n

h n g l n              (21) 

where l is the length of the low-pass filter  [1].  0h n
We note that these coefficients are in an ascending 

order where 
The scaling and wavelet functions are then derived 

from the coefficients of these filters. The scaling function 
satisfies the equation [1]: 

1 0k ka a   . 
Theorem I: The roots of the polynomials 2pQ   lie 

inside the unit disk for all p. 

     
1

1
0

2 2
l

k

t h k t 




  Proof: For 0

1
0a

p
   , consider k         (22) 

where,  is the reverse of  and the wavelet 
function is then derived from the scaling function by the 
equation: 

 1h k  0h k       1
21 p

pz Q z z a z 
    

where 
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   2

0 11

p k
k kk

z a a a z 


   . 

For , we have: 0z 

 22 2
2 0 11

1 pp p k
p k kk

a a z
z

  
 

  
 

 . 

Now for 

z a z    

1z  , 

 22
0 11

0 0 2

1

.

pp
k kk

p

z a a a
z

a a a

 




     
 

  


 

and  

0 0

2

1 p

p

a a a

z z
 



    
 

. 2

Replacing z with 
1

z
, we get: 

    2
0 0 2

p
pz a a a z 
    for 

Hence, if 

0z  . 

 0 0 2

2

p

p

a a a
z

a





 
  (i.e. 1z  ), then: 

     

 

 

1
2

1

2

21
2 0 0 2

1

0

p
p

p

p

pp
p p

z Q z z a z

a z z

a z a a a z












 

  

 

   



 

The Distributions of Zeros for db6 

lynomial is:  For the Daubechies wavelet “db6” this po

  2 3 4
4 1 6 0 1 8 2 9 3 10 4 11Q z z z z z        

with maximum module of 0.9325. The roots of is 

db8

 are then derived from 

k         (24) 

       (25) 

To compute the 14 zeros of  other than −1, note 
th

th
polynomial are depicted below in Figure 11 and ob- 
served to reside all in the unit circle. 

5. The Construction of  

The scaling and wavelet functions
the coefficients of these filters. They satisfy respectively 
the equations [1]: 

     
1

1
0

2 2
l

k

t h k t




   

     
1

1
0

2 2
l

k

W t g k t k




   

 P z
e havat on and off the unit circle w e the following rela- 

tion between z and y:  1 2 1 2z z y   . This implies 
that the equation: 

    2 1 2 1 0y z21 .z z    

The coefficients of 

       (26) 

 8B y  are displayed 

If one sets 

in Table 2.  

1 2x y   and 2 1u x  en, z = x +  th

u and z x u   are o roots of  P z  for each the tw

root y of  8B  that y . Note 1x u x

lot of
. Also

u . That is, 

we have and their inverses, The p  these ze-
ros in the p re shown in , the val- 
ues of 

 

Figure 12
 7 ro

la
ots 
ne a

x , y  and u  are listed in Table 3. 

From the definition of  P z ,  0P z  is obtained and 
all is le no is to fact rize  0P z . Were  z14Qft w o  is a 
polynomial of degree 14 a o  satisfy Equation 
16. It is equal to 

nd ch sen to
 14B y . The rent factorizations of  diffe

 0P z  into    0 1H z H z  lead to different mother 
wavelets. Choosing  0H z  to have its seven zeros in- 
sid e unit c  e th ircle and 1H z  to have its seven zeros 
outside the unit circle o the Daubechies orthogonal 
mother wavelet db8. 

The scaling and wavelet functions of one of the Daube- 
chies wavelets’ family member called db8 are shown in 
Fi

 leads t

gure 13. The same figure also shows the impulse re- 
sponse of the four filters associated with that wavelet and 
Table 4 displays The coefficients of the of db8 filters. 
 

 

Figure 11. Zeros of Q4(z) for Daubechies db6 orthogonal 
wavelet. 
 

