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ABSTRACT 

We show the multidimensional stability of subsonic phase transitions in a non-isothermal van der Waals fluid. Based on 
the existence result of planar waves in our previous work [1], a jump condition is posed on non-isothermal phase bounda- 
ries which makes the argument possible. Stability of planar waves both in one dimensional and multidimensional spaces 
are proved. 
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1. Introduction 

The motion of a 2-dimensional non-isothermal van der 
Waals fluid is governed by the following Euler equations  
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where ,  ,
T

x y      is the density,  is 

the velocity with 
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2 2u vu 2 , p is the pressure satis- 

fying the following state equation  
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with 1   being the specific volume,   being the 
temperature, R being the perfect gas constant and a, b 
being positive constants, e is the specific internal energy 
given by  

 , v

a
e ,C 


                (3) 

and i is the specific enthalpy given by  

.i e p                  (4) 

Otherwise, according to the second law of thermody- 
namics, the specific entropy s and the specific free en- 
ergy f of the fluid is defined by  

 ln lnv vs R b C  C              (5) 

and  

 ln lnv

a
f R b C  


               (6) 

respectively. Regarding  , , ,u v s
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where  is the sound speed, we can re- 
write (1) as  

2 ,c p  

     0 1 2 0t x yF U F U F U            (7) 

or  

   1 2 0.t x yU A U U A U U             (8) 

When  4 , 27 8a bR a bR   , the state Equation (2) is 
not monotonic with respect to  , which means that there 
exist     and     such that  
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The fluid is in liquid phase in the region   ,b  

 ,

, 

while it is in vapor phase in the region    . The 

region    ,       highly unstable region (spi-  

nodal region) where no state can be found in experiments 

is a

onic phase transition is a discontinuous solution 
to

t

t

[2]. Due to such monotonicity, subsonic phase transitions 
can be found in a van der Waals fluid, which is different 
from the well-known classical nonlinear waves such as 
shock waves, rarefaction waves and contact discontin- 
uities.  

A subs
 the Euler Equation (1) with a single discontinuity, 

which changes phases across the discontinuity and satis- 
fies certain subsonic condition on both sides of the dis- 
continuity. To explain the concept with more detail, let 
us consider the following planar subsonic phase transi- 
tion  
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where 0, , ,u v s    are constant states of the flow,   
is the c  of the discontinuity  onstant speed x t  a  nd
  belong to different phases. The soluti atis- 

 the Rankine-Hugoniot condition  

 

on (10) s
fies

 0 1 0,F U F U                   (11) 

and the subsonic condition  

1,
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where    

tinu

denotes the difference of a function across the  

discon ity  x t , M   2 ,d p s     are  c and 

on
the Mach number and the sound speed on each side of 
the disc tinuity  x t  respectively.  

Due to the s pr ty (12)  Lax ub er , the well-known

veral ad a were intro- 
du

wer papers available. Slemrod [11] 
an

w that the corre- 
sp

sonic op
entropy inequality [3] is violated for subsonic phase tran- 
sitions. Hence, se missibility criteri

ced to select the physical admissible subsonic phase 
transitions, among which the viscosity capillarity crit- 
erion proposed by Slemrod [4] is an important one. Ever 
since, for a long time, attention has been paid to isother- 
mal phase transitions and related problems with numer- 
ous works devoted to such topics. For problems in one 
dimensional spaces, see [2,4-6] and references therein. 
For problems in multi-dimensional spaces, see [7-10] and 
references therein.  

Compared with isothermal phase transitions, there is 
much less knowledge on non-isothermal phase transi- 
tions and there are fe

d Grinfeld [12] proved the existence of traveling 
waves in Lagrange coordinates by Conley index theory. 
Hattori [13] considered certain cases of the Riemann 
problem by the entropy rate criterion. Recently, the au- 
thor [1] proved the existence and structural stability of 
traveling waves by using the center manifold method, in 
light of which, we can expect to reveal more insights of 
multidimensional phase transitions.  

The purpose of this paper is to study the multidimen- 
sional stability of non-isothermal phase transitions. With 
straightforward computation, we sho

onding linearized initial boundary problem for the 
planar phase transition satisfies the uniform Lopatinski 
condition [14,15]. Without giving much detail, here we 
briefly state the main result of this paper  

Theorem 1.1 There exists 1 0   and K1 > 0 de- 
pending on the bounds of U  and   given in (10) and 
  given in (18), such that for 10     and 0 < K < 
K1, the  , K -admissible phase sition (10) is uni- 
formly stable.  

The definitions of the paramete

 tran

K,  , rs   and  , K - 
admissib ll be given in Section 2, and the uniform 
stability will be d

le wi
escribed in detail in Section 4.  

. o brie

es. In 
Se

The paper is arranged as follows Secti n 2 is a f 
recall of the viscosity capillarity criterion for phase tran- 
sitions and related existence results of traveling wav

ction 3, we propose the main problem and prove the 
stability of phase transitions in one dimensional spaces. 
The multidimensional stability of phase transitions is 
presented and proved in Section 4.  

For the simplicity of notations, we will need the fol- 
lowing quantities in the coming arguments.  
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Considering the planar subsonic phase transition (10), 
we denote by  j u   

2
 the mass transfer flux, 

and π p j    and   2 2π 2e j       . Then, 
the R  (11) and the s bsonic 
condition (12) can be rewritten as  

ankine-Hugoniot condition u
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2. Viscosity Capillarity Profiles

Analogue to the traveling wave method for viscous 
sity capillarity criterion is applied to 

wave (10) which admits the existence of 
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the following traveling wave  
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satisfying  U U   and the Navier-Stokes equa- 
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In order to deal with the above problem by the center 

manifold method, we proposed the following assu
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being a positive constant and . Employ-  
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Therefore, the admissibility of subsonic phase transi- 
tions can be defined by  

Definition 2.1 The planar phase transition (1
missible if and only if the problem (19) has a solution. 
The solution 

      (19) 

0) is ad- 

    ,     
, or 

is called the viscosity capil- 
larity profile  , K -profile for simplicity. The pair 
 ,   ,  ,    is called  , K -admissible.  

To state the existence result of  , K -profile, we will 
need the following quantities. As usual for fixed    
 4 ,8 27bR a bR , the Maxwell equilibrium  a

    ,m M     is defined by the equal area rule  
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which implies . Setting     , there exists   
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 ; ,j    
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satisfying the first equation of (20) by the 
qual area rule as in [8], which means  

Moreover, for every
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can be found such that  ,    and  ,    can be 
connected by the -profile with the parameters j  0,0
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theorem shows the existence of  , K -profile for small 
  and small K in [1].  
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Moreover, an additional jump c ndition can be derived 
for (10), which plays an essential role in the study of the 

o

stability of phase transitions. In the isothermal cas
due to t (12 he Ra

1) ent to guara  
ess of th bou  problem for phase

ituation that we encounter i
al case.  

ultiplying the first n of 

e [4], 
he subsonic condition ), t nkine-Hugoniot 

 is not suffic ntee the ell- condition (1 i w
posedn e ndary value  tran- 
sitions, which is also the s n 
the study of non-isotherm

By m equatio (19) with     
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where − denotes the value of a function for  , K   
 0,0  and  

  0 , , ;0a j a j   ,0 ,  

  0 , , ;b j b j   , 0,0
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3. Linearized Problems and One 
Dimensional Stability 

In this section, we propose the nonlinear problem for a 
multidimensional subsonic phase transition and derive 
the corresponding linearized problem. Then we pro
1-dimensional stability for the linear problem.  