Table 2. The coefficients of the polynomial B8(y). 

b(1) 1.0000 

b(8) 0.2095 

b(7) 0.4189 

b(6) 0.7734 

b(5) 1.2891 

b(4) 1.8750 

b(3) 2.000 

b(2) 2.2500 
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Table 3. The roots of Q14(z) inside the un le z = x – u 
and outside of it  = x + u. 

it circ
z

u  x  y  1z   1z   

1.1466 0.9187 0.3712 2.0179 0.4956 

1.1466 0.9187 0.3712 2.0179 0.4956 

1.1716 1.2852 0.3094 2.4246 0.4124 

1.1716 1.2852 0.3094 2.4246 0.4124 

1.1856 1.5511 0.2755 2.7367 0.3654 

1.1824 1.4860 0.2832 2.6592 0.3761 

1.1824 1.4860 0.2832 2.6592 0.3761 

 
ble 4 oeffic f the filterTa . The c ients o  of db8 s. 

0H  1H  

−0.0001 0.0544 

0.0007 0.3129 

−0.0004 0.6756 

−0.0049 0.5854 

0.0087 −0.0158 

0.0140 −0.2840 

−0.0441 0.0005 

−0.0174 0.1287 

0.1287 −0.0174 

0.0005 −0.0441 

−0.2840 0.0140 

−0.0158 0.0087 

0.5854 −0.0049 

0.6756 −0.0004 

0.3129 0.0007 

0.0544 −0.0001 

 
To carry orization we noout the fact te that  P z

h occur
 has 

 roots at and 14 other roots whic  in 
a

16
p

 1z    
irs (z and 1 z ). This means that we have 7 r side 

the unit circle and the other 7 roots outside the unit circle. 
The roots in  the circle are the roots for the filter 

 0

oots in

side
H z  coming from the equation: z x u   and the 
ones outside it are for filter  1H z  obtained from the 
equation: z x u  . These roots when factorized lead to 
the coefficients of these two filters a d they are shown in 
Table 3 for  Q z . The coefficients of the high-pass 
filters  0G z  and  1G z  are simply then derived from 
the low-pass filter coefficients by the alternating sign 
property.  

The g and elet functions of one of the 

n

14

 

Figure 12. Zeros of P(z) for db8 and the frequency responses 
of the filters: P0, H0 and H1. 
 

me figure also shows the 
pulse response of the four filters associated with that 

 FIR filters. Its associated scaling filter is a 
m

Daubechies wavelets’ family member called db8 are 
shown in Figure 13. The sa
im
wavelet. 

The general characteristics of this wavelet include 
compact support for which exact reconstruction are pos- 
sible with

inimum-phase filter. This wavelet is a member of the 
orthogonal set of wavelets that are usually denoted by: 

 db N  N represents the order of the reconstruction and 
decomposition wavelet. Their corresponding filter length 
is 2 N . 

6. Conclusion 

In pe this pa r we construct Daubechies orthogonal wave- 
el perfect reconstruction filter bank. 

and db8 are examined where we de- 

ersity and 
uring the time, environment 
research project. This work   

lets via the two chann
The cases of db6 
rived the coefficients of the filters associated with these 
wavelets and the roots of the binomial polynomials that 
made this construction possible. The locations of the ze-
ros of the polynomials involved in this construction were 
found and their locations were discussed. The distribu- 
tion of the zeros of a family of polynomials having their 
coefficients as the ratios of those of the binomial poly- 
nomials was examined and were proved to reside inside 
the unit circle. Similar discussions about the Daubechies 
Biorthogonal wavelets family are included along with the 
constructions of Bior3.5, Bior3.9 and Bior6.8. 

7. Acknowledgements 

The author would like to thank Alfaisal Univ
its Office of Research for sec
and funds to complete this scalin wav

Copyright © 2012 SciRes.                                                                                  AM 



J. KARAM 

Copyright © 2012 SciRes.                                                                                  AM 

787

   

 

Figure 13. db8 Wavelet and scaling functions. The impulse response for the reconstruction and decomposition filters of the 
wavelet db8. 
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