3.1. Linearized Problems 

Endow the Euler Equation (1) with the following initial 
data  
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where   0x y  is the initial discontinuity and 0  
belong to different phases. If the initial data (24) satisfies 
certain compatibility conditions, then we can expect to 
construct the following multidimensional subsonic phase 
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Following [15], we introduce the following transformation to map the free boundary   ,x t y  into a fixed 
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where we have dropped the tildes for simplicity of nota- 
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Noticing that the boundary conditions of (29) involve 
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3.2. One Dimensional Stability 
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bounda utgoing characteristics and the free 
boundary can be determined by the boundary conditions, 
for which we need to investigate the eigenval
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1

1 2

1

1 2

0
,

0

A U I sI i A U
B s

A U I sI i A U
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and  

     1 ˆ  1ˆ ˆ 1 1,
T

f A U I f A U I f       . 
 



Denote by  
1

l

j j



 all the distinct eigenvalues of  

 ,B s   with multiplicity being mj. Obviously, we have  

Introduce  

  8

1

, .
j

l m

j
j

Ker I B s 


      

 

   
,

, Re 0,1
jm

j j j

E s

v Ker I B s j l



  



        

 

the space of boundary values of all bounded solutions of 
the special form  

    
1

0 0

ˆ ,
!

j
j

j

m p
px

as follows  
Theorem 4.1 There exist 1 0   and 1 0K   de- 

pending on the bounds of   U ,   given in (10) and th  e
constant  given in (1 at fo  fixed 8), such th r any

10     and 10 K K   the viscosity-capillarity 
admissible phase transition (10) is uniformly stable, i.e. 
there is 0   such that the estimate  

 

 
2 2

2

0 1
Re 0

1
2 22 2

inf
s

s

b s ib V V

V V


 

 

   
 

 

  

  

 

      (37) 

holds for all   , ,V V V E s 
    and   .  

4.1. The Space  ,E s   

Re

, , j j
p

x
V x e I B s v

p



 



 

    

to (36) with ˆ 0f  .  

For simplicity, we shall only consider the c  ase 

  0j u      

and the
s 

Thus, we can state the uniform stability result in detail  

0j    other case can be studied similarly.  
Taking the Laplace-Fourier transform on the equation 

of (29) with 0f   yields  
 

   

 

   

2
2

2 2
2

ˆ 1

0

V
i c d

x d




 



 




    

2 2

2

ˆ

0 0 0

I

I

I

s u s Ksp

Ksp
s u i c

Vsd i d Kp

u u u

sd

u



 



    



  





  

    





   
 

   

 

  
 
 

  

  







                (38) 

here 

i u 

sc 
 
 

w  22
0 and .s s i v d c u         

As in [15], if we introduce the transformation  
0 0 1 0

0
2 ˆ ,

0
2

I

I

p

c

1

1

2 2
0 0 0 1

c K

2 2
Ẑ V

Kp






c

c 






 

  







 
 
 

          

th ivalent to  

  








                  (39) 

en (38) is equ

 
ˆ

ˆ, ,
Z

N s Z
x


 


 


                                    (40) 

where  

 

   

 

 

0
2 2

0 0
2

, .

0

0 0 0

i

u u

i c

u cu c
N s

i c

s

u

0
s

u c2 u c

c i cs

u

s
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The eigenvalues of  ,N s   with negative real part 

for  are  Re 0s 

1

s

u







 



 

of multiplicity 2 and  

  2 2 2

2 2

s u c s

d

 



 



  

 

 
d

iplicity 1, where the of mult    denotes the sitive real 
pa onding 
eigenvectors are  

            (41) 

po
rt square root of a complex value. The corresp

 11 0,0,0,1 ,
T

e   

    12 2 , , ,0
T

e s i u i u   
         (42) 

and  

 2 2 ,e i c

  
2

2

,

,0
T

s u c

s u c

 

 


  


 

  

  




    (43) 

ly. The eigenvalue of 

 

respective  ,N s   with a ne- 
gative real part for  is  Re 0s 

  2 2 2

3 2

s u c s d

d

 



  



  

 

 

and the corresponding eigenvector is  

 
  

3 3

3

2 ,

,0 .
T

e i c s u c

s u c

  

 

 
 


 

    

  




 

,
    (44) 

ove eigen
be con i d to the

ation 

Remark 4.1 The ab values and eigenvectors 
can t nuously extende  case Re 0s  . With 
a little abuse of the not   , we still use it e 
those extensions of square roots a pearin case 

.  
vectors, we have  

  are linearly inde- 
pendent for 

 to denot
g in the p

Re 0s 
As in [15], for these 
Proposition 4.2  11 12 2 3, , ,e e e e   

2 2 1   and Re ss   except at 0

    22 2, Re 0s s u s       . 

 
In the above cases, the following proposition help us 

to find the bases of  ,E s  .  
Proposition 4.3 1) If  s u    and 

then 
Re 0s  , 

1 2       
with the following ei

and the vectors
genvectors  

 (41), (44) together 

 12 2, , ,0
T

e i i    

 2 ,0, 2 ,0
T

e u c i u 
       

are linearly independent.  

2) If  s u     then 1 2      
he following 

and Re 0s  , 
and the 44) er with t
eigenvectors  

 vectors (41), ( togeth

 ,0
T

i  12 2, ,e i  

  2 ,0, 2 ,0
T

e u c i u 
       

are linearly independent.  
As in [15], in the critical case , the bases of 0s 
 ,E s   

Proposi
is given by  
tion 4.4 If  and  then  0s  0  ,

1 2 30, ,
c c

d d

 
     

 

      

and the corresponding eigenvectors  

 11 0,0,0,1 ,
T

e   

 12 0,1, 1,0 ,
T

e    

   
2 1, , ,0 ,

2 2

T
i c u i c u

e
d d

    

 

    
   
 

 

   
3 1, , ,0

2 2

T
i c u i c u

e
d d

    

 

    
   
 

 

are linearly independent.  
Combining the above propositions, if we naturally 

expand the eigenvectors as  

,

then the bases of 

11 12 2

3

0
, , ,

0 0 0

e e e

e

  



       
       

      
 

 ,E s   are given for 
2 2 1s    

and .  

etermin

Now we can show the uniform stability of the phase 
transition.  

Proof of Theorem 4.1. Taking the Laplace-Fourier 
ition in (29) with 

Re 0s 

4.2. Lopatinski D ant 

transformation on the boundary cond
0g  , multiplying it with the invertible matrix  

0

2

0

0 1 0 0
,

0 1 0
2
0 0 0 0 1

v

q
i v


 
 
   
 
 

 

1 0 0 0 0

1 0 0 0
 
  



with 2 2 2
0q u v    and introducing the transformation 
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(3

where  

9), we get  

0,c Z x   ˆ ˆˆ 0 onZ        

 

 
   

0

,i pc
lj j s


 







 
        
 








  

  

0

u s

 



  

s 
 



with  

3 1
2

2 2 2

0
2 2

I

I

Kj p

cc c

Kj p

  
 

  

 
 

   

 

 
  

 


3 1
0 2

3 1

0
,2 2

0 0 0

0
2 2

cc c

j

u u
j

 

 


 

 

    

 
 


 


  
 
 
 
 
   
 

  

 



     

3 1
2

2

2 cc

 2 2
1

2

2
3 13 1

2

0
2

2

0 0 0

0
2 2 2 2

I

I

I

Kj p

c

Kj p

cc

j

j j Kj pu u
j

cc c

  



3

0
0

2 c




        


   

 

 

 



  
  


     

 
 
 
 




 
 
 
     
 

 

and  

 

 







  

 
  

2 2
3 10, , ,

I Ip s
l

   
  




    

2
,

2 2 2 2

I I I I
IK K p s K p s

K s
c

 
     
 



 
    

 
c c 

2 2 2
3 3 1 1

2 2

ˆ
ˆ0, , , .

2 2 2 2 2 2

I I I I I I I
IK p s K p s K p s j K p

l K s
c c cc c c c

       
 

 

   
           

   
      

2


  
               

    

 
To achieve the result, we need to verify the determi- 

nant  
     (45) 

being nonzero.  
Noticing that the eigenvector remains the same in 

all the cases mentioned in n 4.1, the following 
simplification can be made to 

K (46) 

where  is a bounded term depending on the 

 11 12 2 3det , , , ,c e e e e  
             

11e  
Sectio

,  

   12 2 3
ˆ ˆ ˆdet , , , 1 ,j c e e e O   

          

 1O
bounds of U ,   given in (10) and   given in (19),  

30
2 2

 
 

  
 1

2 2
3 1

3 1

0

0 0ˆ ,2 2

0 0

0 0
2

c c

c c

 
 

 

   

 

    

 

 
 
 
  

  




  


  

0j
 


 

2

3 1

2 2
3 1

3 3 1 1

0 0
2 2

0 0ˆ .2 2

0 0

0 0
2 2 2 2

c c

c c

j

c c

 
 

 
 

   
 

 

   

 

    

   

   

 
 
 
 
 
 
 
 
 
   
 

 

  

0

For sufficiently small , the determinant  is 
nonzero as long as the determinant  

0K  

 1 12 2
ˆ ˆ ˆdet , , ,c e e e 
       3



doesn’t vanish. Considering , one can find that it is 
similar to the Lopatinski dete inant for the correspond- 
ing problem in the isothermal case [7,9]. Noticing Propo- 
sition 4.2-4.4, we need to consider the following three 
cases:  

1) 

1
rm

 22 and 0s u s     .  

We obtain     
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22 2

1

4 2
,j j

j s u
I a K b II

 


 


 

 
  


                          (47) 

where  

   
2

2 2 2 2 2 2 ,
j

I s d s d c c
s

  
     

       


 s                          (48) 

and  

   
 

 
2 2 2 2 2

2 2 2 2 2 2

2 2 2
.

d j sc j s dc c
II s d s d

s sc j s d

    
 

   


    

    
 


  

 
     

 

 
 

  
              (49) 

Following [9], we claim that IIjI a   is nonzero for sufficiently small 0  .  
In fact, when , if  we have  Re 0s  0 , thenI

     

2

2 2 2 2 2 2 4 ,
c c

s d s d s
u u

 
 

 
 

 

 
       

                           (50) 

which implies  

      
  

2 22 2 2 2 2 2

2

2

4 1

2 1

d d d d d d M M
s

M M

  
       


 

    



                      (51) 

 

with 
u

M
c







  being the Mach numbers. From the  

subsonic property (12) of the phase transition, we have 
. Due to , we deduce that one 

 plus si , which is not the root of 
. Thus, I onzero, which gives that 

0 1M  
should take the
I o viously
the

 Re 0s 
gn in (51)

 is always nb
re exist constants 1 0M  , and 1 0  , such that for 

any 0 1   , we have  

1 0.jI aII M          

 with 

     (52) 

When Re s  0  22 2s u    and 0s  , 
we know that if 2s  does not equ to the right hand side 
of (51) with the minus sign, then the inequality (52) 
holds for any 10

al 

    with sufficiently small 1 0  . 
If 2s  
vanish

satisfies (51) 
 However,
49) i

with the minus sign, the
 imaginary part of 

n th
es. the

 (

e
 

 term I 
erm II  the t

given in s nonzero, which implies that for any fixed 
0  , ther  a c nstant 1 0M   such that the inequal- 

ity (52) hol  
e is o
ds as well. 

Therefore, we can find 1 0   and  depend- 
ing on  and 

 1 0K 
 U   give and nstant n in (10)  the co   

 for given in 18) s ch th do nish (

1

u at 1  es not va
0     and 10 K K 

2

.  

2)  2 2s u   .  

In this case, we get  

   3 2 2 2
1 8 1

for 0.

ic j s d c O


  





  



 
     

 
 

 
 (53) 

which is nonzero for sufficiently small 0   and 
.  

3) 
0K 

0s  .  
In this case, we have  

  1

4
,

d d j
j

c c
  

 
 


   

         (54) 

which is also nonzero for sufficiently small 0   and 
.  

Therefore, combining the above arguments, we draw 
the conclusion of the Theorem 4.1.               
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